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Abstract—Word-level textual adversarial attacks have demon-
strated notable efficacy in misleading Natural Language Process-
ing (NLP) models. Despite their success, the underlying reasons
for their effectiveness and the fundamental characteristics of
adversarial examples (AEs) remain obscure. This work aims
to interpret word-level attacks by examining their n-gram fre-
quency patterns. Our comprehensive experiments reveal that in
approximately 90% of cases, word-level attacks lead to the gen-
eration of examples where the frequency of n-grams decreases,
a tendency we term as the n-gram Frequency Descend (n-
FD). This finding suggests a straightforward strategy to enhance
model robustness: training models using examples with n-FD.
To examine the feasibility of this strategy, we employed the n-
gram frequency information, as an alternative to conventional
loss gradients, to generate perturbed examples in adversarial
training. The experiment results indicate that the frequency-
based approach performs comparably with the gradient-based
approach in improving model robustness. Our research offers
a novel and more intuitive perspective for understanding word-
level textual adversarial attacks and proposes a new direction to
improve model robustness.

Index Terms—adversarial attack, natural language processing,
AI safety

I. INTRODUCTION

Deep Neural Networks (DNNs) have exhibited vulnerability

to adversarial examples (AEs) [1], [2], which are crafted by

adding imperceptible perturbations to the original inputs. In

Natural Language Processing (NLP), numerous adversarial

attacks have been proposed, which are typically categorized

by the perturbation granularity: character-level [3], [4], word-

level [5], [6], sentence-level [7], [8], and mix-level modifica-

tion [9]. Among them, word-level attacks have attracted the

most research interest, due to the superior performance on both

attack success rate and AE quality [10], [11]. Thus, this work

primarily explores these word-level attacks.

Simultaneously, the development of defenses against textual

adversarial attacks has become a critical area of study. Notable

defense strategies include adversarial training where the model

gains robustness by training on the worst-case examples [12]–

[14], adversarial data augmentation which trains models with

∗Correspondence to liu_shengcai@cfar.a-star.edu.sg.

n-FD Text

Raw
it’s hard to imagine that even very small children

will be impressed by this tired retread

1-FD it’s
139→16

challenging to imagine that even very small

children will be impressed by this tired retread

2-FD
it’s hard to imagine that even very small children

will be
6→22

stunning by
1→0,4→0

this tired retread

Fig. 1: Illustrations of two AEs exhibiting 1-FD and 2-FD,

respectively. The 1-gram (blue numbers) and 2-gram (red

numbers) frequency changes are presented. In the second AE,

the substitution of “impressed” with “stunning” raises the 1-

gram frequency (6 → 22). However, it concurrently reduces

the 2-gram frequency (1 → 0, 4 → 0).

AE-augmented training sets [15], AE detection [16]–[18], and

certified robustness [19], [20].

Despite the tremendous progress achieved, the fundamental

mechanisms of word-level textual attacks, as well as the

intrinsic properties of the AEs crafted by them, are not yet

fully explored. Considering that textual attacks and defenses

are generally oriented to security-sensitive domains such as

spam filtering [21] and toxic comment detection [22], a clear

understanding of textual attacks is important. It will elucidate

the vulnerability of the DNN-based applications and contribute

to enhancing their robustness.

This work seeks to understand word-level textual attacks

from a novel perspective: n-gram frequency. According to

Zipf’s law [23], the frequency of words (1-gram) in a linguistic

corpus is generally inversely proportional to their ranks. This

means more common words appear exponentially more often

than rarer ones, a pattern also holds true for n-grams [24].

While humans can easily navigate this frequency distribution

disparity, DNNs struggle, which may lead to issues such as

gender bias [25] and semantic blending [26]. We hypothesize

that the highly uneven distribution of n-grams may induce
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instability in models, particularly for sequences that occur less

frequently, thus making them vulnerable to adversarial attacks.

To test this hypothesis, we thoroughly analyzed AEs gen-

erated by six different attack methods, targeting three DNN

architectures across two dataset. The results reveal a consistent

pattern across all attacks: a strong tendency toward generating

examples characterized by a descending n-gram frequency,

i.e., AEs contain less commonly occurring n-gram sequences

than original ones. Figure 1 showcases instances where AEs

demonstrate decrease in n-gram frequency. Moreover, this

tendency is most pronounced when n equals 2, broadening the

earlier focus in this field that only considered the frequency of

single words [27]. Extra experiments also reveal that DNNs

have difficulty processing n-FD examples.

These findings suggest a straightforward strategy to enhance

model robustness: training on n-FD examples. Unlike the

common adversarial training approaches that use gradients

to perturb examples to maximize loss, we suggest a new

approach that perturbs examples to reduce their n-gram fre-

quency. We integrate this approach into the recent convex

hull defense strategy [28] for adversarial training. Surprisingly,

our frequency-based approach performs comparably to the

gradient-based approach in improving model robustness. In

summary, our main contributions are:

• Our analysis reveals that word-level attacks exhibit a

strong tendency toward generating n-FD examples.

• Our experiments confirm that training models on n-

FD examples can effectively improve model robustness,

achieving defensive results comparable to the gradient-

based approach.

• We provide a novel, intuitive perspective for understand-

ing word-level adversarial attacks through the lens of n-

gram frequency. Additionally, we offer a new direction

to enhance the robustness of NLP models by n-FD

examples.

II. UNDERSTAND WORD-LEVEL ATTACKS FROM THE

n-FD PERSPECTIVE

In this section, we introduce the word-level textual attacks

and the definition of n-gram frequency descend (n-FD). Then

we experimentally demonstrate that word-level adversarial

attacks prefer generating n-FD examples.

A. Preliminaries

a) Word-Level Textual Attacks: As the most widely

studied attacks in NLP [29], word-level textual attacks gen-

erate AEs by substituting words in the original texts. Let

x = [x1, x2, · · · , xL] denote a text with L words. A word-

level attack would first construct a candidate substitute set

S(xi) = {s(i)j }Kj=0 with size K for each word xi. Then it

iteratively replaces a word in x with some substitute selected

from the candidate set, until attack succeeds.
b) n-gram Frequency: By definition, n-gram is a con-

tiguous sequence of n words in the given texts. The i-th n-

gram of text x is defined as:

gni := [xi, xi+1, · · · , xi+n−1], i ∈ [1, L− n+ 1]. (1)

TABLE I: Summary of the attacks for AE generation, includ-

ing model access, substitution methods, and search strategies.

W/B represents white/black-box attack. WSG represents word-

saliency-based greedy search.

Attack Access Substitution Search

GA [5] B Counter-fitted Genetic
PWWS [6] B WordNet WSG

TF [30] B Counter-fitted WSG
PSO [15] B HowNet Particle Swarm
LS [31] B HowNet Local Search
HF [32] W Counter-fitted Gradient

We define the number of occurrences of an n-gram in the

training set as its n-gram frequency, denoted as φ(gni ). Then

the n-gram frequency of text x, denoted as Φn(x), is the

average of the n-gram frequencies of its all n-grams:

Φn(x) :=
1

L− n+ 1

L−n+1∑
i=1

φ(gni ). (2)

c) n-gram Frequency Descend (n-FD): Given x, suppos-

ing an attack generates an example x′ by substituting some

words in x, then x′ is a n-FD example if it has lower n-gram

frequency than x, i.e., Φn(x
′) < Φn(x).

Similarly, x′ is a n-gram frequency ascend (n-FA) example

and a n-gram frequency constant (n-FC) example if Φn(x
′) >

Φn(x) and Φn(x
′) = Φn(x), respectively.

d) n-FD Substitution: If a word substitution decreases

the n-gram frequency of the text, then it is dubbed n-FD

substitution. Formally, given text x, let x
xi→s

(i)
j

denote the

text generated by substituting xi in x with s
(i)
j . Then the n-

gram frequency change of the text, denoted as ΔΦn(s
(i)
j ;x),

is:

ΔΦn(s
(i)
j ;x) := Φn(xxi→s

(i)
j
)− Φn(x). (3)

If ΔΦn(s
(i)
j ;x) < 0, then substitution xi → s

(i)
j is

a n-FD substitution. Similarly, if ΔΦn(s
(i)
j ;x) > 0 and

ΔΦn(s
(i)
j ;x) = 0, then it is a n-FA substitution and a n-

FC substitution, respectively. For example, in Figure 1, the

replacement of “hard” → “challenging” is a 1-FD substitu-

tion, while “impressed” → “stunning” is a 2-FD substitution.

B. Adversarial Example Generation

a) Attacks: We selected six existing word-level at-

tacks, including five black-box attacks: GA [5], PWWS [6],

TextFooler (TF) [30], PSO [15], LocalSearch (LS) [31]; and

one white-box attack: HotFlip (HF) [32]. These attacks are

representative in the sense that and have achieved effective

performance against various models. They employs different

substitute candidate construction methods and search strate-

gies, as summarized in Table I. To construct the substitute

sets, PSO and LS use the language database of HowNet [33],

PWWS uses WordNet [34], while GA, TF, and HF rely on

Counter-fitted [35] embeddings.
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TABLE II: Percentages of the n-FD, n-FA, and n-FC examples

in the AEs generated by all the six attacks when attacking three

models on two datasets.

n n-FD (%) n-FC (%) n-FA (%)

1 91.27 0.75 7.98
2 93.51 2.58 3.92
3 87.29 10.55 2.17
4 72.56 26.24 1.21

b) Dataset: We ran these attacks on 1000 test examples

randomly selected from two public classification datasets:

IMDb reviews dataset (IMDB) [36] for sentiment analysis and

AG-News corpus (AGNews) [37] for topic classification.

c) Victim Models: The attacking experiments covered

three different DNN architectures: convolutional neural net-

work (CNN) [38], long short-term memory (LSTM) [39] and

pre-trained BERT [40].

C. Results and Analysis

Adversarial attacks have n-FD tendency. Table II sum-

marizes the average percentages of n-FD, n-FA, and n-FC

examples (with n = 1, 2, 3, 4) of the AEs generated by the

six attacks, calculated across three models and two dataset.

One can observe that when n is 1, 2, 3, around 90% of the

AEs show n-FD characteristic. Figure 2 further shows the

detailed distributions of the n-gram frequency changes induced

by the PWWS attack. It can be observed that most changes

show the decreases in terms of n-gram frequency. Overall,

all these attacks exhibit a strong tendency toward generating

n-FD examples.

n-FD tendency is most pronounced when n equals 2.
Based on Table II, 2-FD examples achieve better coverage

compared with other cases. When n = 1, the percentage

of n-FA is high, indicating a significant portion of the AEs

containing more-frequent words. For n = 3, 4, the percentage

of n-FC is large, which means they are not good indicator

to interpret AEs. Further experiments show that, on average,

97% of n-FC cases are out-of-vocabulary (OOV) replacement,

where both original and new n-grams never appear in the

training set.

Models exhibit reduced performance on n-FD examples.
Previous analysis implies that NLP models struggle more with

n-FD examples. To test this hypothesis, we conducted exper-

iments using the IMDB test set. For each test example, we

generated one n-FD and one n-FA example through random

word substitutions. Then, we evaluated the standardly trained

models on the three sets: the original test set, n-FD example

set, and n-FA example set. Figure 3 shows that the model’s

predictions are less accurate on n-FD examples than on n-FA

examples. This outcome is expected, as DNNs typically do

not learn effectively from small sample sizes without specific

training techniques. Besides, the poor adaption to smaller

samples has a minor effect on evaluation metrics, which are

designed to assess performance across a broad range of data.

Algorithm 1 n-FD convex hull training

Require: Dataset D, model f with parameter θ, adversarial

steps Tadv

1: Initialize θ
2: Initialize n-gram frequency table TΦn .

3: for epoch = 1 · · ·Nepoch do
4: for x, y ∈ D do
5: Randomly initialize w0

6: g ← 0
7: for t = 0 to Tadv do
8: Compute x̃t by Eq. (6) using wt

9: g ← g +∇θL(f(x̃t), y)
10: Update n-gram frequency table TΦn

by x̃t

11: Compute wt+1 by Eq. (8) using TΦn
.

12: end for
13: Update θ by g
14: end for
15: end for

III. TRAINING ON n-FD EXAMPLES IMPROVES

ROBUSTNESS

The findings from the previous section indicate that AEs

exhibit an n-FD tendency, on which models perform poorly.

Building upon this insight, a intuitive approach is to train

models on n-FD examples, similar to adversarial training.

To evaluate the feasibility of this approach, we developed

an adversarial training framework that relies on n-gram fre-

quency. In this approach, it’s the frequency, not the gradient,

that directs the generation of AEs. This section will detail the

approach.

A. n-FD Adversarial Training

In the conventional adversarial training paradigm, the train-

ing object is modeled as a min-max problem, where the inner

goal is to find an example xadv that maximizes the prediction

loss, formulated as:

xadv = argmax
x′∈P(x)

L(F (x′), y), (4)

where xadv denotes the loss maximizing example, and P(x) is

the perturbation set consisting of all texts that can be generated

by doing the substitution operation on x. L denotes the loss

function of trained model F . In practice, training algorithm

literately update x to approximately approach xadv with the

help of gradient.

To access the effectiveness of n-FD examples, we modify

the gradient-based adversarial training paradigm to n-FD

adversarial training, where the inner objective is to find the

n-FD example, formulated as:

xn−FD = argmin
x′∈P(x)

Φn(x
′). (5)
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Fig. 2: Distributions of the n-gram frequency changes induced by PWWS attack when attacking BERT on the IMDB dataset.

The blue, orange, and purple bars represent the n-FD, n-FA, and n-FC examples, respectively. The exact percentage values

are shown in the legend. From left to right, the value of n varies from 1 to 4.

Fig. 3: The confidence distribution for a CNN classifier on the clean examples (Orig), n-FD examples (n-FD) and n-FA

examples (n-FA) from IMDB dataset. Confidence refers to the softmax probability of the true class. n is 1 to 4 from left to

right images. Models perform similarly on clean examples and n-FA examples, but worse on n-FD examples.

B. Applying n-FD Adversarial Training to Convex Hull

a) Convex Hull Framework: We apply our method to a

recently proposed convex hull paradigm [14], [28]. The gen-

erated AE during training is a sequence of virtual vectors x̃i,

which is a convex combination of synonyms S(xi), formulated

as:

x̃i =
K∑
j=0

w
(i)
j s

(i)
j , (6)

where the w
(i)
j is the corresponding coefficient for substitution

s
(i)
j , which meet the convex hull constraints {∑j w

(i)
j =

1, w
(i)
j > 0}. Previous works used gradient-based methods

to update w and build loss-maximizing AEs during training,

formulated as:

Δw
(i)
j = α‖∇

w
(i)
j
L‖, (7)

where α is adversarial step size and ‖.‖ represents l-2 nor-

malize operation.

b) n-FD Convex Hull: In n-FD adversarial training,

we replace the gradient ascending direction with frequency

descend direction to generate virtual AEs, formulated as:

Δw
(i)
j = −α

∥∥∥ΔΦn(s
(i)
j ;x)

∥∥∥ , (8)

where ΔΦn is defined in Eq. (3). This equation aims to

increase the weight of n-FD substitutions. The full training

algorithm is showed in Alg. 1.

We implemented two n-FD training methods based on 1-

gram and 2-gram frequency, denoted as ADV-F1 and ADV-F2,

respectively1. We follow the implementation of [28].

When n = 1, ADV-F1 updates w
(i)
j by its corresponding

word frequency, the ΔΦ1(s
(i)
j ;x) in Eq. 8 is computed as

follows:

ΔΦ1(s
(i)
j ;x) = φ(s

(i)
j ). (9)

Notice that we omit the frequency of the original example

Φn(x) as it remains constant. When n = 2, ADV-F2 use the

frequency of two 2-grams that contains s
(i)
j to update w

(i)
j .

ΔΦ2(s
(i)
j ;x) is computed as follows:

ΔΦ2(s
(i)
j ;x) = φ([xi−1, s

(i)
j ]) + φ([s

(i)
j , xi+1]). (10)

Notice that the frequency information is updated during

training, so the update direction of w is dynamic.

C. Experimental Settings

a) Dataset and Models: Dataset includes Internet Movie

Database (IMDB) [36] for sentiment classification task and the

AG-News corpus (AGNews) [37] for topic classification task.

Experiments are adopted on three different DNN architectures:

convolutional neural network (CNN) [38], long short-term

memory (LSTM) [39] and pre-trained BERT [40].

1For memory and computational speed reasons, we didn’t implement
algorithm with larger n.
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TABLE III: Classification accuracy (%) of ADV-G and ADV-F on clean examples (CLN) and different attacks across models

and dataset. “AVG ROB” represents the average defensive performance against various attacks, with the numbers in brackets

indicating the performance difference between ADV-F and ADV-G.

Dataset Defense
CNN LSTM BERT

AVG ROB
CLN PWWS TF LS CLN PWWS TF LS CLN PWWS TF LS

IMDB

Standard 88.7 2.3 5.8 2.0 87.4 2.4 8.2 0.9 94.1 34.7 36.2 3.5 10.7
ADV-G 83.8 70.0 71.6 69.6 83.5 72.4 73.5 70.1 92.9 63.4 65.0 58.5 68.2
ADV-F1 87.3 69.8 71.2 68.8 87.0 68.0 69.2 66.4 93.2 66.1 67.3 63.3 67.8 (−0.4)

ADV-F2 87.6 70.2 72.0 70.5 86.5 72.0 71.7 68.7 93.3 67.0 67.5 64.4 69.3 (+1.1)

AGNews

Standard 92.0 57.2 54.5 52.1 92.8 61.4 59.2 55.3 94.7 71.8 70.1 50.2 59.1
ADV-G 91.1 87.0 83.9 83.1 92.9 89.0 88.2 87.3 94.5 86.7 85.9 83.5 86.1
ADV-F1 91.2 84.7 82.3 82.3 92.9 87.3 87.1 84.9 94.0 85.5 84.2 81.0 84.4 (−1.7)

ADV-F2 91.4 86.8 83.8 82.9 92.9 88.5 87.5 85.6 94.5 86.0 84.4 83.6 85.5 (−0.6)

Fig. 4: Confidence distribution of different models on n-FD

examples. After training on AEs, models also achieve better

performance on n-FD examples.

b) Evaluation Metrics: We use the following metrics

to evaluate defensive performance: 1) Clean accuracy (CLN)

represents the model’s classification accuracy on the clean test

set. 2) Robust accuracy is the model’s classification accuracy

on the examples generated by a specific attack. A good

defender should have higher clean accuracy and higher robust

accuracy.

c) Attacks: We utilize three powerful word-level attacks

to examine the robustness empirically: PWWS [6], TextFooler

(TF) [30] and LocalSearch (LS) [31]. PWWS and TF employ

greedy search with word-saliency exploring strategy. They first

compute the word saliency of each original word and then

do greedy substitution. On the other hand, LS is an iterative

attacker who selects the worst-case transformation at each step.

Thus, LS achieve a higher successful attack rate but requiring

more query numbers. For fair comparison, we use the same

substitution set for all defenders, following the setting of [28].

D. Results and Analysis

Training models on n-FD examples improves robustness.
Table III reports the clean accuracy (CLN) and robust accuracy

against three attacks (PWWS, TF, LS) across two dataset.

We observe that both ADV-G and ADV-F effectively enhance

the model’s robustness. ADV-F achieves competitive defensive

performance with ADV-G, with only a minor difference of less

than 2% This small performance gap suggests that adversarial

examples generated by both gradient methods and n-gram

Fig. 5: The n-gram frequency distribution of all training

examples for ADV-G, ADV-F and standard training on IMDB.

We normalize the frequencies with the training data size for

comparison.Both ADV-G and ADV-F result in a more balanced

n-gram frequency distribution, i.e., lower at the head but

higher in the tail.

frequency have similar impacts on model robustness. Another

key finding is that ADV-F2 consistently outperforms ADV-F1,

indicating that 2-FD examples are more effective in increasing

robustness than 1-FD examples. This observation aligns with

the earlier findings discussed in Section II-C. Further analysis

on how the choice of n-value influences robustness enhance-

ment in Section III-E.

Gradient-based adversarial training generates n-FD ex-
amples. Figure 5 shows the sorted frequency distribution of all

training examples, including those from adversarial (ADV-G,

ADV-F) and standard training methods. Since standard training

utilizes only clean examples, its distribution is the same as that

of the original training set. One can observe that ADV-G, like

ADV-F, increases the frequency of the less common n-grams.

Adversarial training improve model’s performance on
n-FD examples. Figure 4 displays the distribution of con-

fidence scores for the correct class across various models

when handling n-FD examples. These models are trained

using standard or adversarial methods on the IMDB dataset.

Notably, after adversarial training, there is an increase in

the confidence scores . Furthermore, both frequency-based

and gradient-based training strategies effectively improve the

model’s performance on n-FD examples, aligning with our
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Fig. 6: The robustness performance of n-FD example aug-

mentation with different n-values. “STD” is short for standard

training, and “RDM” is short for random augmentation.

expectations.

E. Exploration of Proper n for Robustness Improvement

We conduct another defensive experiment to explore the

robustness improvement considering different value of n. We

generate n-FD examples of each training example for different

n values, and then augment them to the training set. The results

in Figure 6 show the different robustness performance when

n increases from 1 to 4. The robust accuracy is measured

by PWWS attack [6] on 1000 examples from AG’s News

dataset, across three model architectures. We can observe that

the optimal defense performance occurs when n is 2, with

a decline in performance as n increases. This trend suggests

that 2-FD information more effectively finds examples that

enhance model robustness. However, as n become larger, the

n-FD loses its informational value. Because most substitution

will be considered as n-FD, reducing the process to random

augmentation.

IV. RELATED WORKS

A. Textual Adversarial Attack

Despite the great success in the NLP field, deep neural

networks are shown to be vulnerable against AEs in many

NLP tasks [41]–[50]. Textual adversarial attacks can be clas-

sified by granularity into character-level, word-level, sentence-

level and mixture-level [29]. Character-level attacks focus on

deleting, adding or swapping characters [3], [4], which usually

results in grammatical or spelling errors [10]. Sentence-level

attacks change a whole sentence to fool the victim model,

e.g., paraphrasing or appending texts [8]. And mixture-level

attacks combine different level operations, e.g. phrases and

words [9], [51]. In comparison, word-level attacks craft AEs

by modifying words, where the candidates are formed by

language databases [33], [34], word embeddings [35] or large-

scale pre-trained language modeling. These word-level attacks

directly leverage gradient [32], search methods [5], [31], [52]

to find effective word substitutions.

B. Textual Adversarial Defense

The goal of adversarial defense is to make models have

high performance on both clean and adversarial examples.

Defense methods are generally categorized into empirical and

certified, based on whether they provide provable robustness.

Adversarial training and adversarial data augmentation are

two popular approaches in empirical defense [6], [13], [30],

[53], [54]. Adversarial training generates perturbation during

training, while adversarial data augmentation obtains it after

training, hence requiring a re-train phase. However, such

augmentation is insufficient due to the large perturbation

space, so these methods cannot guarantee the robustness of

the model. Convex hull-based defense is another approach of

adversarial training [14], [28], which optimizes the model’s

performance over the convex hull formed by the embedding

of synonyms. On the other hand, certified defense provides

a provable robustness. Certified defense mainly consists of

two types: Interval Bound Propagation (IBP) [19], [55] and

random smooth [20]. IBP-based method computes the range

of the model output by propagating the interval constraints

of the inputs layer by layer, which requires knowing the

structure of each layer. Random smooth methods achieve

certified robustness by the statistical property of noised inputs.

To the best of our knowledge, only one previous work

has explored frequency changes in AEs [27]. However, our

research diverges significantly in several key areas, clearly

establishing its distinct contribution to the field: 1) Scope of

analysis: The previous work concentrates on the single words.

In contrast, our work embraces a broader scope, examining

general n-gram frequency. Notably, our statistical analysis

show that 2-grams provide more insightful results than single-

word analysis. 2) Purpose and application: The previous work

primarily utilized word frequency as features to detect attacks.

Conversely, we employ frequency analysis as a tool to deepen

our understanding of word-level attacks. Furthermore, we

verified that the use of n-FD examples specifically to improve

the robustness of models.

V. CONCLUSION

This paper provides a novel understanding of word-level

textual attacks through the lens of n-gram frequency, and

provides a new direction to improve model robustness. Our

analysis of adversarial examples reveals a the attackers’ gen-

eral tendency towards n-FD examples, with n = 2 shows the .

We also find that typically trained models are more vulnerable

to n-FD examples, indicating potential risks for NLP models.

Motivated by these findings, we introduce an n-FD adversarial

training method that significantly improves model robustness,

comparable to gradient-based approach. Notably, using 2-

gram frequencies proves more efficient in fortifying models

compared to 1-gram frequencies. We believe this work will

deepen the understanding of adversarial attack and defense in

NLP. However, there are limitations in our study. Primarily, we

do not fully understand why there are some AEs that belongs

to 2-FA. Furthermore, our study does not incorporate multiple

n-gram information.
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VI. ETHIC STATEMENT

While our interpretations and experimental findings have the

potential to design a more powerful attack, this recognition

raises critical ethical concerns, as advancements in attack

strategies could be misused, leading to more effective ways of

deceiving NLP systems. However, it is crucial to emphasize

that our primary objective is to contribute positively to the

field by enhancing the understanding and defense mechanisms

against such attacks. Moreover, we proposed a method specif-

ically designed to improve the robustness of models against

several attacks.
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