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Abstract—Traditional diagnostic methods like colonoscopy are
invasive yet critical tools necessary for accurately diagnosing col-
orectal cancer (CRC). Detection of CRC at early stages is crucial
for increasing patient survival rates. However, colonoscopy is
dependent on obtaining adequate and high-quality endoscopic
images. Prolonged invasive procedures are inherently risky for
patients, while suboptimal or insufficient images hamper diagnos-
tic accuracy. These images, typically derived from video frames,
often exhibit similar patterns, posing challenges in discrimina-
tion. To overcome these challenges, we propose a novel Deep
Learning network built on a Few-Shot Learning architecture,
which includes a tailored feature extractor, task interpolation,
relational embedding, and a bi-level routing attention mechanism.
The Few-Shot Learning paradigm enables our model to rapidly
adapt to unseen fine-grained endoscopic image patterns, and the
task interpolation augments the insufficient images artificially
from varied instrument viewpoints. Our relational embedding
approach discerns critical intra-image features and captures
inter-image transitions between consecutive endoscopic frames,
overcoming the limitations of Convolutional Neural Networks
(CNNs). The integration of a light-weight attention mechanism
ensures a concentrated analysis of pertinent image regions. By
training on diverse datasets, the model’s generalizability and
robustness are notably improved for handling endoscopic images.
Evaluated on Kvasir dataset, our model demonstrated superior
performance, achieving an accuracy of 90.1%, precision of 0.845,
recall of 0.942, and an F1 score of 0.891. This surpasses current
state-of-the-art methods, presenting a promising solution to the
challenges of invasive colonoscopy by optimizing CRC detection
through advanced image analysis.

Index Terms—AI, Deep Learning, Few-Shot Learning

I. INTRODUCTION

Gastrointestinal (GI) diseases encompass a range of con-

ditions that can significantly impact health. Among these,

colorectal cancer (CRC) is a notable concern due to its high

prevalence and mortality rate when diagnosed late. Early

Fig. 1. Overall architecture of our proposed model. Given tasks, T , including
support and query set images are sampled as input into the Conv4 encoder.
Within the encoder, task interpolation is performed to enhance the diversity of
the task set at a randomly chosen layer. Then the extracted support and query
features, Zs(cr) and Zq(cr), are updated by self relational module separately.
These features, Fs(cr) and Fq(cr), are integrated into the cross-relational
module, which employs a lightweight bi-level routing attention mechanism
to identify common areas of focus, As(cr) and Aq(cr), and derive the final
outputs, s and q.

detection is key to improving prognosis, with the potential

to prevent up to 90% of deaths if identified promptly.

Endoscopic images are pivotal for diagnosing GI diseases,

which predominantly arise from polyps in the lower digestive

tract. The endoscope, a long tube with a fiber-optic camera, is

used in this diagnostic procedure [1]. The surface morpholog-

ical pattern of GI tract offers crucial clinical insights for surgi-

cal decisions and indicates disease aggressiveness.Admittedly,

colonoscopy has several strengths, but it’s not without its limi-

tations. The intricate and varied nature of the colon and polyps,

combined with the static size of the structuring element in the

morphological operator, complicates segmentation, especially

when vessels around the polyps evolve along the periphery

of the liver [2], leading to substantial background variation,

fuzzy frames and noise. Moreover, a multicenter prospective
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study [3] has reported that up to 40% of CRC cases with

deep submucosal invasion were misdiagnosed as superficial

invasive cancer, underscoring the influence of the complexity

of assessment theory and the subjectivity among endoscopists

in impeding the accurate diagnosis of GI diseases.

Traditional computer vision techniques including Harris

Corner Detection [4], SURF [5], and ORB [6], are heavily

dependent on domain-specific knowledge and often fall short

in capturing intrinsic image features in gastroenterology. Con-

sequently, there’s increasing interest in artificial intelligence

(AI)-based techniques for more precise and objective GI

disease identification. Deep Learning (DL) has led to a shift to-

wards Convolutional Neural Networks [7] (CNNs) like Conv4

and ResNet12, which automatically extract meaningful image

features hierarchically, outperforming traditional methods in

classification tasks.

CNNs, foundational to various DL models, extract features

through convolutions, influencing methods like LSTM, U-

Net, and Inception. Dutta et al. [8] utilized a Tiny Darknet

model, for efficient lesion detection. Another study [9] em-

ployed Xception [10], ResNet [11], and DenseNet [12] for

ulcerative proctitis detection. Luo et al. [13] combined CNNs

and Recurrent Neural Networks (RNNs) to diagnose ulcerative

colitis from endoscopic images, enhancing accuracy with a

spatial attention module. In endoscopic medical imaging, the

challenges are multifaceted, ranging from data constraints to

inherent limitations of conventional DLs. Addressing this, our

novel DL model is tailored for endoscopic images, with the

following key attributes:

• Traditional DL models, designed for generic images,

falter with the specific textures and patterns of endoscopic

images, especially when data is scarce in GI sector.

By adopting a few-shot learning (FSL) paradigm, our

model can quickly understand and adapt to the unique
characteristics of endoscopic images, even with limited
training data.

• Given the variability in endoscopic views due to different

insertion angles and organ structures, over-fitting is a

concern. Our model adds a task interpolation module in
FSL to artificially diversify its training on various endo-

scopic perspectives, ensuring robustness across different
endoscopic scenarios, overcoming the over-fitting issue.

• Endoscopic procedures often capture a series of images.

Our model does not just process each image in isola-

tion; it understands the relationships and transitions
between consecutive endoscopic frames, offering a more

comprehensive analysis.

• In endoscopy, minute details can be critical for diagnosis.

While traditional CNNs might miss out on such de-

tails, our model, with its advanced light-weight bi-level
routing attention mechanism, zeroes in on regions of

interest (ROIs) in endoscopic images, ensuring no detail

is overlooked and eliminating unwanted pixels.

II. METHOD

In this article, we introduce a DL approach for endoscopic

data that can solve specific problems like fine-grained image

patterns, small dataset size, as well as view variations. The DL

methodology includes a feature extractor, FSL, data augmen-

tation, relational embedding, and bi-level routing attention.

Fig.1 delineates the architectural overview of our proposed

model, encapsulating the methodologies detailed subsequently

— The rest of the section will be organized as follows: In

Sec.II-A, the rationale behind opting for Conv4 over ResNet12

for strategic feature extraction is elucidated. The ensuing

section, Sec.II-B, articulates the incorporation of the Few-Shot

Learning (FSL) paradigm for handling the limited-size endo-

scopic image data. Sec.II-C explicates our approach to data

augmentation through task interpolation, devised to synthesize

multiple viewpoints. Moving forward, Sec.II-D describes the

employment of both self- and cross-correlational embedding

to discern relational representations within the CRC dataset,

focusing on support and query images. Lastly, Sec.II-E details

the deployment of a lightweight bi-level routing attention

mechanism, aimed at efficiently attending to common ROIs

within the data.

A. Feature Extractor

To efficiently process the complexities of endoscopic im-

ages, we chose Conv4 as our main feature extractor due to its

balance of simplicity and performance. Although Conv4 and

ResNet12 are both viable CNN architectures, Conv4’s effec-

tiveness in handling the detailed, resource-intensive nature of

endoscopic image analysis made it our preferred choice.

Conv4, a lightweight and computationally efficient CNN

architecture, is particularly advantageous for FSL tasks, espe-

cially in scenarios with limited computational resources. Com-

prising four convolutional blocks, each with a convolutional

layer, batch normalization layer, and ReLU activation layer,

Conv4 effectively learns and extracts meaningful features from

images through a hierarchical approach. Its simplicity and

efficiency make it a suitable encoder for our FSL model in

endoscopic image analysis, where data is often scarce and

computational efficiency is crucial.

B. Few-shot Learning

FSL is a DL approach that is particularly advantageous for

training datasets with scarce information, a common challenge

in CRC image classification within the domain of endoscopy.

We used this paradigm of training and testing in building our

model, as shown in Fig.2. This approach swiftly learns new

concepts from minimal data, providing a viable solution to the

data scarcity issue prevalent in medical imaging, especially

in endoscopy where procurement of labeled data can be

particularly challenging in less-than-ideal imaging conditions.

FSL builds a model by splitting the dataset D into Dtrain

and Dtest, ensuring the classes of the testing set should be

unseen from the training set (Ctrain ∩Ctest = ∅). Data from

both sets are presented as tasks, each with a query set and a

support set. For a task Ti, the support set Si = {Xj
s , y

j
s}NK

j=1
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Fig. 2. Adopted FSL paradigm for our approach.

includes K images from each of N classes, and the query set

Qi = {Xj
q , y

j
q}Qj=1 comprises Q images, forming an N -way-

K-shot task.

C. Data augmentation via task interpolation

Data augmentation, pivotal in enhancing ML models, es-

pecially in endoscopic image analysis, addresses limited data

availability. For FSL in endoscopy, task interpolation is em-

ployed to generate additional domains, thereby augmenting

the training data. This technique seeks to learn invariant

representations and enhance training consistency by densifying

the task distribution in a cross-task manner.

In a model f with L layers, the hidden representation of

samples X at the l-th layer is Hl = fθl(X), with H0 = X
and Ls being the number of layers shared across all tasks.

While meta-learning methods like MAML [14] share only

a subset of the layers (i.e., Ls < L), metric-based methods

like ProtoNet [15] share all layers (i.e., Ls = L). For
a pair of tasks with their support and query sets sampled

from the same label space, a layer l is randomly selected

and task interpolation is applied separately on the hidden

representations and corresponding labels of the support and

query sets. The interpolated hidden representations and labels

are ˜Hcr
s,l = λHi

s,l +(1−λ)Hj
s,l, with λ ∈ [0, 1] sampled from

a Beta distribution Beta(α, β) and subscript ’cr’ indicating

’cross’. Both the hidden representations of support and query

set are replaced by the interpolated ones in our task interpo-

lation. The resulting enlarged task set is utilized as input for

our FSL model, enhancing its capability to discern and classify

endoscopic images across changing endoscope viewpoints.

D. Relational Embedding

Navigating through the intricacies of endoscopic images,

especially within an FSL framework, demands a strategic

approach to decipher and comprehend the subtle yet critical

similarities and correlations among variables. This is particu-

larly necessary in our target dataset, where the fine-grained

medical images may appear superficially identical, and the

data available is notably sparse. The challenge, therefore,

is to unearth a relational structure that can simultaneously

Fig. 3. Structure of self-correlational representation module. Base repre-
sentation Zs(q) undergoes self-correlation computation by computing its
Hadamard product Rs(q). After a series of convolutions, the self-correlational
representation Fs(q) is derived to attend to pertinent areas inside the image.

generalize across all embeddings, pinpointing ROIs that are

crucial for precise classification and analysis.

The self-correlational representation (SCR) module [16], de-

picted in Fig.3, transforms the base representation Z from our

feature extractor to highlight ROIs in a single image, thereby

preparing a reliable input to the cross-correlational attention

(CCA) module for analyzing feature correlations between a

pair of different images. Inside SCR, we calculate a Hadamard

product R within a neighbor window in a channel-wise manner

as the self-correlation, followed by a series of convolutions,

to produce the ultimate self-correlational feature. This feature,

the same size as Z, is added back for reinforcement.
The CCA module takes a query-support pair from SCR and

produces corresponding attention maps Aq and As, converting

each representation to an embedding vector. It first computes

the cross-correlation 4-dimensional tensor C by transforming

both query and support representations, Fq and Fs, into more

compact representations. Given potential unreliable correla-

tions in C due to appearance variations in FSL, a convolutional

matching process refines C into C ′, from which co-attention

maps Aq and As are derived, highlighting relevant content

between query and support.

E. Bi-level Routing Co-attention

Fig. 4. Structure of bi-level routing co-attention module for Aq . The module
simplifies attention calculations by gathering topK key-value pairs Kg and
V g from coarse region-region affinity graph of the adjacency matrix Ar . Co-
attention map for support set As is similar.

The attention mechanism, initially from Nature Language

Processing (NLP), shows its ability as an alternative to con-

volutions in Transformers [17]. This structure can deal with

global features (long-ranged dependencies), which is neces-

sary for endoscopic images of GI. Inside the CCA module,

we adopted co-attention mapping operations to reveal cross

relations between the query and support.

In the standard Scaled Dot-product Attention calculation

[17], inputs include a query matrix Q, and matrices for keys
K and values V of dimension dk. The output is computed
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by applying a softmax function on the multiplication of the

matrices as Attention(Q,K, V ) = softmax(QKT

√
dk

)V . Vision
models often modify this by applying multi-head attention,

concatenating parallel attention outputs for linear projection,

with a complexity of O(N2) when there are N pairs of key-

value pairs for each query in N queries.

To reduce the computational burden of attention, we imple-

mented a bi-level routing attention mechanism [18], illustrated

in Fig.4. This method selects the most relevant key-value pairs

from a coarse region-region affinity graph in the adjacency

matrix Ar, created by multiplying region-level queries Qr

and keys Kr. The routing index Ir is obtained using a top-
k operation on Ar for pruning. This technique maintains

co-attention capability while reducing computation costs by

optimizing the region size.

III. EXPERIMENT

A. Datasets

TABLE I
SUMMARY OF DATASETS USED IN THE STUDY

Dataset Images Classes Purpose

Kvasir-v2 [19] 8000 8 GI disease classification
Hyper-Kvasir [20] 10,662 23 GI disease classification
ISIC 2018 [21][22] 10,208 8 Lesion classification
Cholec80 [23] 241,842 7 Surgery tool recognition
Mini-ImageNet [24] 60,000 100 General object classification

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Examples of Kvasir dataset [19]. (a)-(h): ulcerative colitis, polyps,
normal cecum, normal pylorus, normal z-line, esophagitis, dyed resection
margins, dyed lifted polyps.

To pretrain our model on endoscopic images, we utilized

various datasets encompassing GI images, a broad-spectrum

normal dataset, surgical tool images, and a skin disease dataset,

enhancing the model’s cross-domain generalization and reduc-

ing overfitting risk. The model underwent pretraining on ISIC

2018 [21][22], Cholec80 [23], and Mini-ImageNet datasets,

followed by fine-tuning on the Hyper-Kvasir [20] dataset. This

comprehensive fine-tuning involved 10,662 images across 23

GI disease classes, following the criteria in [1]. Incorporating

a new full-connected layer head, the pretrained model was

tailored for extracting endoscopic features. For testing, we

employed the Kvasir-v2 dataset [19], a specialized multi-

class image dataset for computer-aided GI disease detection,

featuring 8 classes with 1000 images each, shown in fig.5. The

datasets are summarized in Table.I.

B. Implementation details

Based on the configuration outlined in [25], we have elim-

inated the validation process. Additionally, we have adjusted

our feature extractor, Conv4, by increasing the layer channels

from 64 to 640, specifically to accommodate the relational

embedding model structure. The experiments are performed

under the N-way K-shot setting, where N = 2 for ISIC and N

= 5 for the rest datasets, while K = 1 and number of query

images is 15. The rationale Table.II of the experiment is listed

below.

TABLE II
THE PARAMETERS OF EXPERIMENT

Type Parameter Value

Feature Extractor Conv4 layer 640

Adjuster Optimizer ADAM
Learning rate 0.0001(fixed)
Weight decay 0.002

Data loader Batch size 128
Saving episodes 500
Total episodes 5000

FSL setting Training way 5
Testing way 2

Shot 1

In data pre-processing, the images are resized to 92 × 92,
randomly cropped to 84 × 84 and horizontally flipped for

augmentation, and then its pixels normalized with mean values

of [125.3, 123.0, 113.9] \ 255.0 and standard deviation values
of [63.0, 62.1, 66.7] \ 255.0 , inherited from ImageNet [24].

(a) (b) (c)

Fig. 6. Attention Heatmaps of SCA and CCA Modules with different source
of support (left) and query (right) images. (a) Standard and zoomed views of
a normal Z-line. (b) Different images of the same normal Z-line classification.
(c) Different images of the same dyed lifted polyps classification.

After the images are preprocessed and grouped into batches

of FSL tasks, they are augmented by cross-task interpolation.
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Randomly select a layer l in the feature extraction process,

and representations of the original query and support sets

are replaced by the interpolated ones. These encodings are

then input to the SCA module, which applies a channel-

wise Hadamard product and convolutions to produce self-

correlational representations Fq and Fs. The representations

are processed by the CCA module into a 4-D tensor, from

which we constructed affinity graphs for both query and

support. The affinity graphs generated by our model are

selectively pruned to identify the top-k routes, with resulting

attentions illustrated in Fig.6.

Following the application of the two relational embedding

modules, SCA and CCA, our model demonstrates a heightened

capability to discern significant regions both within and across

images. This proficiency is evident when the model processes

pairs of images that either represent zoomed views of the

same subject or belong to the same category but depict

different subjects. In each case, the model adeptly navigates

the classification task.

C. Comparison to the state-of-the-art methods

We compared our model to some state-of-the-art as well

as several relevant methods on the endoscopic images. Quan-

titative results are shown in Table.III with metrics such as

Accuracy, Precision, Recall, and F1-score.

TABLE III
CLASSIFICATION PERFORMANCE ON OUR PROPOSED MODEL AND OTHER

MODELS

Metrics
Methods Accuracy Precision Recall F1

MAML [14] 0.792 0.610 0.633 0.621

ProtoNet [15] 0.775 0.662 0.694 0.678

Transformer [17] 0.870 0.738 0.812 0.773

ResNet50 [11] 0.812 0.701 0.794 0.745

Ours 0.901 0.845 0.942 0.891

Our proposed model demonstrates commendable perfor-

mance, achieving an accuracy of 90.1% and an F-score of

0.89 on the dataset. This performance slightly surpasses that

of Transformer and is 11% better than ProtoNet using Conv4.

IV. ABLATION

To investigate the core effect of our main tenets, we con-

ducted extensive ablation studies by omitting or substituting

them with existing relevant methods. The different combina-

tions are shown in Table.IV, demonstrating the effectiveness

of the components in our proposed model. Additionally, we

explored the influence of different pretraining datasets on our

model’s performance.

Results reported in Table.IV reveals following observations:

• Omitting ISIC 2018, Cholec80, or Mini-ImageNet during

pretraining lowers performance, underscoring the impor-

tance of diverse, domain-specific data for robust feature

learning and generalization.

TABLE IV
RESULTS OF ABLATION EXPERIMENTS

Model Accuracy Inference Time

Ours 0.901 0.52ms

Pretrained without ISIC 2018 0.869 0.53ms

Pretrained without Cholec80 0.873 0.53ms

Pretrained without Mini-ImageNet 0.894 0.52ms

Using ResNet12 instead of Conv4 0.844 0.54ms

Keeping Con4 64 layer channels and
change relational layer to 64

0.898 0.52ms

Using MixUp [26] instead of task in-
terpolation

0.878 0.45ms

Without task interpolation 0.870 0.43ms

Using vanilla attention instead of bi-
level routing attention

0.895 0.61ms

Without attention 0.863 0.42ms

Without self correlational representa-
tion

0.886 0.52ms

Without cross correlational represen-
tation

0.857 0.41ms

• Utilizing Conv4 as opposed to ResNet12 and adjusting

the relational layer’s channel size while maintaining

Conv4’s 64-layer channels subtly impacts accuracy (0.901

vs. 0.844 and 0.898, respectively). This underscores the

significance of the model architecture and relational layer

channel dimensions in effectively extracting and relating

features from endoscopic images, while also ensuring

computational efficiency.

• Utilizing task interpolation, as opposed to MixUp or no

interpolation (accuracy dips to 0.878 and 0.870, respec-

tively), accentuates its role in bolstering model robustness

by simulating varied viewpoints, vital for diverse endo-

scopic image scenarios.

• The implementation of bi-level routing attention, as op-

posed to vanilla or no attention (accuracy of 0.895 and

0.863, respectively), demonstrates its proficiency in effec-

tively concentrating on pertinent features in GI images,

thereby enhancing classification accuracy.

• Excluding self- or cross-correlational representation re-

sults in accuracy reductions to 0.886 and 0.857, respec-

tively, highlighting their importance in capturing intra-

and inter-image relationships, which is crucial for dis-

cerning subtle variations in endoscopic images.

V. CONCLUSION

Our DL model excels in analyzing endoscopic images with

limited data, using FSL to quickly identify underlying patterns.

It combats overfitting through task interpolation, simulating

varied camera perspectives for better generalization.

The model’s core strength is its ability to capture intra-

image details and inter-image connections via self- and cross-

correlational embedding. We enhanced it with a bi-level rout-

ing attention mechanism, making it lightweight yet focused in
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image analysis. Trained on diverse datasets including Hyper-

kvasir and Mini-ImageNet, it achieved outstanding results on

the Kvasir dataset, with 90.1% accuracy, 0.845 precision,

0.942 recall, and an F1 score of 0.891. This approach marks

a significant step forward in endoscopic image analysis.
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