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Abstract—Complementary label learning involves instances
associated with a candidate set of labels, which may contain
multiple labels or a label that does not belong to the true label.
Even though such weak supervision is easy to obtain, the setup
inevitably introduces issues of label ambiguity and potential label
distribution bias. Previous works have approached the task either
based on the local characteristics of the dataset (label generation-
wise), improving model robustness through mechanisms like
transition matrices, or leveraging the global characteristics of the
dataset (instance-wise), such as data augmentation and sample
selection. However, these methods fail to simultaneously exploit
both local and global aspects in addressing the issues of the multi-
complementary label task. To tackle this issue, our paper presents
a unified approach that considers both local and global guidance.
For local guidance, we design homogeneous label regularisation
using optimal transportation via the Sinkhorn-Knopp algorithm,
ensuring a uniform label distribution across instances. For global
guidance, we implement co-occurrence class embedding regular-
isation to enhance the model’s understanding of the underlying
sample distribution. This dual approach mitigates the misleading
effects of complementary labels and corrects errors introduced by
less informative labels during training. Overall, our experiments
have demonstrated that our method is particularly effective on
large datasets like CIFAR-100.

Index Terms—Entropic regularisation and Logit Adjustment,
Multi-Complementary Labels.

I. INTRODUCTION

Complementary label learning, which uses labels that are

not the true label, develops significantly due to the high costs

and considerable time required for high-quality annotations

in large datasets. This field sees several significant contribu-

tions, which are broadly categorized into two groups: local-

oriented (label generation-wise) and global-oriented (instance-

wise) methods. Local-oriented approaches focus primarily on

label-generation mechanisms. Yu et al. [1] and Patrini et al.

[2] propose biased complementary learning, operating under

the assumption that labels are generated non-uniformly and

employing a transition matrix to address this issue. Ishida

et al. [3] present an unbiased estimator for classification

risk, adaptable to arbitrary losses and models, specifically

for uniform complementary label learning. Additionally, Kim

et al. [4] introduce a negative cross-entropy loss function,

which treats the complementary label as a negative label in

the optimization process. Extending these concepts, Feng et

al. [5] and Cao et al. [6] propose a multi-complementary label

learning framework. The former designs a wrapper approach

by converting multi-label contexts (MLCs) into several single

complementary label sub-tasks, while the latter develops an

unbiased risk estimator that treats each candidate set holisti-

cally.

On the global-oriented side, which focuses on instance-

wise methods, Wang et al. [7], Ge et al. [8], and Cao et al.

[6] make notable contributions. Ge et al. [8] introduce dual

regularisation, advocating for the use of confident instances,

identified through disagreement between two neural networks,

for training. This concept bears resemblance to co-teaching by

Han et al. [9], where instances with high posterior probability

are selected for training, and co-training methods by Blum

and Mitchell [10], Nigam et al. [11], and Qiao et al. [12],

which involve choosing samples with small losses for training.

In summary, the evolution of complementary label learning

methodologies is viewed through the lens of these two distinct

but interconnected approaches: the local-oriented methods,

exemplified by Yu et al. [1], Ishida et al. [13], Kim et al.

[4], Feng et al. [5], and Cao et al. [6], and the global-oriented

methods, represented by Wang et al. [7], Ge et al. [8], and

Cao et al. [6].

These methods can be categorised based on their focus

areas: some prioritise the local properties of the dataset

through techniques like data augmentations and the selec-

tion of challenging samples, while others emphasise global

properties, utilising approaches such as unbiased estimators

or surrogate losses. In addition, methods such as the transition

matrix or prior label adjustments are often employed in this

context. Despite these efforts, challenges persist in simultane-

ously enhancing the model’s understanding of both local and

global properties, which is vital for effectively managing the

complementary label task. Moreover, this type of supervision

can lead the classifier to disproportionately emphasise param-

eters for these complementary labels, potentially degrading

performance. Nevertheless, the dataset maintains a uniform

distribution across both label and instance spaces, highlighting

the importance of leveraging this inherent local and global

information to optimise classifier performance. This leads us

to think, ’How can we design a learning framework that en-
hances the robustness of the classifier by simultaneously incor-
porating both the local and global properties of the dataset as
guidance to solve the complementary label task?’ To address

this challenge, local guidance is facilitated through equal-
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partition label regularisation, employing optimal transporta-

tion via the Sinkhorn-Knopp algorithm. Concurrently, global

guidance is exerted by leveraging label distribution through

co-occurrence class embedding and consistency regularisa-

tion. This dual approach enables the model to collaboratively

correct biases introduced by the inherently less informative

feature of complementary labels during the learning process.

• In this paper, we propose a learning framework that

integrates both the local and global properties of the

dataset as guidance into the learning process, aiming

to effectively address the challenges of less informative

supervision in multi-complementary label learning.

• For local guidance, we incorporate the Sinkhorn-Knopp

algorithm for optimal transportation, using an entropic

function as regularisation for equipartition. Concurrently,

global guidance is achieved through the use of co-

occurrence peer embedding adjustment, guiding the

model to treat every class uniformly, preventing it from

being misled by the frequently occurring complementary

labels.

II. PRELIMINARIES

We define D as the distribution of a Cartesian product

(X,Y ) ∈ X ×Y , in which X denotes the variable of instances

x, and Y the true labels y. The feature space X ⊆ R
d

and the label space Y = [K], where [K] = 1, 2, . . . ,K.

In multi-complementary label learning, since true labels are

not given, we define a new distribution D̄, consisting of

(X, �Y ) ∈ X × [K], where �Y is the complementary label

�y. The objective is to train a classifier on i.i.d. samples

from D̄, {(x1, �y1) , . . . , (xn, �yn)}, to achieve classification

performance same to training with true labels y ∈ Y . The

complementary label generation, based on [5], considers �Yi as

a candidate set of k− 1 complementary labels from a total of

k classes, leading to a multi-class classification problem. �Yi

may contain either a full label set or an empty set, denoted as
�Yi ∈ Y where Y = 2Y −∅− Y and |Y| = 2k−2. During the

label generation process, the number of complementary labels

for each instance is denoted by the random variable s with

distribution p(s).

A. Global Guidance through Co-occurrence Class Embedding
regularisation

In this section, we present co-occurrence class embedding

regularization. It is designed to enforce uniform regularization

across the embedding space using knowledge of label distribu-

tion, ensuring that the embedding space is consistent with the

true label distribution. Our approach diverges from previous

work [14], which primarily focus on logit adjustments related

to a single class label index. Our method is designed to handle

scenarios involving multiple candidate labels, targeting logit

adjustment across all entries corresponding to classes within

the candidate label set. This makes our approach particularly

adept at addressing the multi-complementary learning task.

The conventional approach determines the predicted label

using argmaxi∈[k] hi(x). The traditional softmax function is

typically defined as h(x) =
∑

y∈Y e�qy∑
y∈Y e�qy+

∑
j /∈Y e�qj

. Nonetheless,

this method may not adequately consider the problem of label

ambiguity in multi-complementary labels. These weaknesses

arise because the standard softmax approach assumes that the

labels are true classes for an instance, overlooking the situation

introduced by labels that are explicitly not associated with the

true class. In order to achieve this, we modify the softmax

output as follows:

�C(x)y =

∑
y∈�Y e�qy − εy

∑
y∈�Y e�qy − εy +

∑
j /∈�Y e�qj

, (1)

where �qy are the logits for the classes in the candidate set
�Y . In this formulation, we apply targeted subtraction to the

y-th entries of the vector �C(x)y using εy , while keeping the

remaining entries, specifically those where y �= j, unchanged.

This strategy preserves the original values of �C(x)j throughout

each training batch. The term εy , known as the identical

sample margin, is computed as εy = L

n
1/4
j

for each class y

within the range {1, . . . , k}, where nj denotes the number

of samples in each class and L is a hyperparameter. This

modification follows the approach described in the work of

Cao et al. (2019), which is designed to increase the mar-

gin for underrepresented classes and decrease it for over-

represented ones. Although our underlying dataset distribution

is uniform and free from imbalance issues, the complementary

labels do not represent ground truth labels. Consequently,

the model may mistakenly overweight or underweight certain

classes during training if adjustments to co-occurrence class

embedding are not made. This potential issue arises from

the inherent ambiguity of these labels. The modified softmax

output, �C(x)y , will be utilised in local and global guidance

regularisation frameworks.

1) Consistency Regularisation: In this section, we intro-

duce a consistency regularisation in conjunction with Co-

occurrence Class Embedding to form the global guidance,

inspired by Wang et al. [7]. We start with a commonly used

loss function in complementary label learning, defined as

follows:

Llog

(
f (xi) , Ȳi

)
= −

∑
y∈Ȳi

log (1 − fy (xi)) , (2)

The log loss function, proposed by [15] and [5], is motivated

by the assumption that complementary labels do not contain

the true labels. Thus, removing labels from the original multi-

complementary label set provides a candidate set that likely

includes the true label, offering more information than the

original set. Differing from [7], we have revised the softmax

output, �Cy , instead of using the traditional softmax output

h(x). Our method is designed to impose an equipartition

constraint at the embedding level by subtracting a certain

amount from the logits output, in line with the prior label

distribution. The goal is to guide the model to treat every

class uniformly, thereby preventing biased information from

influencing the model due to the frequency of the occurring

complementary labels, which do not accurately represent the

underlying data distribution and leads to biased predictions. To
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our knowledge, we are the first to integrate logit adjustment

into consistency regularisation. Previous works by [15] and

[5] considered only applying data augmentation to generate

additional datasets from the existing dataset, arguing that

minimising metric divergence between the original image and

the augmented image would improve the generalisation ability

of the model. However, these approaches failed to consider

leveraging the label distribution as a constraint through logit

adjustment. Together, these elements constitute global guid-

ance regularisation.

LGGCR

(
�Cy

(AUGj(xi)
)
, f̃y

)

= −
N∑

j=1

∑

y/∈�Yi

f̃y (xi) log
(
�Cy

(AUGj (xi)
)

Inspired by [7], our regularisation (3) is implemented by

partitioning the observed candidate label set into two distinct

groups: the complementary label set and the co-occurrence

classes f̃y . The co-occurrence classes encompass potential

candidate classes, explicitly excluding those identified as com-

plementary labels:

f̃y (xi) =

⎧⎨
⎩

�yy(xi)∑
k/∈�Yi

�yk(xi)
, if y /∈ �Yi,

0, otherwise.

(3)

TheAUGj (xi) denotes the data augmentation strategy applied

to each instance x, as discussed by [7]. Additionally, we em-

ploy the revised softmax output �C(x)y , as defined in Section

A equation (1), for the prediction of the trained classifier.

B. Local Guidance Regularisation via Optimal Transportation

In this section, we propose applying optimal transport, as

formulated in (4), to encourage the model to predict pseudo-

labels by the marginal class prior. This approach aims to

guide the model to assign a uniform weight to each class

and each instance, preventing the model from being misled by

multi-complementary labels to disproportionately overweight

or underweight specific classes in each instance. To achieve

this, we aim to minimize the following objective function

〈Q, log �C(x)〉 with the guidance of entropic regularisation:

min
Q∈G(r,c)

〈Q, log �C(x)〉 + γij

∑
Qij(logQij − 1),

s.t. G(r, c) = {Q ∈ R+
K×N | Q1 = r,Q

�
1 = c}.

(4)

In the objective function (4), 1 denotes a vector containing all

ones, with dimensions corresponding to the row and column

sums of the matrix Q. The matrix Q represents the label

assignment matrix, and γ, the Lagrangian multiplier, controls

the degree of homogeneity of the matrix Q. The vectors α and

β are obtained through matrix scaling iterations. The matrix

Q is a conditional probability distribution, and we employ the

Sinkhorn-Knopp algorithm to expedite label transportation for

large-scale instances. The term �C(x)y denotes the posterior

probability after applying a softmax layer in a convolutional

neural network. The constraint G(r, c) ensures that each in-

stance xi is allocated exactly one label and the N instances

are partitioned uniformly among the K classes. The vectors

r and c represent the summation of the rows and columns of

Dataset CIFAR100
SCL-EXP 45.36± 1.12
SCL-LOG 46.82± 0.64
UB-EXP 28.03± 1.42
UB-LOG 47.92± 2.62

UB-LOG with A&C 21.94± 0.93
POCR w/o Re-norm 50.49± 0.18

POCR 54.17± 0.89
Our 69.69± 0.55

TABLE I
MAIN EXPERIMENT: THE TABLE SHOWS AN ACCURACY COMPARISON BETWEEN THE

MOST RECENT WORKS AND POCR (BASELINE) AND LGGCR + Llog + L (Q,α, β)

FOR CIFAR100 DATASET.

the matrix Q, and the marginal probabilities of Q, respectively.

The Sinkhorn-Knopp algorithm iteratively modifies the matrix

Q to meet these marginal constraints while simultaneously

minimising min
Q∈G(r,c)

〈Q, log �C(x)〉. The vectors α and β have

lengths K and N , respectively, corresponding to the number

of columns and rows in the matrix Q. Our work follows the

same instructions and derivation as [16]. We can formulate the

equation (12) into the following:

L (Q,α, β) =
∑

i

∑
j

(
Qij

�Cij(x)
)
+ γQij (logQij − 1)

+α� (Q1 − r) + β�
(
Q�1 − c

)
.

(5)

Deriving the objective function (12), we can obtain the fol-

lowing (The Full Derivation is shown in the appendix):

Q = diag(u) · K · diag(v). (6)

We have the element of the matrix Kij , which is
(
− �C(x)ij

γ

)
and ui = exp(−αi

γ ), vj = exp(−βi

γ ). Given that we want Q
to be constrained by r and c as follows:

Q1m = diag(u)Kv = r,Q
�
1n = diag(v)K

�
u = c. (7)

We have the element-wise product of each element as follows:

u� (Kv) = r, v � (K�u) = c. (8)

Here, r is obtained by the element-wise product between u
(vector) and Kv (matrix-vector product), and c is obtained

by the element-wise product between v (vector) and K�u
(matrix-vector product). The vectors u and v are updated

iteratively using the following equations:

u = r � (Kv), v = c � (K
�
u), (9)

where � denotes element-wise division. In a nutshell, we

initiate α and β according to [17] to estimate scalar coefficient

vectors v and u. The variable K is given ( given the estimated
�C(x)y matrix over γ ). Ultimately, the objective function is

to minimise Q and �C(x)y while maintaining equal partition

constraints. Our goal is to estimate u and v to update Q
until the convergence of the objective function. The final loss

function can be formalised as follows:

LLG = LGGCR + Llog + L(Q,α, β) (10)
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Dataset POCR LGGCR + Llog LGGCR + Llog + L (Q,α, β)
CIFAR100 54.17± 0.89 67.60± 1.01 69.69± 0.55

TABLE II
ABLATION STUDY:THE TABLE SHOWS A COMPARISON BETWEEN

POCR (BASELINE) AND LGGCR + Llog AND LGGCR + Llog + L (Q,α, β)

III. EXPERIMENT

Datasets: We have conducted experiments with our method

on the CIFAR100 dataset [18]. It contains one hundred classes

for all images, totalling 60,000 images, with 50,000 for

training and 10,000 for testing.

Experimental Results: The classification performance for the

CIFAR100 dataset is shown in Table I. We have shown how

our method performs in comparison to SCL-EXP and SCL-

LOG [15], UB-EXP, UB-LOG and UB-LOG[5] with A and C,

POCR w/o Re-norm, and POCR [7]. Our method has shown

significant improvement compared to POCR, which is the

state-of-the-art method in multi-complementary label learning.

The result is calculated as the average over 5 random seeds.

1) Ablation Study: In this Table II, we have shown a

comparison between the POCR (BaseLine) and LGGCR +Llog

as well as LGGCR +Llog+L (Q,α, β). It has shown that both

our proposed methods have improved the robustness of the

model against the multi-complementary labels.

IV. CONCLUSION

In this paper, we address the learning of multi-

complementary labels by simultaneously incorporating the lo-

cal and global knowledge of the dataset into the model to make

it aware of potential biases inherent in complementary labels.

More specifically, our work provides a new perspective on

dealing with multi-complementary labels. For local guidance,

we apply equal-partition label regularisation using optimal

transportation via the Sinkhorn-Knopp algorithm. Meanwhile,

we use label distribution to conduct global guidance using

co-occurrence class embedding regularisation. These unified

methods aid in enhancing the robustness and accuracy of the

classifier in tackling the less informative multi-complementary

labels problem.
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V. APPENDIX

A. Sinkhorn Knop algorithm

Basically, we are trying to minimise the following objective

function 〈Q, �C(x)〉 with the guidance of entropic regularisa-

tion.

min
Q∈G(r,c)

〈Q, log �C(x)〉+ γij
∑

Qij(logQij − 1),

s.t. G(r, c) = {Q ∈ RK×N
+ | Q1m = r,Q�1n = c.}

(11)

The objective function (11) contains the following variables,

Q label assignment matrix, γ Lagrangian multiplier, α and β
are two vectors which need to be acquired through a matrix

scaling iteration;

• The Q is a conditional probability distribution, using

the Sinkhorn-Knop algorithm to fasten the large-scale

instance label transportation, whereas the �C(x)y denoted

as the posterior probability after the layer of softmax

using convolutional neural networks.

• The constraint G(r, c) enforces model to allocate each

instance xi with exact one label, subsequently, the N
instances are partitioned uniformly among the K classes.

• The vectors r and c represent the summation of the rows

and columns of matrix Q, the marginal probabilities of Q,

respectively. The Sinkhorn-Knopp algorithm iteratively

modifies the matrix Q to meet these marginal constraints

while simultaneously minimizing min
Q∈G(r,c)

〈Q, log �C(x)〉.
• The γ, which is the Lagrangian multiplier, controls the

degree of homogeneity for the matrix Q.

• The α is a vector with length K, in which K is the

number of columns in the matrix Q. β is a vector of

length N , where N is the number of rows in the matrix

Q. In addition, α ∈ R
N and β ∈ R

K .

Our work has followed the same instructions and derivation as

[16]. We can formulate the equation (11) into the following,

L (Q,α, β) =
∑

i

∑
j

(
Qij

�Cij(x)
)
+ γQij (logQij − 1)

+α� (Q1− r) + β� (
Q�1− c

)
.

(12)

Deriving the objective function (12) as following,

∂L
∂Qij

= �Cij(x)+γ (logQij − 1)+γQij+
1

Qij
+αi+βj = 0.

(13)

logQij = − 1

γ
· αi − 1

γ
�Cij(x)− 1

γ
βj (14)

Qij = exp

(
−αi

γ

)
︸ ︷︷ ︸

Ui

exp

(
−

�Cij(x)

γ

)
︸ ︷︷ ︸

Kij

exp

(
−βj

γ

)
︸ ︷︷ ︸

Vj

. (15)

Q = diag(u) ·K · diag(v). (16)

• We have the element of the matrix Kij , which is(
− �C(x)ij

γ

)
and Ui = exp(−αi

γ ), Vj = exp(−βi

γ ).

Our goal is to iteratively refine Q by calculating v, u and K;

The Q calculation is shown as following:

• We first initiate α and β according to [17] to obtain

unknown hyper-parameters v and u.

• After obtained v and u and since K is given (given the

estimated �C(x)y matrix over γ).

• Ultimately, our objective function can reach the conver-

gence where Q and �C(x)y is minimised while maintain-

ing equal partition constraints.

Given that we want Q to be constrained by r and c as follows:

Q1 = diag(u)K diag(v)1,

Q1m = diag(u)Kv = r,

Q�1n = diag(v)K�u = c.

(17)

We have the element-wise product of each element as follows:

u� (Kv) = r,

v � (K�u) = c.
(18)

Here, r is obtained by the element-wise product between u
(vector) and Kv (matrix-vector product), and c is obtained

by the element-wise product between v (vector) and K�u
(matrix-vector product). The vectors u and v are updated

iteratively using the following equations:

u = r � (Kv), (19)

v = c� (K�u), (20)

where� denotes element-wise division. Our goal is to estimate

u and v to update Q until the convergence of the objective

function.

B. Experimental settings

We have used the multi-complementary label according to

[6, 7] as our observed candidate label set. The data augmenta-

tion strategy used is based on [7]. For the CIFAR100 dataset,

we have used the PreAct-ResNet-18 neural network [19]. The

total number of epochs for training is 200. We train the PreAct-

ResNet-18 neural network with an initial learning rate of 0.1

and weight decay of 9e-4. Subsequently, we will divide the

learning rate by 0.1 for every 50 epochs onward until the end

of the training. This learning schedule also applies to weight

decay. The optimiser used is SGD.
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