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Abstract—T cell receptor-engineered T cell (TCR-T), where
T cells are equipped with engineered antigen-specific receptors,
is a promising approach of cancer immunotherapy. However,
it is known that naturally occurred TCR is not able to detect
some cancer antigens due to negative selection and resulted in
the proliferation of cancer cells. This study introduces a novel
application of large language models (LLM) in the de novo
generation of T cell receptors (TCR). We propose Llama-TCR, a
generative model trained on database of antigen and TCR pairs,
for diverse and functional candidate TCR sequence generation.
Using both sequence based benchmarking and 3D structure
inspection, we show that the model is able to generate TCR
sequences targeting to given antigens and has great potential in
the development of novel TCR-T immunotherapy.

Index Terms—Large Language Model, Generative AI, TCR,
Immunotherapy

I. INTRODUCTION

T cell receptor-engineered T cell (TCR-T) [1] is a promis-

ing approach of cancer immunotherapy, where T cells are

equipped with engineered antigen-specific receptors to recog-

nize and attack cancer cells. However, it is known that natu-

rally occurred TCR cannot detect some cancer antigens due to

negative selection or immuno-suppression of naturally positive

TCR and resulted in the proliferation of cancer cells [2]. To

tackle this issue, T cell Chimeric Antigen Receptor (CAR-

T) [2, 3] and TCR-T was invented by finding a variable

fragment from a large database that has a close affinity with

the neoantigen, thus equipped the T cell with the recognition

capability for the target antigen. However, due to the proximity

of the cancer peptide to some healthy peptides, and the low

specificity of the transplanted receptor, there is often strong

autoimmune response from CAR-T or TCR-T treatment [4].

To overcome this issue, we propose a solution whereby we

can make use of large language models (LLM) to generate de

novo receptors that have close to perfect specificity for a target

antigen. We hypothesize that for naturally occurring receptors,

it will be exceedingly difficult to evolve into super specific

receptors (SSR), although there is research that indicates such

receptors may actually exist [5]. Our goal is to build a library

of SSR using LLM such that, we can administer human

specific combinations of SSR based on the cancer antigens

profile of the patient and ultimately to test whether such a

framework of precise and targeted treatment is effective and

safe clinically in future.

With advent of Alphafold [6], for the first time, we can

translate DNA codes into protein structure directly and in-

stantly with extremely high accuracy and render this problem

solved by the organizer of the CASP14 protein folding pre-

diction competition [7]. This breakthrough leads to translation

of millions of proteins within hours, which if by conventional

route of cryoelelctron microscopy, will take years. The most

exhilarating outcome from this breakthrough is the possibility

of designing and engineering all kinds of biological functions

from scratch into cells, which will open a new era of de novo

biological designs. A lot of interesting works have already

started in this direction. From designing de novo luciferase

[8] to designing general binding protein for target structure

[9, 10, 11, 12]. We see the great potential of using neural

network to create new recognition receptors for immune cells

to give them much more powerful recognition capability.

II. RELATED WORKS

A. Protein Language Model

Based on the nature that proteins are encoded by sequence

of amino acid, researchers have been applying advancement

of transformer based large language model to protein domain.

Protein language models has emerged as a transformative tool

in computational biology to understand and predict protein

structures and functions. The development of protein language

model focuses on both protein structures and sequences.

In the area of protein structure, multiple sequence align-

ment (MSA) plays a crucial role. This technique aligns pro-

tein/DNA sequences from related organisms and highlights

conserved regions and evolutionary relationships. Rao et al.

developed MSA Transformer [13] in 2021, discovered that

training across multiple sequence alignments (MSA) signif-

icantly improves unsupervised structure learning methods for

proteins. AlphaFold [6] represents a significant breakthrough

in protein structure prediction, utilizing deep learning to accu-

rately predict protein structures. It predicted over 200 million

protein structures and built AlphaFold DB, an open access

database. Meier et al. developed Evolutionary Scale Modeling

(ESM) [14], using transformer-based models to enable zero-

shot prediction of the effects of mutations on protein function.
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In 2022, an open atlas of 772 million predicted metagenomic

protein structures is released based on ESM [15].

In the area of protein sequences, efforts are made to

adapt large language models from natural language domain

to protein domain, especially in protein sequence completion

and de novo protein generation. ProteinBERT [16] is a deep

language model specifically for proteins. It achieves state-

of-the-art performance on diverse protein properties using a

smaller model than competing methods. ProtGPT2 [17], a deep

unsupervised language model for protein design is capable of

generating de novo protein sequences. Madani et al. introduced

ProGen [18], a 1.2B-parameter language model, effective in

generating protein sequences with diversity.

B. Structure Based Methods

1) Diffusion models: Diffusion models are a class of

generative neural network models capable of handling high

dimensional data trained by adding and removing noises to

input data [19, 20]. Owing to their unique capacities, diffusion

models have found tremendous success in the generative mod-

eling of images and languages, producing high-quality images

while requiring fewer computational resources compared to

traditional generative methods such as Generative Adversarial

Networks (GANs) and Variational Autoencoders (VAEs). In

bioinformatics and computational biology, diffusion models

are finding increasing applications in protein design and gen-

eration due to their ability to produce diverse outputs.

2) Protein backbone generation using diffusion models:
The structure-first approach to protein design was poineered

by the David lab at the University of Washington. In this

approach, the process for designing a protein starts with

generating the protein’s structure as a set of coordinates known

as the backbone. More specifically, a protein’s backbone is a

continuous chain of four atoms that runs throughout the length

of a protein. These four atoms are nitrogen, alpha-carbon,

carbon, and oxygen. Alpha-carbon is the central point for each

amino acid residue within the protein, while the coordinates

of the other three atoms relative to alpha-carbon uniquely

determines the orientation of the residue.

The starting point of structure-first approach to protein

design is backbone generation [11, 12]. The workflow takes

advantage of the deep understanding of protein structures

and sequence-structure relationships already implicit in pow-

erful structure prediction models such as AlphaFold2 and

RoseTTAFold, and inverse-folding models like ProteinMPNN

and ESM-IF1. Following backbone generation, viable protein

sequences can be readily obtained by solving the inverse

folding problems, with models such as ProteinMPNN [21, 22]

and ESM-IF1 [23]. Subsequent applications of structure pre-

diction models such as AlphaFold2 or RoseTTAFold solves

the forward folding problem fully determines the proteins.

Backbone generation is both the starting point and currently

the bottleneck of the entire workflow. The groundbreaking

work demonstrated through the development of RFdiffusion

is aimed directly at tackling this bottleneck [11, 12]. With the

structure prediction model RoseTTAFold taken as the basis,

the generative model RFdiffusion was created through fine tun-

ing the RoseTTAFold network on protein structure denoising

tasks. RoseTTAFold has a number of desirable characteristics

built-in that make it particularly well-suited as a basis for fine

tuning into a diffusion model. These include the ability to carry

out conditioning on protein design specifications. However, a

nearly indispensable property of RoseTTAFold as a structure

prediction network is its equivariance under the action of the

Lie group SE(3), defined as the semi-direct product of the

group of translations and rotations in three-dimensional Eu-

clidean space. SE(3)-equivariance ensures that the same pro-

tein structure appearing in different orientations and positions

can be treated as the exact same object, greatly improving data

efficiency of model training [24, 25, 26, 27, 28]. Other SE(3)-

equivariant structure prediction networks, such as AlphaFold2,

OmegaFold and ESMFold can in principle be substituted for

the basis of the diffusion model [12].

While RFdiffusion has enjoyed huge success as a viable

solution for protein backbone generation, efforts have been

carried out to construct diffusion models without the use

of a pre-trained protein structure prediction as the basis.

This new approach has been demonstrated through the model

FrameDiff [25]. Here, a principled SE(3) diffusion model is

shown to better formulate the protein backbone generation

problem, achieving comparable performance with four-fold

fewer network weights and without the need to leverage a

protein structure prediction network, compared to RFdiffusion.

C. TCR Binding Evaluation

Beside TCR generation, binding evaluation is another cru-

cial topic in TCR-T immunotherapy development. Tradition-

ally, wet labs need to manufacture the TCR engineered T cells

and measure their binding affinity with targeted cells, which

is expensive in both time and cost. In recent years, using

AI to predict the binding effects becomes a rapidly evolving

field. Although this is not of the focus of this paper and is

orthogonal, we give a brief review of the recent developments.

AI based structure modelling and docking is an important

direction for binding prediction. Pierce and Weng developed

TCRFlexDock, a flexible docking approach for TCR/pMHC

complex prediction, leading to near-native predictions for a

significant proportion of models [29]. Myronov et al. de-

veloped an AI platform that combines molecular dynamics

simulations with deep learning to predict binding probabilities

for potential adoptive T-cell receptor cancer therapies [30].

Bradley explored specialized AlphaFold to generate models

of TCR:peptide-MHC interactions for binding prediction. Yin

et al. developed TCRModel2 for high-resolution modeling of

T cell receptor recognition. Another important direction is to

build AI models based on the sequence databases. Springer

et al. developed ERGO, a highly specific and generic TCR-

peptide binding predictor, demonstrating its accuracy in detect-

ing TCR binding to peptides and peptide-TCR binding [33].

Montemurro et al. developed NetTCR-2.0 [34], which accu-

rately predicts TCR-peptide binding using TCR sequence data,

improving T-cell specificity prediction. Pham et al. developed
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epiTCR [35], a highly sensitive predictor for TCR–peptide

binding using over 3 million of TCR data.

III. BACKGROUND

A. Antigen Presentation and Structure

The Major Histocompatibility Complex (MHC) pathway

plays an important role in immune system by presenting the

cell-specific (e.g. cancer cell or virus infected cell) peptide

fragments – antigen – to the membrane, so that the immune

system can identify and attack these cells. The pathway

synthesizes and presents the MHC molecule with α and β
chains enclosing the antigen peptide, as shown in Figure 1.

B. T Cell and T Cell Receptor (TCR)

In the immune system, T cells recognize the target cells

(e.g. cancer cell or infected cell) by the T cell receptors, which

binds to the antigen peptides presented by the MHC molecules

on the surface of target cells.

As shown in Figure 1, each TCR consists of two different

polypeptide chains, known as the α and β chains. Each chain

contains both the constant (C) and variable (V) regions. The

variable regions are the most crucial for the antigen-binding

specificity of TCRs.

The variable regions consists of 3 pairs of complementarity-

determining regions (CDR). CDR1 and CDR2 bind to the

MHC molecules of the target cell and are more or less fixed

by the limited varieties of human cell MHC. CDR3 binds to

the antigen peptides presented by the MHC and is the highly

variable region. Hence it is the focus of the TCR synthesis.

Fig. 1. Structure of TCR binding with MHC(Structure is downloaded from
https://www.rcsb.org/3d-view/ngl/4may)

C. V(D)J Recombination

As illustrated in Figure 2, the variable region of TCR is

produced by rearrangement of three gene segments, namely

variable (V), diversity (D), and joining (J), known as V(D)J

recombination. The α chain is composed of V and J segments,

while the β chain is composed of V, D, and J segments. Human

T cells contain 44 possible V segments, 27 D segments and

6 J segments. In DNA, V(D)J regions are coded separately.

During V(D)J recombination, the cell selects from these seg-

ments and join them together to produce the TCR[36]. This

recombination generates vast diversity of TCR. Additionally,

junctions between these segments undergo random insertions

and deletions of nucleotides (Figure 2b), further increasing

diversity (junctional diversity). It is estimated that human

immune system is able to produce about 1015 unique TCRs

[37, 38], far greater than the number of T cells in an person.

As the result, the variable region of TCR is formed, includ-

ing CDR1 and CDR2 encoded by V segment, and CDR3 spans

the V(D)J segments, as shown in Figure 2c.

D. TCR Encoding with V, CDR3, J Segments

Based on the result of V(D)J recombination illustrated in

Figure 2c, TCR sequences are commonly recorded as the V,

CDR3 and J in computational methods. As V and J segments

are selected from a pool of possible ones, they are recorded

as gene identifiers, e.g. TRAJ43 and TRBV24-1 where TRAJ

refers to “TCR α chain J segment” and TRBV refers to

“TCR β chain V segment”. CDR3 is the most variable region,

therefore, it is recorded directly as the amio acid sequence,

such as “CASSYLPGQGDHYSNQPQHF”.

IV. LARGE LANGUAGE MODEL FOR TCR GENERATION

Antigen and TCR are encoded by gene and protein se-

quences, which can be considered as a language. The recent

rise of large language model (LLM), especially the foundation

LLM, inspired us to adapt large language model to generate de

novo TCR specific to the given antigen. We propose Llama-

TCR, a foundation TCR language model for antigen-specific

TCR generation. As shown in Figure 3, the language based

TCR generation model will receive the antigen sequence as the

input and produce the TCR sequence as V, CDR3, J encoding.

A. VDJdb Instruction

VDJdb [39] is a curated database of TCR sequences

with known antigen specificities. Based on this database,

We filtered the incomplete records and obtained 28452

antigen-TCR pairs. We then built the instruction dataset from

these pairs. The input is the antigen consisting of the MHC

α chain, Epitope sequence, and MHC β chain, separated

by “∼”, e.g. “HLA-A*02:01∼KVAELVHFL∼B2M”. The

output is the TCR α and β, each consisting of the V,

CDR3 and J segments, also separated by “∼”, e.g. “TRAV8-

3*01∼CAVVPMYGGSQGNLIF∼TRAJ42*01∼TRBV5-

6*01∼CASSPLRGGVTYNEQFF∼TRBJ2-1*01”.

B. Transformer based Large Language Model

Transformers [40] have revolutionized LLMs by relying on

self-attention, a mechanism that captures long-range depen-

dencies in text data. It has become the foundation of the large

language models. We first briefly introduce the key concepts

of Transformer with the context of TCR generation.
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Fig. 2. V(D)J Recombination

Fig. 3. Framework of TCR Generation

1) Input Embedding: The each word of the input sequence

(e.g. text and protein sequences) to transformers is encoded as

a vector of a predefined length, aka. embedding dimension.

As a result, the whole sequence is encoded as a matrix of

sequence length × embedding dimension. For example, using

embedding dimension 100, an alpha chain CDR3 sequence

“CIVRAPGRADMRF” of 13 amino acid can be encoded as

a matrix of 13× 100.

2) Self-Attention Mechanism: The core of transformer is

the self-attention mechanism. The input matrix is multiplied

with three trainable weights, namely WQ, WK , WV to produce

the three vectors Q (Query), K (Key) and V (Value). The

attention score is then computed by the following equation:

Attention(Q,K, V ) = softmax(QKT /
√
dk) ∗ V

where

• Q (Query): A vector representing the current word or

token being analyzed.

• K (Key): A vector representing all other words or tokens

in the sequence.

• V (Value): A vector containing the information associated

with each word or token.

• dk: Dimensionality of the query and key vectors.

Softmax is applied to normalize the attention score across all

words, ensuring it sums to 1.

This equation calculates the attention score for each word in

the sequence relative to the current word. The score indicates

how relevant each word is to the current one, capturing long-

range dependencies crucial for tasks like machine translation

and text generation.

#Parameters MAE ↓ BLEU↑ ROUGE-1↑
ProtGPT2 738M 0.266 0.785 0.415
Molinst-Protein 7B 10.36 0 0
Llama-TCR 7B 0.264 0.858 0.912

3) Encoder-Decoder vs. Decoder Only: When first pro-

posed [40], transformers utilize an encoder-decoder architec-

ture where the encoder processes the input sequence into

context vector and the decoder generates the output sequence

based on the context vector. It excels in sequence-to-sequence

tasks like translation and summarization.

Decoder-only models, on the other hand, break free from

the rigid encoder-decoder paradigm. They directly process the

input prompts and generate the output from them. This allows

for greater flexibility and creativity, particularly in open-ended

tasks like dialogue and creative writing. Also, the decoder-only

models do not reply on data labelling, which enables them to

make use of the extremely large scale of text data in literature

and internet. With such advantages, decoder-only models is

leading the storm of generative AI with famous models like

GPT [41], Llama [42] etc. As we aim to design de novo TCR

with large language model, creativity is important. Therefore,

we decide to adopt decoder-only transformers for TCR design.

C. Finetune LLM for De Novo TCR Design

In this study, we adopted and finetuned the Llama-2[42]

model into Llama-TCR to generated diverse and functional T

cell receptors (TCR) with instructions derived from VDJdb.

By feeding the model with instructions based on real-world

functional TCR and antigens, we enable the model to generate

TCR with antigen specificity.

V. RESULTS AND DISCUSSION

A. Sequence Based Performance

We adopated and finetuned the Llama-2-7b-hf model for

TCR generation using the VDJdb Instruction database and

kepted 10% of dataset for testing. We also finetuned two

protein specific language model – ProtGPT2 [17] and Molinst-

Protein [43] for comparison. We compare the performance

of models using three common metrics in natural language

processing - MAE, BLEU and ROUGE.

From the comparison, we see that the performance of

Llama-TCR performs the best with marginal advantage over
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ProtGPT2. VDJdb Instruction is a small dataset compared with

common NLP datasets and therefore the advantage of larger

model is not obvious. In contrast, Molinst-Protein gives very

low performance in TCR generation.

1) Specialization vs. Generalization: We further inves-

tigated the performance of Molinst-Protein. Molinst-Protein

is an fully instruction finetuned Llama model using Mol-

Instruction protein dataset with tasks like protein design,

protein function prediction etc. Further investigation shows

that the model is over specialized by the initial finetune and

its generalizability is affected

2) Precision v.s. Creativity: The language metrics shows

that the LLM is able to generate TCR sequences close to

the training data. However, such metrics is not able to reflect

its ability to create de novo TCR design. At the state of the

art, functional evaluation of de novo TCR sequences largely

relies on wet lab experiment. We would like to conduct further

studies on AI based evaluation in future works.

B. 3D Structure Visualization

As TCR functions largely depend on its folded structure,

it is difficult to evaluate the generated design solely by the

sequence. Therefore, we generate the de novo TCR targeting

to MAGE-A3, a Melanoma-associated antigen and fold it to

its 3D structure for visualization.

The 3D folding is conducted by the pipeline of Stitchr [44]

and Alphafold 2 [6]. Llama-TCR outputs the TCR α and β
chain in V, CDR3, J encoding. As AlphaFold 2 makes single

chain structure prediction on amino acid sequences, We need

to process the two chains separately. For each chain, we first

use Stitchr [44] to convert the V, CDR3, J segments into full

amino acid sequence, and then use AlphaFold 2 to predict

the structure. Figure 4 shows the AlphaFold predicted 3D

structure of the TCR generated by Llama-TCR. Comparing

with Figure 1, we can see the generated TCR contains the key

structure of a functional TCR.

Fig. 4. 3D structure of generated TCR targeting at MAGE-A3 antigen

VI. CONCLUSION

In conclusion, this study developed Llama-TCR, a genera-

tive AI model for diverse and functional TCR candidate, lever-

aging the advanced capabilities of large language models. By

both sequence based benchmark and 3D structure visualiza-

tion, Llama-TCR has successfully demonstrated the potential

in generating de novo TCR sequences for immunotherapy,

particularly in the realm of cancer treatment and vaccine

development. At the same time, it is crucial to acknowledge

the need for further validation and refinement of the model

through experimental studies, which is a focus area of our

future works.
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