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Abstract—The biggest challenge focus by today’s license plate
recognition systems is whether they can still operate normally
when weather conditions are severe. Many current systems rely
on deep learning methods to train the system, however, collecting
data under severe weather often requires a lot of costs. Because
the quality of collected data is generally poor, which will greatly
increase the difficulty of manual annotation. In addition, since
regional license plates vary greatly, it will take a lot of effort to
collect plate data in different regional styles in order to develop
a universally-applicable recognition system.

This paper mainly explores the problem of rapid performance
degradation of existing license plate recognition systems under
harsh weather conditions. We propose a method that can simulta-
neously generate fully synthetic license plate data as well as noises
under severe weather conditions. Furthermore, we designed a
new Latent Diffusion YOLOv7 (LD-YOLOv7) neural network
based on the existing object detection method—YOLOv7, which
can effectively solve various problems of plate recognition in
bad weather. In order to verify the effectiveness of this system
in practical application, we also established a regional license
plate dataset containing real harsh climate conditions for testing
purposes. The experimental results show that our proposed model
performs comparable to other existing methods trained with real
data on AOLP dataset, and performs better under harsh weather
conditions.

Index Terms—license plate recognition, object detection, latent
diffusion, synthetic data.

I. INTRODUCTION

Automatic License Plate Recognition (ALPR) is a very

important and practical computer vision technology in modern

life. Its applications can be seen everywhere in smart parking

lots, electronic road toll collection, or access control systems.

The early ALPR system needed to limit the direction and

position of the car during use and count on bright light to

guarantee effective function [5]. In recent years, thanks to the

rapid development of deep learning technology, researchers

have the opportunity to focus on more difficult outdoor scenes.

*First Author and Second Author contribute equally to this work.

However, systems based on deep learning rely heavily on

whether the dataset is completely collected, so there are studies

such as AOLP [9], CCPD [30], and CRPD [6], trying to build

real-world outdoor scene datasets. In addition, Azam et al. [2]

analyzed various factors that affect the accuracy of the license

plate recognition system in real outdoor scenes, such as low

brightness, bad weather, etc.

Under harsh weather conditions, the two most difficult

problems that general deep learning-based license plate recog-

nition systems need to overcome are the issues of insufficient

training data and noise. Because real data in severe weather

is difficult to collect, it becomes imperative to use synthesis

as a means of data augmentation. The synthesized data does

not involve the two most labor-intensive tasks of labeling and

data collection, and the angle of the license plate and the text

and numbers on the license plate can be adjusted at will,

which is very beneficial to the development of the system.

Wrenninge and Unger [29] believe that making synthetic data

closer to real conditions can improve the system’s recognition

capabilities, so they recommend using rendering technology

or game engines to construct realistic urban scenes, and

they have achieved considerable results. However, the above

methods often ignore the complex calculations of high-fidelity

rendering and the large costs required for game modeling.

Since a license plate has a clear appearance definition, there

is no need to synthesize too realistic scenes. As long as the

synthesized data conforms to the actual license plate rules and

is given enough randomness, good results can be achieved.

Based on the premise of using synthetic augmentation

datasets, we propose two methods to solve the problems

caused by noise. The first one is to use a noise generator and

add weather noise to the synthetic data. This can adapt the

network to work in a noisy environment. Many recent studies

have established extremely realistic weather noise generation

techniques, but these methods are based on the physical

characteristics of weather, and therefore require the use of
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deep information to simulate the effects of weather. However,

synthetic data that are generally not realistic enough do not

meet the above conditions. For this reason, we designed a

simple noise generator and it has been proven effective on real

severe weather data. As to the second method, we proposed to

devise some way of removing noise. Doing so, it will allow

the network to operate in a nearly noise-free environment. In

order to achieve the purpose of noise removal, we introduced

the diffusion model [25], and the characteristic of this model

is that by adding noise, the network learns to remove noise.

The advantage of the above approach is that it does not require

the use of real-world noise for training, and this mechanism

fits well with the synthetic data and noise generation methods

we adopt.

In this paper, we propose the use of synthetic license

plate datasets to replace the real data that are difficult to

physically collect in bad weather. The biggest advantage of

the above dataset is that there is no need for real data in

either the foreground or the background. Our contributions

are summarized below:

• Design a synthetic data generator and a method to gen-

erate severe weather noise. The proposed data generation

method generates both foreground and background ran-

domly, so no real images need to be involved except the

license plate font. The YOLOv7-tiny [27] network trained

using synthetic data can effectively improve the license

plate recognition rate in bad weather and when day and

night scenes change.

• The LD-YOLOv7 network is proposed to filter noise

in YOLOv7-tiny latent space and turn it into useful

information for license plate detection, thereby improving

the recognition rate.

• A small license plate dataset is proposed to specifically

collect license plate data in bad weather (WLP). Through

this small license plate dataset, we can verify that our

method can be applied to real-world data.

In the remainder of the paper, we first discuss related

works, describe details of the proposed methods, present the

experimental results and summarize the conclusions and future

works.

II. LITERATURE REVIEW

In this section, we mention related works about the outdoor

license plate recognition problem. In Section II-A we describe

the past works about how to generate synthetic data and how

to add weather noise to the synthetic data. As to how to

reduce the impact of noise on license plate recognition will

be reviewed in II-B. In II-C, we will review how previous

researches dealt with license plate recognition system.

A. Synthetic data and noise generator

Adding noise is necessary for successful use of synthetic

datasets in outdoor environment. Björklund et al. [4] used

real images as the background, and then combined them

with the synthetic data of the foreground. They also used

data enhancement techniques, such as illumination changes,

viewing angle changes, random color shifts, etc., to prove

that adding noise can effectively improve the accuracy of

outdoor license plate recognition. In addition, Wrenninge and

Unger [29] built a synthetic dataset of street scenes using

photorealistic rendering techniques. They also added camera

sampling noise to the data, and the price of producing the

realistic synthetic data was high.

In order to solve the extreme data problems caused by severe

weather, Hahner et al. [7] proposed to use the method of [29]

as a basis, compared with in-depth information to try to change

the content of the dataset to foggy weather, and directly use

[29]’s label to create a severe weather dataset. There are some

excellent methods [22] [10] that also use depth information

to simulate severe weather, and these methods have indeed

resulted in better rain and fog removal effects. However, depth

information is not as easy to obtain as RGB information, so

it is more expensive to collect data.

In recent years, there have been some studies using Cycle-

GAN [32] style transfer methods to simulate severe weather

[20] [1] [18] [19] [16]. However, similar methods require

existing datasets and labels to generate images. Because li-

cense plates are different in different areas, a license plate

recognition system that has been trained and feasible in one

area will not work in other places. Therefore, the style transfer

method can only overcome the weather problem. As for the

license plate content that change with the region, the style

transfer method cannot handle it.

Based on the above analysis, we create a synthetic license

plate generator based on license plate rules to replace real data.

At the same time, to ensure the randomness of each license

plate, we generate datasets and labels in real time during

training. In order to reduce the burden on the system, we use

a simple noise generator to simulate severe weather, because

the style transfer noise generation method is too expensive.

B. De-noising method

Eliminating noise is an important means to improve license

plate recognition rate. There have been many related studies

in the past. For example, Azam et al. [2] proposed filtering to

remove rain and fog in severe weather. Svoboda et al. [26] use

the characteristics of CNN to learn the dynamic blur matrix

of a fixed-angle camera in a real scene, and use it to invert the

blurring process to achieve a clear image. In [23], Seibel et al.

introduced timeline video information to find clear versions of

blurred license plates at other time points in a tracking manner.

In [14], Liu et al. take a similar approach that uses the ReID

system to collect multiple license plates from the same vehicle,

and then use generative adversarial network to combine the

information of the multiple license plates to generate super-

resolution license plates for identification. However, the above

method needs to collect multiple time points and even images

from multiple cameras to work effectively. In [11], Kerim et

al. proposed to train a network with multiple branches using

synthetic data on semantic segmentation tasks. In this network,

each branch needs to be trained separately on semantic seg-

mentation, weather, day and night changes, etc., and finally it
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is expected that the semantic segmentation results will not be

affected by noise. But the above method needs the branches

to be established independently for each type of noise, which

will lead to a very complex system.

Another method often used for noise removal is diffusion

model [25]. It can define the original image and the noisy

image as two distributions, and use Markov chain to define the

process of converting from a clean image to a noisy image,

and learn the distribution transformation in between. In [8],

Ho et al. proposed Denoising Diffusion Probabilistic Models

(DDPM) that established a paradigm for image generation

from Gaussian noise. The method they proposed is basically a

simplification of diffusion model. Trying to add the previous

Gaussian noise to a clear image is equivalent to the result

of accumulating multiple Gaussian noise in the past. In [21],

Rombach et al. proposed a diffusion model that works in latent

space. They tried to change the location of diffusion from the

RGB space to the latent space of the large language model,

which resulted in better outcome for each task. Since the noise

of real data cannot obtain the corresponding noise-free version,

in order to solve the problem of matching noisy data and

clean data, Wei et al. [28] used cycle-consistent architecture

to train the diffusion model with already matched data, and

used another network to transfer the results to the real data.

In [3], Bansal et al. argued that the diffusion model does not

need to rely on Gaussian noise, and they thus proposed the

cold-diffusion mechanism. Their method can convert a variety

of noisy images back into clean images. In 2023, Luo et

al. [15] proposed using synthetic data to train rain and fog

removal diffusion model, and they also confirmed that this

method can really remove rain and fog on real images. In [17]

Özdenizci and Legenstein used conditional diffusion model to

concatenate the noisy images under severe weather, such as

rain, fog, and snow with Gaussian noise images. Their method

can simultaneously remove Gaussian noise and noise caused

by severe weather.

Based on the above methods, we believe that the diffusion

model can indeed help remove severe weather noise, but it

will require high training and inference costs if it handles

noise in the image space [21]. This work is based on the

concept of cold-diffusion [3], and mixes it with various noises

on the synthetic dataset. At the same time, the noise of the

image space is substituted into the latent space to improve the

accuracy of license plate recognition.

C. License plate detection and recognition

Several past methods mentioned that the license plate recog-

nition capability can be effectively improved if the system

is divided into multiple steps. For example, the method pro-

posed in [12] and [13] is to split the system into vehicle

detection, license plate detection, and license plate recognition.

In [24], Silva and Jung proposed to add an automatic affine

transformation step into the system to reduce the impact of

license plate angle differences on recognition. Thanks to the

rapid advancement of object detection technology, a method

[4] using only a few steps has achieved very good results.

We used YOLOv7-tiny [27] as the license plate detection

and recognition model. We use characters and license plates

together as detection targets and use post-processing to remove

the license plate without characters, and merge the characters

in order to obtain the final license plate recognition result.

III. METHODOLOGY

A. Our training data: license plate generator

We design a process for generating positive license plate

samples, as shown in Fig. 1. We first refer to the real license

plate and use it to generate samples of the license plate

frame and all text. Then several words are randomly selected

and arranged to form a license plate sample that meets the

real specifications. We then modify the license plate text

color, license plate size and rotation angle of the sample, and

then combine lines and color blocks to randomly generate

a background. Finally, we paste the generated license plate

sample at a random position on the background, as shown in

Fig. 2. The random values of all the above steps are set to

situations that may occur in real life, and each text is forced

to appear at least once in different positions, with different

colors and sizes, thereby increasing the text features and types

learned by the model.

Fig. 1. We first generate the license plate frame (left) and text that comply
with regional regulations. After randomly selecting the text (middle), we
arrange it on the license plate according to realistic proportions (right).

Fig. 2. Adjust the license plate text to the existing style, randomly rotate and
scale it and paste it on the randomly generated background.

B. Noise generator

We observed license plate images in various actual severe

weather conditions and tried to reproduce the types of noise

that would cause blurred license plate text, and the results are

shown in Fig. 3. In order to simulate the situation where some

text is obscured due to bad weather, we randomly generate

lines of different thickness to cover the license plate image. In

order to simulate the difference in image brightness caused by

light, we randomly select a center point in the image as the

light source and linearly adjust the brightness of the image. In

order to simulate text blurring caused by weather, we randomly

divide the image into several blocks, and adjust all pixel values

in each block to the average of all pixels in the block to achieve

a mosaic-like effect. Finally, we randomly select one or more

of the above noise generation methods and apply them to the

synthesized license plate image.
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Fig. 3. Examples of different types of noise. From left to right: original
image, masking part of the text, blurring, and brightness adjustment.

In order to train the diffusion network, all noises have an

intensity upper limit. We use t to represent the steps used to

control the intensity of the noise. The value t from low to high

represent the intensity from weak to strong. We define noise as

Wt and step t as t ∈ {0, T}, T = 100. When t = 0, no noise

is added, and the difference between t varies with the type of

noise, as shown in Fig. 4. We assume that the intensity will

increase linearly as t increases until an upper limit of intensity

is reached at t = T .

Fig. 4. Visualization of our noise generator: each column represents a different
noise, with increasing intensity from left to right.

C. Training YOLOv7-tiny model

We train YOLOv7-tiny according to the preset hyperparam-

eters of [27]. All training data are generated by III-A, and half

of the data will be added with weather noise through III-B,

where the noise intensity t of each data is generated with

uniform distribution. Since all data are generated in units of

batch size at the moment of training, our method does not have

a generally defined concept of epoch. In order to facilitate the

use of epoch-related optimizers, we stipulate that the number

of images in an epoch is 102,400, batch size is 32, and the

total number of epoch is 80. The above setting is to make the

total training times approximately equal to the training times

of [27] under hardware limitations.

D. Latent Diffusion model with YOLOv7-tiny(LD-YOLOv7)

The proposed latent space diffusion model actually operates

in the feature space of YOLOv7-tiny, and the position is the

8x in YOLOv7, as shown in Fig. 5, and this position is also

the junction of the backbone and the neck layer. We collect

the features output from this location as the input of the latent

diffusion model, and after removing weather noise, replace the

original features with the output of the latent diffusion model

and connect it to subsequent layers. We chose this location for

three reasons:

1) The fewer features that change, the better.

2) This feature can affect all subsequent layers.

3) At this location we only need to change features from

the same layer.

The first two points mentioned above are based on the

concern of computation efficiently, and the third point is

because features from different layers will have different

strengths. In order to reduce the complexity of the design,

we hope that the features are all provided by the same layer.

Based on the above three considerations, we believe that the

8x position is the best choice.

Fig. 5. Visualization of Latent Diffusion YOLOv7: diffusion model is located
at the junction of backbone and neck.

The network architecture of latent diffusion model is mainly

based on [3], and many improvements have been made during

the training process. To maintain notational consistency, we

directly utilize the notational definition of [3] as follows:

Given an image x0 ∈ R
N , consider the degradation of x0 by

operator D with severity t, denoted xt = D(x0, t). What the

restoration operator Rθ does is to approximately inverse D,

where Rθ(xt, t) ≈ x0, and θ represents the weight of network

R.

The original cold diffusion loss is defined as follows [3]:

min
θ
Ex∼X ‖Rθ(D(x, t), t)− x‖ , (1)

where x denotes a random image sampled from distribution

X , and ‖∗‖ is L1 norm. Since our main objective is to remove

noise rather than generate images, we modify Equation (1) to

the following:

min
θ
Ex∼X ‖(D(x, t)− εθ(D(x, t), t))− x‖ , (2)

where εθ is an ε network with θ weight, and the objective

of Equation (1) is to directly obtain a clean image from the

input image and the step t. As for Equation (2), it can be used

to calculate the difference between clean images and noisy

images. In order to convert the working space of the diffusion
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model to the latent space, we use the layers from the top of

YOLOv7 to resolution 8x as the encoder, define it as ε, and

simplify D(x, t) to xt, so that the latent space of Equation (2)

can be written as follows:

min
θ
Ex∼X ‖(ε(xt)− εθ(ε(xt), t))− ε(x)‖ , (3)

where εθ is the latent diffusion network, and the work of cold

diffusion is transferred to the latent space.

Fig. 6. Visualization of our latent diffusion training method: input images
are encoded to the latent space and denoised by a latent diffusion network.

Fig. 6 shows the training method of εθ, where Generated

synthetic data are described in III-A, x0 and xt represent the

clean data and noisy data generated by the generator, Z0 and

Zt represent the features of x0 and xt in the latent space.

The weather noise Wt we use for training εθ is the same as

III-B. In addition to weather noise, we use Gaussian noise

to represent other noise in the real world that we have not

considered. We generate Gaussian noise in the latent space

and denote the steps of the Gaussian noise as g ∈ {0, T},

where T = 100. Under these circumstances, the Gaussian

noise can be represented as Ng(μ, σ
2), which follows a normal

distribution with the mean μ and variance σ2, and its mean

and variance are equal to the mean and variance of the input

data. It should be noted that too strong Gaussian noise will

have a negative impact on license plate recognition, so while

maintaining the maximum T value, we assume that the value

of g is uniform distribution and limit it to T/10. When training

the εθ network, we add noise in three different manners,

namely Gaussian noise only, weather noise only, and the

mixture of Gaussian noise and weather noise. We use the

same method as [8] [3] to do Gaussian noise sampling. Zg1

represents adding Gaussian noise to Z0 at step g1. Since we

cannot obtain the sampler that generates the weather noise

in the latent space, the weather noise can only be added

in the image space and then encoded to the latent space,

just like Zt mentioned earlier. Mixed noise is generated by

adding Gaussian noise to Zt in the latent space and giving

an independent step g2. After adding Gaussian noise, Zt is

expressed as Ztg2.

Based on the above symbolic definition, we can extend

Equation (3) to

min
θ
Ex∼X ‖(Zt − εθ(Zt, (t, 0)))− Z0‖
+ ‖(Zg1 − εθ(Zg1, (0, g1)))− Z0‖
+ ‖(Ztg2 − εθ(Ztg2, (t, g2)))− Z0‖. (4)

The significance of the above equation is to predict Gaussian

noise, weather noise and mixed noise at the same time. After

experiments, we found that the accuracy improvement of the

network trained solely by relying on the above conventional

diffusion loss is very limited. The reason is that the goal of

Equation (4) is to predict the latent space information located

at 8x in the middle of the network, but what we really care

about is the output of YOLOv7. So we add the condition

loss based on the detection bbox of YOLOv7, and call the

encoder from 8x to the last layer of neck layer as yD, and

simplify Zt − εθ(Zt, (t, 0)) to Ẑt. We simplify Ẑg1, Ẑtg2 in

the same manner and encode {Z0, Ẑt, Ẑg1, Ẑtg2} through yD
to get {Y0, Ŷt, Ŷg1, Ŷtg2}, then we can define condition loss

as follows:

min
θ
Ex∼X

∥
∥
∥(Ŷt − Y0)

∥
∥
∥

+
∥
∥
∥(Ŷg1 − Y0)

∥
∥
∥

+
∥
∥
∥(Ŷtg2 − Y0)

∥
∥
∥. (5)

The above formula means that the noise-added data and the

clean data must have the same output at the YOLOv7 detection

layer after diffusion. The final loss of εθ will be Equation (4)

plus Equation (5).

IV. EXPERIMENTS RESULTS

A. LD-YOLO in AOLP dataset

The license plate style and license plate dataset we gener-

ated are the same as AOLP [9], so we use this dataset to com-

pare with other methods. AOLP is basically divided into three

subsets, namely Access Control(AC), Low Enforcement(LE),

Road Patrol(RP). Table I shows how the AOLP dataset is

used in different ways. In Silva and Jung [24], the training

was conducted by using 51 images from the LE subset of

AOLP and tested only on the RP subset. In [13], Laroca et al.

took 52.8% of the three subsets of AOLP as the training set,

13.2% as the validation set, and the remaining 33% as the test

set. Björklund et al. [4] used all subsets for testing. In [31],

Yousef et al. used two of the three subsets for training and the

remaining for testing, and they repeated three times to obtain

the results for the three subsets.

Since each method uses AOLP differently, in order to

distinguish different settings and compare each method fairly,

we combine all subsets of AOLP into one and test each

method on it. The validation metric is ”the degree to which the

detection results of the text and numeric parts of the license

plate match the ground truth.” Validation results are shown in

Table II. In the table, the precision and recall are calculated

based on license plate detection. Plate recognition is counted
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as successful only when the results completely match the

ground truth label. The model labeled YOLOv7-tiny(ours) is

trained from our synthetic dataset.

We test the entire AOLP using the weights and methods of

[24] and [13], labeled as [24]* and [13]* in the table. Since

[24] [13] is a multi-stage method, precision and recall cannot

be directly compared with YOLOv7-tiny, so we focus on com-

paring the final license plate recognition rate. In addition, in

order to eliminate the inference from the detector, we replaced

the detector in [24] and [13] with YOLOv7-tiny, and retained

the respective text recognition modules, marked as YOLOv7-

tiny+ [24]* and YOLOv7-tiny+ [13]*. The recognition rate has

been greatly improved for both methods (74.16% to 81.37%

[24], 89.97% to 95.05% [13]).

It should be noted that we only use synthetic data. Although

our method is not the best, the results are very close to

the methods trained with real data, and even surpass some

methods trained with real data. Furthermore, our proposed

LD-YOLOv7 achieves a higher license plate recognition rate

(from 85.12% to 87.38%) than YOLOv7-tiny. The accuracy

rate is significantly increased compared with other image-

based diffusion methods.

TABLE I
EXPERIMENTS WITH AOLP DATASET RELATED WORK

Models Plate recognition% How the AOLP data is used
[24] RP: 98.36 train from LE test to RP
[13] Total(AC/LE/RP): 99.2 52.8% train, 13.2%val, 33%test
[4] AC/LE/RP: 94.6/97.8/96.9 100% test
[31] AC/LE/RP: 97.6/97.6/94.5 2 of 3 subsets for training and the remaining for testing

TABLE II
EXPERIMENTS WITH AOLP DATASET WITH SAME METRIC

Models Precision% Recall% Plate recognition%
[24]* - - 74.16

YOLOv7-tiny(ours)+ [24]* 90.96 98.52 81.37
[13]* - - 89.97

YOLOv7-tiny(ours)+ [13]* 90.96 98.52 95.05
YOLOv7-tiny(ours) 90.96 98.52 85.12

YOLOv7-tiny(ours)+ [3] 90.06 98.34 85.35
Our LD-YOLOv7 81.14 98.98 87.38

∗Reproduce using official weights.

B. LD-YOLO in Weather License Plate dataset

In this study, we propose a Weather License Plate (WLP)

dataset that contains 92 images with 116 manually annotated

license plates. We use 47 images and 54 license plates as the

test dataset, and the other license plates as the verification

dataset. Some samples of the dataset are shown in Fig. 7. The

verification set is composed of images captured from YouTube

driving recorder videos, and the test set is composed of images

captured from traffic surveillance camera. We use existing

methods with codes to test, results are shown in Table III.

We observe that models which performed well in AOLP only

have 1/5 accuracy left on the WLP dataset (from 98.36% to

20.37% [24], from 99.2% to 12.96% [13]). In comparison, our

LD-YOLOv7 obviously obtained better results (from 87.38%

Fig. 7. Weather license plate dataset: All data contain at least one severe
weather condition and cover day and night variations.

to 35.19%), which means that the proposed method is less

susceptible to the noise caused by bad weather.

Fig. 8. Examples of detection results. Rows from top to bottom: (a) Original
input images. (b) [24]. (c) [13]. (d) YOLOv7-tiny. (e) LD-YOLOv7. The
images of detection results are cropped for the convenience of viewing.

Fig. 8 shows the detection results of our method on the test

set. The license plate numbers in image on the left and the

right columns are ’6527MY’ and ’AHA0322’ respectively. We

crop the area of license plate in the image for the convenience

of viewing. The images from top to bottom are the original

input images, the detection results of [24], [13], YOLOv7-

tiny, and proposed LD-YOLOv7. As we can see, [24], [13]

and YOLOv7-tiny may fail to detect license plate or fail

to recognize plate number. The proposed LD-YOLOv7 can

succeed in both plate detection and plate number recognition

in image on the left, and get the lowest error rate in image on

the right.
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TABLE III
EXPERIMENTS WITH WEATHER DATASET

Models Precision% Recall% Plate
recognition%

[24]* - - 20.37

YOLOv7-tiny(ours)+ [24]* 95.35 75.93 27.77

[13]* - - 12.96

YOLOv7-tiny(ours)+ [13]* 95.35 75.93 31.48

YOLOv7-tiny(ours) 95.35 75.93 31.48

YOLOv7-tiny(ours)+ [3] 94.12 59.26 29.63

Our LD-YOLOv7 75.86 81.48 35.19
aReproduce using official weights.

TABLE IV
ABLATION STUDY OF DIFFUSION MODELS FOR TWO DATASETS

Diffusion in
which space w/ R w/ G Predict image or

predict noise
AOLP Plate

recognition%
WLP

recognition%
w/o diffusion 57.81 24.07
image(≈ [3]) image 56.70 25.93

image � image 57.95 27.78
latent(≈ [3]) image 23.43 1.85

latent � image 55.18 14.81
latent � � image 55.13 24.07
latent � � noise 57.39 25.93

w/o diffusion
(large data)

85.12 31.48

image(large data)
(≈ [3])

image 85.35 29.63

image(large data) � image 85.17 33.33
latent(large data) � � noise 87.38 35.19

V. ABLATION STUDIES

We test the model with three different diffusion settings, w/o

diffusion, image diffusion, and latent diffusion, to analyze how

them affect the performance of model. Details and results are

shown in Table IV.

We used about 60,000 images to train YOLOv7-tiny as w/o

diffusion baseline model. We trained image diffusion model

and latent diffusion model with different input settings. The

one marked with ”≈ [3].” is using the same settings with [3].

w/ R and w/ G represent reconstruction loss and Gaussian

noise explained in Section III-D. The details of ”Predict image

or predict noise” also described in Section III-D. All testings

were conducted on the AOLP and WLP datasets. We mark the

results that perform below w/o diffusion in red, and the results

that perform above w/o diffusion in green. As we can see in

table IV, latent diffusion method ≈ [3] has a great negative

impact on the system (dropped from 57% to 23% in AOLP,

and from 24% to 1% in WLP). The proposed improvements,

adding reconstruction loss and Gaussian noise, both have a

positive impact on latent space diffusion. Those improvements

even greatly improves the performance of license plate recog-

nition when testing WLP dataset (upgraded from 1% to 14%

after introducing reconstruction loss in WLP, and from 14%

to 24% after introducing Gaussian noise in WLP).

The lower part of Table IV shows the verification results

of training diffusion models with large amount of data. This

is for proving whether we can improve model performance

TABLE V
COMPARE THE IMPACT OF CLASSES FOLLOWING REAL/UNIFORM

DISTRIBUTION

Distribution of AP%
A to Z

AR%
A to Z

AP%
0 to 9

AR%
0 to 9

AOLP Plate
recognition%

Real 38.26 18.54 46.27 33.15 64.42
Uniform 35.41 32.05 68.68 32.29 85.12

by training with purely generated data in large quantities. The

only difference between the models listed above and below in

table IV is the amount of training data. We can see that these

heavily generated synthetic data improve all methods, and

the latent diffusion approach outperforms the image diffusion

approach. We speculate that these models can achieve a better

performance is because the latent diffusion approach relies

heavily on high-quality features, training with large amount

of synthetic data help the latent space obtaining appropriate

features more effectively.

Additionally, the significantly higher likelihood of numeric

categories appearing on license plates compared to English

letters creates an imbalance that negatively impacts the sys-

tem’s performance. To support our claim, we employed a

synthetic data generator to create two datasets for training the

yolov7-tiny network. The first dataset mimics the imbalanced

distribution observed in real license plates, whereas the second

dataset features a uniform distribution, in which the occurrence

probabilities of numbers and English letters are identical.

As demonstrated in Table V, the yolov7-tiny network trained

with uniformly distributed data demonstrates superior overall

performance on the AOLP dataset compared to the network

trained with a real data distribution. This is despite having

slightly lower average precision (AP) for English letters and

average recall (AR) for numbers than the network trained on

the real data distribution. Such a result confirms that synthetic

data can effectively address the issue of category imbalance

in real license plate data.

In addition, to analyze the impact of various simulated

noises on the model, we used a noise generator to produce

different types of noise, and trained the YOLOv7-tiny network

separately for each type. Overall, as shown in Table VI,

compared to scenarios where no specific noise was introduced,

the model’s overall performance on both the AOLP and WLP

datasets improved after introducing specific noises through the

noise generator. More specifically, in the WLP dataset, training

with all types of noise integrated can significantly enhance

accuracy; whereas in the AOLP dataset, introducing rain and

blurring noise has the most substantial impact on performance

improvement. This confirms that to enable the model to

effectively handle adverse weather conditions, simulating a

combination of all types of noise is essential. Conversely, for

AOLP data collected under normal weather conditions, there

is no need to introduce excessive simulated noise.

VI. CONCLUSION

In this paper, we demonstrate the potential of purely syn-

thetic license plates paired with deep learning methods. Most
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TABLE VI
THE IMPACT OF EACH NOISES

Models AOLP Plate
Recognition%

WLP Plate
Recognition%

YOLOv7-tiny w/o
noise generator

59.98 14.81

w/ rain noise only 74.91 20.37
w/ light noise only 69.82 16.67

w/ gamma noise only 68.90 18.52
w/ blurring noise only 71.49 20.37

w/ all noise 69.55 24.07

of the previous research relied on real license plate dataset,

and the recognition results of our proposed YOLOv7-tiny on

the Taiwanese license plate dataset AOLP even exceeded some

models trained using real data. This means that it is feasible to

use purely synthetic data to replace real license plate data that

is difficult to collect. We also proposed LD-YOLOv7, which

is a method that brings the image space noise into the feature

space and removes noise. This method can further improve

the license plate recognition results on AOLP to 87.38%. At

the same time, we verified the effectiveness of this method on

real data on the proposed severe weather dataset (WLP), and

the results also show that our method can actually withstand

the impact of severe weather.
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