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Abstract—Introduction: The paper addresses the challenging
problem of predicting the short-term realized volatility of the Bit-
coin price using order flow information. The inherent stochastic
nature and anti-persistence of price pose difficulties in accurate
prediction.

Methods: To address this, we propose a method that transforms
order flow data over a fixed time interval (snapshots) into
images. The order flow includes trade sizes, trade directions,
and limit order book (LOB), and is mapped into image colour
channels. These images are then used to train both a simple 3-
layer Convolutional Neural Network (CNN) and more advanced
ResNet-18 as well as ConvMixer augmented with hand-crafted
features. The models are evaluated against classical GARCH,
Multilayer Perceptron trained on raw data, and a naive guess
method that considers current volatility as a prediction.

Results: The experiments are conducted using price data from
January 2021 and evaluate model performance in terms of
root mean square error (RMSPE). The results show that our
order flow representation with a CNN as a predictive model
achieves the best performance, with an RMSPE of 0.85 ± 1.1

for the model with aggregated features and 1.0 ± 1.4 for the
model without feature supplementation. ConvMixer with feature
supplementation follows closely. In comparison, the RMSPE for
the naive guess method was 1.4± 3.0.

I. INTRODUCTION

A large body of research has been mostly focusing on

predicting long-term volatility, ranging from daily to annual

prediction [1]–[3]. This makes sense in ensuring that under-

lying assets, e.g. commodities, will be delivered at the agreed

price and the option price will not be too high. Along the

classical approaches for volatility prediction e.g. the auto-

regressive conditional heteroskedasticity [4], the generalized

auto-regressive conditional heteroskedasticity (GARCH) [5],

the heterogeneous autoregressive model (HAR) [1], the hetero-

geneous autoregressive model of realized variant (HAR-RV)

[6] [7], several approaches to predicting long-term volatility

using neural networks (NN) have been proposed [8]. Ge et al.

compared Temporal Convolutional Networks, and Temporal

Fusion Transformer among others in predicting the volatility

of S&P500, NASDAQ and several commodities with the help

of exogenous inputs such as indices SZSE, BSE SENSEX,

FTSE100 and DJIA, exchange rates US-YEN, US-EURO and

other fundamentals. The authors demonstrated the superiority

of the aforementioned models in predicting the next month’s

volatility [9]. Short-term volatility, on the other hand, is

also vitally important for maintaining a ”healthy” market

structure and in particular providing liquidity. High-frequency

trading strategies that market-making funds and hedge funds

commonly use [10], employ various extensions of classical

autoregressive models. Applying NNs for short-term volatility

prediction is challenging due to the stochastic nature of mar-

kets’ behavior, implying a lack of repetitive patterns. Hence,

information on order distribution and trade dynamics becomes

more crucial than at the macroscale (days and years), hence

the necessity to analyze different data modalities emerges.

The motivation for this paper comes from discretionary

traders who employ intraday trading strategies (scalping strate-

gies). This class of traders relies on market order flow in

order to identify support and resistance levels, frequency of

trades, and their size distribution to detect market reversals

and breakouts. Fig. 1(a) illustrates an example of the order

flow that visualizes the Bid and Ask sides of the LOB and

large trades. The fig. illustrates an event when a large Bid

limit order sitting in the LOB is filled by a large market

sell order (a large blue square). This large selling indicates

a sell pressure and hence a downtrend might be anticipated

by the trader. The paper tests the hypothesis of whether a

relatively simplistic CNN can learn to capture such events and

predict price volatility short-term as well as compare it to more

sophisticated models such as ConvMixer and ResNet18. The

paper also illustrates that the proposed approach allows for

interpretability.

II. TERMINOLOGY

Realised Volatility: The paper aims at predicting the re-

alized volatility(RV). As defined by [11] and [12], the RV

measures the change in price by taking the square root of the

sum of the squared returns. Defining the log return for time t
and t+ τ as rt,τ = P (t+ τ)− P (t), where P (t) = log(pt)
and pt is price at time t, the realized variance R is calculated

as Rt+τ =
∑n

i=0 r
2
τi,τi+1

where t <= τ0 < τ1 < ... <
τn <= t+ τ are timestamps of sample points from the target

period. Finally, the RV is simply the square root of the realized

variance RV =
√
R. An accurate prediction of future volatility

will help traders anticipate potential risks and opportunities in

the future. The objective is to predict RV on (t, t+ τ), where

τ is the forecast horizon.
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(a) an order flow visualised by a
real trading terminal

(b) a constructed image represent-
ing real order flow

Fig. 1: (a) The Bid/Ask levels are shown in green/red respec-

tively. The colour intensity is proportional to the size of a

limit order. Blue blocks represent large trades, with the size

being proportional to the size of a trade e.g. encodes T&S

information. (b) Both sides of the limit orders are shown in

blue. The colour intensity is proportional to limit order size.

Red and green blocks represent sell and buy trades, with the

intensity being proportional to the size of a trade.

Limit order book: The LOB provides vital information

on short-term asset behavior [13], [14]. The difference in

price and order sizes at the Bid and Ask sides (order book

imbalance) carry information that trading agents might use

to make trading decisions. Moreover, the short-term price

dynamics might depend on the frequency of trades, trade sizes,

and the correlation in trade sides, and hence can contribute

to explaining short-term volatility. Therefore, a hypothesis is

tested that the Time & Sales (T&S) and the LOB provide vital

information for improving short-term volatility forecasting.

Order Flow: The evolution of the LOB over time is called

order flow and is a tool used by traders and trading algorithms.

Formally, an order O consists of three parts: the executed time

tO (or current time for listed but not yet executed orders, limit

orders), the order price pO, and order volume or size VO,

resulting in a tuple O := (tO, pO, VO).
The T&S records represent executed/market orders, while

the LOB stores the top limit orders, i.e., the price levels at

which a buyer or a seller is willing to buy or sell correspond-

ingly. The levels are sorted by price for both the Bid and Ask

sides. Then, for a given time t, the order flow F refers to all

orders, listed in the LOB or executed (LOB and T&S) between

(t − ΔT, t), that is O ∈ Ft−ΔT,t ⇐⇒ t − ΔT ≤ t) ≤ t,
where ΔT is the input size of the time series. An example of

order flow superimposed with large trades is shown in Fig 1.

III. METHODOLOGY

Data: The perpetual futures contract (PFC) of BTC / USDT

provided by the Binance public historical market data set [15]

was used for experimentation. BTC/USDT represents the value

of Bitcoin in tether dollars (USDT). According to Binance,

among all the PFCs, the BTC/USDT PFC makes the majority

of the daily trading volume. The data contains tick-level trades

and 20 levels of LOB on the Bid and Ask sides. Generally,

the price of the contract closely follows the price at the start

of the Bitcoin market due to the “funding fee” mechanism.

The funding fee is a varying payment between long/short

position traders depending on the difference between future

contract price (mark price) and spot price that ensures that the

mark price follows closely with the spot price. For example,

when the mark price is higher than the spot price, traders

at long positions pay extra fees to traders at short positions.

Therefore, the volatility of perpetual futures contracts also

mostly replicates that of the Bitcoin spot price. It is important

to note that BTC/USDT can be traded with a leverage of

up to 125, which could and usually results in slightly higher

volatility due to potentially trigger stop cascades [16]. It is also

worth noting that besides speculative trading, PFC is widely

used for hedging against volatility risk in the cryptocurrency

market.

Image Encoding: In order to simulate the market informa-

tion presented to the trader (fig. 1(a)), an encoding heuristic

that stores LOB and T&S information as a single image is

developed. This also provides the means for employing either

pre-trained or designed-from-scratch CNNs. It is important to

note, that the idea of encoding market data into images is

not new, for example, Ge et al. trained LSTM-CNN to predict

monthly volatility [9] using images constructed from price data

by employing Gramian Angular Fields and Markov Transition

Fields [17], [18], however, these encodings are not intuitive

and rely on mathematical tricks in the hope of improving the

predictability, while our encoding simulates the representation

used by professional traders.

A resolution of m×n pixels with c channels is chosen, with

channels encoding a specific information. A unit time interval

t and a unit value interval v are further defined. Let each

column of pixels represents information in (ti, ti+1) of input

data, and the rows represent order information in (vj , vj+1).
The pixel value pti,vj , ranging from 0 to 255, represents the

normalized volume of limit orders at the corresponding row

(value interval) and column (time interval).

pti,vj = (Vo) ⇐⇒ [tO ∈ (ti, ti+1)] ∧ [pO ∈ (vj , vj+1)] (1)

Then for each channel ci, the image encodes any order settled

in the time interval (t0, t0+n ·t) with order value in the range

of (v0, v0 +m · v), where t0 is the starting time of the input

data, and v0 is the minimum price which is captured for image

encoding. Formally, for an image I, the ci channel encodes

all orders in the order flow F , if the order is within the range

of the image:

O ∈ Ici ⇐⇒ [Ot ∈ (t0, t0 + n · t)] ∧ [pO ∈ (v0, v0 +m · v)]
(2)

To avoid confusion among multiple data modalities, each

channel should only encode one piece of information. Intu-

itively, such an image is a ’snapshot’ of order flow similar to

fig. 1(a), where pixels represent the order’s time and value,

while colours represent different modalities of the order flow.
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TABLE I: Information presented as part of the dataset

Order Book T&S

Ask price Ask price from level 1 to level 20 price weighted average executed trade price in last second
Bid price Bid price from level 1 to level 20 order count number of executed trade orders in last second
Ask size volume per Ask price from level 1 to level 20 size total volume of executed trades in the last second
Bid size volume per Bid price from level 1 to level 20 is buyer whether the buyer is the market maker

The value of t and v determines the ’resolution’ of the

snapshot. The size of the image determines the range of

encoded data. Further, ε is defined as the time interval between

each consecutive encoded image. When ε < t, the encoded

images overlap with each other, and when ε > t, the image

set is a sub-sampling of the original order flow.

To align with the input size of common pre-trained CNN

models such as ResNet [19] or ConvMixer [20], the image

resolution is set to 240×240, with t measured in seconds and

v in USDT. Hence each image contains information on the

order flow for 4 minutes and the range is 240 tether dollars.

The Red and Green channels encode market orders (trades).

To amplify the effect of a market order, each trading pixel

is padded to form a square. This will result in overlapping

squares when several trades occur at about the same time,

and the value of overlapped pixels is the sum of all these

trades. Such implementation allows us to highlight regions

with more active trading activities, which may lead to changes

in volatility. Buy and sell orders are encoded by green and red

channels correspondingly.

The blue channel encodes the LOB. The limit orders are

unfortunately limited to the top 20 levels. For instance, in the

case when the price goes down, the top of the LOB becomes

occupied by new orders with lower prices, and the original top

orders disappear from the LOB. However, since the old orders

are not filled, and as long as the trader still has the intent to

trade, an assumption is made that the order will be kept in

the LOB at the same price level and with the same size until

new information indicates that the order has changed, or the

order is filled. In practice, agents may change their position

by actively tracking the price as demonstrated in fig. 1(a). fig.

1(b) illustrates an example of encoded market data following

the aforementioned procedure.

The pipeline: Based on the above trading information

representation, the encoded image is generally suitable for any

conventional 2D-CNN model. Several models with different

structures are investigated to validate the performance using

the proposed encoding method and further search for the most

appropriate model.

The main model under testing consists of two parts: (a)

the CNN, either a pre-trained one or trained from scratch and

(b) a tabular (manually crafted) feature extractor as shown

in fig. 2. The last layer of the network is replaced with a

flattening layer, to produce a 1D vector. The features extracted

from encoded images by the CNN model are combined with

externally extracted features. Based on [14] and [21], a set

of features is selected consisting of 393 aggregated features.

Finally, a regression layer maps the aggregated feature vector

to a predicted volatility value.

Models: The full list of the tested models with insights into

their structural parameters is outlined next.

Naive Guess simply takes RV of the last minute and uses

it as a prediction.

GARCH is a classical univariate model that uses past

squared returns to predict volatility. The model requires two

parameters order of autoregression (p), and order of moving

average (q). A search over these parameters is performed by

training the model with a relatively small subset. The model

with p = 1, q = 1 had the best performance.

Multilayer Perceptron (MLP), is a fully connected network

trained on the aggregated feature set described in III.

CNNPred-2D is based on [22] and takes multivariate input

of dimension 85 × 240. Typically the model has a first-layer

kernel size of 1 to aggregate all features at each timestamp into

one latent feature. The last fully connected layer is modified

for regression.

CNN-1D takes raw order flow as input i.e. each second

is represented by an 85-dimensional vector. The model is

typically with 6 convolution layers with filter size 5, followed

by pooling layers and affine regression layers.

LSTM-1D takes raw order flow as input (similarly to the

CNN-1D). The model uses three LSTM layers followed by an

affine regression layer.

ResNet-18 is a pretrained benchmark CNN-type of model

with 18 residual blocks where each residual block consists

of 2 convolution layers with kernel size 3 × 3 and batch

normalizations. The last layer is replaced by a regression layer.

Naive-CNN is used to evaluate solely the CNN part without

the aggregated feature vectors. The model has 3 convolution

layers. Each layer is followed by batch normalization, pooling

and ReLU activation. The last layer is a regression layer

mapping 128 latent features into one output. The model

configurations are shown in fig. 3.

ConvMixer-Aggr is similar to CNN-Aggr but with CNN

being replaced by the pretrained state-of-the-art ConvMixer

[20]. The model starts with a “patch layer” with patch size

2 followed by batch normalization and GeLU activation [23].

Following the patch layer are 2 residual blocks where each

residual block consists of one convolution layer with kernel

size 5 and the other convolution layer with kernel size 1.

IV. RESULTS

: Prior to image normalization, pixels representing the trade

size were clipped to the 99 percentile, in order to remove

outliers, that otherwise suppress the intensities of all other

pixels. The prediction target was the RV in the next 60

seconds. Table I outlines the information presented at every

second in an input window. The images are generated in a
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Fig. 2: Order flow is passed to the tabular feature extractor and to the image encoder. The encoded images are then passed to

the CNN model. The outputs of both parts are concatenated and fed into the regression layer(fully connected layer).

Fig. 3: (left) shows the structure of the base CNN model, (right) the weights of corresponding layers visualised with t-SNE

at 0:05,20th,June,2022 to 23:50,24th,June,2022. Volatility range of the day is colored encoded. The volatility is

normalized separately for each day, hence, there is no absolute correlation between samples with the same colour across days.

walk-forward approach. The ε is set to 10 seconds, so each

pair of neighboring images have 230 seconds of overlaps.

This results in 8616 images for each trading day. To avoid

information leaks when training models, the images are fed in

time order. The dataset is split into the train, validation, and

test sets with a size ratio of 3 : 1 : 1, where the timestamps
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TABLE II: The mean and standard deviation of RMSPE

computed for validation and test sets of the models trained

on daily data

from 1thJan, 2021 to 30thJan, 2021

Models validation set test set

Naive guess 0.414± 0.128 1.398± 2.992

GARCH 0.889± 0.603 -
MLP 0.582± 0.249 1.046± 1.099

CNNPred-2D 0.365± 0.084 1.079± 1.422

CNN-1D 0.579± 0.200 1.288± 1.435

LSTM-1D 0.346± 0.064 1.116± 1.709

ResNet-18 0.350± 0.056 1.225± 2.005

Naive-CNN 0.355± 0.060 1.005± 1.407

CNN-Aggr 0.309± 0.071 0.851± 1.110

ConvMixer-Aggr 0.519± 0.184 0.994± 1.057

of the test set are strictly after the training set to prevent

information leaks. The performance of the aforementioned

model was evaluated using the average Root Mean Square

Percentage Error(RMSPE) ρ =

√
1
N

∑N

k=1

(
ŷk−yk

yk

)2

and

compared to the aforementioned models: RMSPE obtained for

the range of 1thJan, 2021 to 30thJan, 2021 are presented in

table II. On average the proposed CNN-Aggr model outper-

forms all other models, with the best average score. It also

has the lowest standard deviation indicating a robust overall

performance. ResNet-18 and ConvMixer-Aggr did not show

better performance as one might have expected, this might be

due to the fact that these models were pretrained on ImageNet

consisting of real object images that are very different from

the synthetic order flow images. Surprisingly, the naive guess

can sometimes provide fairly accurate forecasting, especially

when the price is stable across the day i.e. the corresponding

minute volatility does not change too much. However, the

standard deviation of naive guesses is much higher, implying

less consistent prediction accuracy. Comparing the Naive-

CNN and the CNN-Aggr models, the aggregation of additional

features does improve the accuracy of prediction. To verify that

the order book dynamics actually provides valuable market

insights, the MLP model is trained solely on the hand-crafted

features. This model performed better than Naive guess but

worse than Naive-CNN, implying that the market dynamics

represented in the form of images carry important information

that is not captured by the additional features and vice versa,

which explains why the CNN-Aggr model that can be seen as a

combination of the MLP and naive CNN models outperformed

each of these models alone.

Further, CNN-LSTM models are experimented with. The

models use embeddings extracted from CNN as LSTM input.

The embedding output of consecutive images from CNN is

fed into the LSTM model as a time series. However, the

models failed to further improve the prediction, regardless of

whether the CNN-Aggr model or pretrained ResNet was used,

this could be due to images being encoded and normalized

individually, which results in breaking the correlation between

consecutive images. The stochastic nature of the price be-

haviour makes the accumulated prediction residual error large.

V. INTERPRETABILITY

:

To interpret the behaviour of the models, the input data

are passed through the trained model and output embedding

vectors from each activation layer are recorded. Four activation

layers are chosen for investigation as shown in fig. 3. Notice

that the embedding vectors are of high dimension (e.g output

of the Maxpool1 layer consists of 115200 values after being

flattened), in order to visualize the distribution of these high-

dimensional embeddings t-Stochastic Neighbor Embedding (t-

SNE) [24] is employed. t-SNE struggles in mapping from

very high dimensional space and hence the input space is first

processed by Principle Component Analysis (PCA) reducing

the dimensionality to 40. Fig. 3 shows the sample visualization

results layer by layer for CNN-Aggr models trained on 5 dif-

ferent periods from the latest available daily order flows. Each

point represents an input sample, with colours representing the

normalized target volatility. At the first activation layer, the

distribution of embedding vectors does not show any obvious

patterns. As the input data propagate through layers, samples

with high volatilities (green) and low volatilities (red) tend to

separate. At the last activation layer, there is a clear gradual

change in colour along the axes. High volatile samples (green)

are split into two corners. Further analysis shows that the two

corners correspond to an upward trend and a downward trend

of input data. For the model trained on 21th, June, 2022,

samples with clear downward trends and higher volatilities

are more likely to be mapped to the top left of the plot, while

samples with highly volatile upward trends are mapped to the

bottom left corner (fig. 4). Samples representing trades within

a trading channel i.e. sideways price movement and those

associated with non-obvious trends are mapped to the right

part of the plot. This corresponds to the prediction distribution

shown in the last line in fig. 3. Generally, the model gives a

higher volatility prediction for samples on the left side than

on the right. Intuitively, this means a highly volatile market is

likely to have high volatility in the future as well.

The choice of v0 and v is quite important but challenging,

which is due to the variability of the stock price range. Ideally,

the range should capture as many orders as possible. When v is

too large, the order flows are squeezed into a narrow band, and

hence it becomes troublesome to extract useful information. In

contrast, when v is too small, orders outside the value range

are hidden from the model. By trial and error, v was set to

1, while v0 = Op0
−m/2. It would be interesting to further

explore the effect of different value ranges.

VI. CONCLUSION AND FUTURE WORKS

An encoding method has been proposed that maps the

order flow of the market and the limit orders into images.

Several models have been trained on these data. A simple CNN

model complemented by the aggregated features achieved the

best prediction accuracy. The proposed pipeline can be easily

generalized to predict the volatility of other asset classes as

long as the top of the order book and the time and sales are

provided.
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Fig. 4: t-SNE visualization of the last ReLU layer on 21th, June, 2022. 6 samples represent different market conditions. (left)

input image; (mid) depicts the market price at the same time period including both the input and target periods on the left and

right side of the red line; (right) shows the position of the sample (black dot) in the t-SNE plot of the last activation layer.

An important difference between the images representing

order flows and images representing real-world objects is the

temporal property of the former ones. To account for this,

an attention-based temporal CNN [25] is probably a better

choice. The configuration of the encoded images such as

value range and unit value of pixels significantly affect the

encoding quality. It is also worth further investigating network

configurations to validate the robustness of the market data

representation and the models.
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