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Abstract—In this letter we want to use LSTM-RNN to
analyze and predict the behavior of LTE users in mobile
network. Predicting the user statistics and data usage on the
whole mobile network is going to be studied. Analyzing and
predicting the user charging data requests in LTE network and
finally, finding abnormal base stations has been predicted via
DNN networks. To accomplish that we considered aggregated
LTE users under each base station and considered the behavior
statistics as a time series. Ultimately, we forecasted the coverage
index (CI) as a calculated metric to identify anomalies and
determine the count of abnormal sites with fewer LTE CDRs
compared to normal ones using LSTM on generated time series.
This prediction can be used for planning and optimization teams
to find and solve any abnormal site level parameters. Proposed
method can have both the role of corrective actions on base
stations to rectify any telecommunication issue on live network
and also predictive action for forecasting network condition in
site level scale to increase user satisfaction in advance.

Keywords—time series prediction, deep learning algorithms,
LTE users, look-back window, CDR forecasting, smart site
planning, smart parameter tunning.

I. INTRODUCTION

In most of mobile networks, operators tend to provide
higher throughputs and better user experience as higher
throughputs means more interest in data usage and higher
revenues for telecommunication operators. Therefore, they
use KPI (Key profile indicators), CDR (Charging Data
Record) and MDT (minimized drive test) to monitor network
major/minor measures and optimize the network profiles
accordingly. CDR is a bunch of data which provide us
information about a chargeable event (e.g. time of call set-up,
duration of the call, amount of data transferred, radio
generation on the network which data transferred, etc.) for use
in billing and accounting. So, by using number of users and
data requests in each technology (2G, 3G, and 4G) we can
have a map on the behavior and statistics of users in each area.
Mostly, Subscribers' behavior and their coverage are primarily
influenced by the geographical context and prevalent handset
categories within a given region. In this paper, we used CDR
for identifying regions and base stations (Nodeb & eNodeb)
which have higher 3G service requests even though, they
provide 4G coverage. It is worth to note that all of our input
data sources consist of authentic live network data, with no
data generation taking place. At the first step, we will analyze
all of the input sources to find the coverage index which will
be discussed in details later and finally predicting the network
behavior in weeks ahead to identify them in advance and solve
their issues for the better user experience.

After introduction of neural network and their application
in different areas, in the last few years, new algorithms have

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00162

888

Muhammad Adeel
Data Mining & Network planning
MTN Irancell
Tehran, Iran
muhammad.ad@mtnirancell.ir

reached the point that deep learning has outperformed than
common ANN architectures in complex problems. The fact
that DNNs are able to handle missing or noisy data and are
capable of mapping complex functions, made them widely
useful in many business and academic applications. Between
these applications, Time Series Forecasting (TSF) has recently
attracted the attention of many researchers which came to
many applications such as: trend prediction, anomaly
detection, capacity planning, incident prediction and so on. To
apply Al models in our industrial application we decided to
use Vanilla RNN as recurrent neural networks but RNNs are
also have limitations in looking back in time as some
memories may vanish or explode [1-2]. This problem was
solved by introducing Long Short-Term Memory Recurrent
Neural Networks (LSTM-RNN) [3-6]. LSTM networks are
extensively employed in stock prediction due to their
adeptness in analyzing data with temporal dependencies. They
have demonstrated superior performance compared to other
deep neural network (DNN) algorithms, particularly in
extracting valuable insights from noisy time series data. [7-9].
The LSTM architecture is based on cell state and three gates
calculated as (1): the forgotten (Ft), the input (It), and the
output gates (Ot) which can weigh the information for each
cells. This architecture will finally result in distinguishing any
context changes and forgetting irrelevant data [10]. To be
more precise, we have long-term memory (cell state) and
short-term memory (hidden state) to remember the importance
of data which modified based on results of LSTM gates. “Fig.
17 illustrates the LSTM structures.
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Fig. 1. LSTM Node architecture
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As shown in the figure, we have input values at time t as
X and hidden state from previous time step as Hi.; which after
concatenation will be passed to sigmoid function to create
forget and parts of input gates. The sigmoid function serves as



a gate or regulator, allowing only values between 0 and 1 to
pass through. In this context, a value of zero indicates that no
information should be added to the cell state (complete
forgetting), while a value of one signifies high importance
from a long-term memory perspective.

F, = sigmoid (W; * X, + U, * H,_y + b;)
I; = sigmoid (W; * X; + U; * H;_1+ b;)
¢ = tanh(Wj * X; + U «Hj_, + bj)
C=F0C,+LOC
Q)]

Where W and U are weight matrices learned for each step
and © denotes element-wise vector product.

Finally we have O, and updated hidden state as below (2):

0, = sigmoid (W, * X, + U, * H,_1 + b, )
H; = 0, © tanh(C,)
(@)

Where tanh is the nonlinear tanh activation function used
as an importance leverage of input and short term memory.
The Symbol © is used to denote Hadamard product.

Certainly, in addition to the classic LSTM, there are many
other LSTM architectures that can integrate or connect
different LSTM components to simplify, improve, or optimize
the network based on the specific problem, the scale of input
data, and processing capabilities. Various LSTM architectures
are typically chosen depending on the dataset's structure, the
number of features involved, and computational constraints.
There isn't a one-size-fits-all approach for selecting a specific
model across different applications; each model comes with
its own set of advantages and disadvantages tailored to the
specific problem at hand. Gated Recurrent Unit neural
networks (GRU) as an example have simpler architectures and
have shown successful performance in long sequence
applications involving sequential/temporal patterns. GRU in
architecture is almost same as LSTM but it is simpler and
consists of two gates: reset gate and update gate and also cell
state and hidden state in LSTM are merged to one hidden state
in GRU [11-13]. This simplicity may raise the doubt that
LSTM will outperform GRU, but many works have shown
that beside of lower computational expenses, it can perform as
good as LSTM in tasks such as: music modeling, speech
signal modeling and natural language processing [14-15]. So,
it would be interesting to study and compare both neural
networks for our case as LTE users in live network can have
seasonal and sequential patterns which can challenge both
GRU and LSTM as popular recurrent neural networks in
telecommunication.

Since wuser behavior in mobile networks varies
significantly and can be directly influenced by factors such as
seasons, network configuration adjustments, and events, we
may accumulate valuable long-term data that could impact our
present situation. Conversely, we may also possess outdated
data from the past that is no longer relevant and should be
discarded. To be more precise, we have non-stationary time
series as the main properties change over time which
consequently affect the mean and variance of our data.
Therefore, there is always important memory in the past which
is very valuable for our predictions. LSTM has demonstrated
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its effectiveness in handling sequential data patterns
characterized by significant time steps between relevant data
points. In our scenario, the generated CDRs for mobile users
is computed and analyzed at various timestamps, with our
objective being the prediction of user behavior in the near
future. Many conventional machine learning methods often
struggle to meet our requirements due to the sequential nature
and temporal correlation inherent in time series data, which
are crucial aspects of our forecasting task.

II. DATA AND EXPERIMENTS

Within mobile networks, various radio technologies like
3@, 4G, and the more recent 5G each come with their own
specific coverage capabilities. In our context, different site
scenarios present challenges where data requests
predominantly originate in 3G rather than 4G due to coverage
limitations, potentially leading to wuser dissatisfaction.
Numerous factors contribute to this issue, including cell
parameters, fluctuating user locations, variations in user
density, and other environmental changes. Each site within the
area, depending on its configuration, may experience actual
coverage gaps, with the status of sites influenced by dynamic
user densities and environmental shifts [Fig. 2].

3G coverage

Fig. 2. Site coverage on U & L base station

Within expansive telecommunication networks, several
crucial factors and network elements can directly or indirectly
influence mobile users. These include the core network,
transmission nodes, geographical features, artificial obstacles
affecting coverage, and the user maturity index across various
regions.

Our CDR database comprises 42 features and surpasses
100 million records per week. It covers the entirety of the
network, encompassing various site configurations,
geographical attributes, user handset classifications, and
more. Data concerning the 5G network is excluded due to an
insufficient number of deployed samples and NR users,
rendering it impractical for analysis.

Initially, cell/sector-level data is aggregated to derive site-
level CDR information, resulting in a reduction in the size of
raw data by over ninefold. Given our focus on examining
mobile user behavior within site-level scenarios, this process
does not affect our outcomes. Therefore, CDR features
primarily provide information on the number of old and new
mobile SIM cards (USIMs) associated with each base station,



user numbers per RAT type (XG) in site level, and the
proportion of data requests for each RAT, among others.

In essence, within a live telecommunication network just
like the one we analyze and similar database, we encounter
numerous features that impact mobile user behaviors, some of
which exhibit high correlations with others. Through the pre-
processing phase and leveraging telecommunications
concepts, we can identify and potentially eliminate redundant
data. For instance, there exists a robust correlation between
the subscribers of each RAT for every base station, potentially
reducing the number of features. If a base station has, for
instance, "75%" LTE subscribers and less than "20%" UMTS
subscribers, the remaining users are likely utilizing the GSM
network. Through correlation calculations across various
features and leveraging telecommunications principles, we
ascertain a strong correlation between 3G and 4G utilization.
Specifically, users in different site locations with complete
RAT configurations tend to favor 4G over 3G networks and
are less inclined towards 2G networks. Furthermore, our
database includes diverse utilization percentages for each
RAT type at each site location, ranging from "1%" to "100%"
utilization, which are undoubtedly correlated. This technical
preprocessing facilitates faster and more efficient model
convergence, resulting in a reduction of inputs for our CI
calculation as the output. We illustrate a segment of the
correlation heatmap in [Fig 3].

Additionally, we chose to categorize sites into regions
based on the geographical characteristics of base stations,
handset distribution within each province, and LTE user
penetration rates. These regions have been carefully selected
to reflect similarities in user behavior, site parameter settings,
site distribution, and geographical layouts. This approach
enhances the accuracy and generality of the model by
accounting for regional variations.

Preprocessed data undergo analysis to compute our
proposed metric (CI) for each site code in every region.
However, before proceeding, we exclude base stations with
zero or extremely low LTE traffic due to site unavailability or
the inclusion of new integrated/license-limited base stations in
the database. Consequently, we establish an observation
period of four consecutive weeks on CI to identify abnormal
samples for a site. Undoubtedly, sites experiencing LTE
downtime not only hinder the model's ability to learn and
predict feature relationships but also introduce misleading
information.

We employ Python for our analysis and utilize Keras for
predictive modeling in further steps. The calculated Cls for
each site location per week will be incorporated into our
database as the metric for abnormality. To determine
problematic sites each week, we established Coverage Index
Thresholds based on Table 1.

TABLE L. COVERAGE INDEX THRESHOLDS
Category Coverage Index Thresholds (CIT)
Critical Usage>50
High 30<Usage=<50
Medium 20<Usage=<30
Normal Usage=<20
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The generated output serves multiple purposes: it can be
utilized for optimization based on severity levels and can also
function as input for our supervised prediction model. In this
model, preprocessed features and calculated coverage indices
are used as X and Y variables, respectively.
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Fig. 3. Correlation heatmap between some of features

Due to the vast number of features and the extensive
amount of data, we opt for employing Deep Learning
algorithms to analyze and ultimately predict user CDR
generations in radio technology. To validate the superiority of
LSTM over GRU, we train two distinct models with an equal
number of nodes versus varying numbers of epochs needed
for training, then compare the loss of these models. Using
Keras version "2.15.0", we initially set both LSTM and GRU
with 50 nodes and a single Dense layer to forecast a single
numerical value. As depicted in the figure, LSTM exhibits
superior performance in our scenario, particularly with a lower
number of epochs for training the model. [Fig. 4].

Mean Absolute Error (MAE) vs Epochs

—— LSTM
*~ GRU

Mean Absolute Error (MAE)

100 300

Epochs

Fig. 4. Comparison of GRU and LSTM for LTE users



Given the comparison results and the time-series nature of - Loss vs. Lookback
our database, we opt for LSTM, which demonstrates
advantages over other proposed DNN models such as GRU in
our analysis. A Vanilla LSTM comprises a single hidden layer
of LSTM units and an output layer employed for making
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predictions. This type of LSTM can be defined for univariate 2
time series forecasting. The model is trained using the
efficient Adam version of stochastic gradient descent and is 8 201
optimized using the Mean Absolute Error (MAE) loss
function. Adam serves as an optimization algorithm that can 201
be utilized in lieu of the classical stochastic gradient descent
approach to iteratively update network weights based on 10 1

training data [16].

In determining the optimal activation function for our
scenario, we conduct experiments with three different options: Lookback
Sigmoid, hyperbolic tangent (Tanh), and rectified linear unit
(ReLU). After analyzing the results over 100 epochs, we find
that ReLU is the most suitable choice for our prediction task

Fig. 6. Loss vs. Look-Back for different regions

[Fig. 5].
In the last phase, to introduce challenges for our LSTM
model, as illustrated in "Fig. 7", we deliberately assign low
Loss vs. Lookback for Different Activation Functions weights to certain gnQeSIred events by manlpu}attlng data in
70 weeks 4 and 5. This is done to assess the resilience of the
: LSTM model designed for our specific objective.
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Fig. 5. Calculation of Loss for different activation functions in different Fig. 7. Manipulated Time series on site abnormality

look back window

We train the model using current data and aim to forecast

Referring to our database specifications, we establish an data for the following week. To assess the model's
observation period to identify temporary problematic sites. performance, we utilize Mean Absolute Error (MAE) for each
Since LTE license limitations or configuration change trials week, which serves as a metric for the errors between
typlcally extend beyond a month’ encompassing the time for predicted and actual values in our analysis. Both the predicted
providing licenses and rolling back trials, we find it pertinent and actual values share the same scale of measurement
to examine the impact of lookback periods on our model's (CI/CIT in our Case), and it has been demonstrated that MAE
performance. Considering our database details and technical can be the most suitable option for time series scale-dependent
considerations outlined, we investigate a range of six close accuracy measurements [17-18]. After training the model and
lookback windows, namely "[1, 3, 4, 5, 6, 8]", to explore the computing the errors, we find that the mean MAE is 2.33,
relationship between the monitoring window and different which is deemed acceptable for our purposes.
lookback durations. Interestingly, as shown in "Fig. 8", the trained LSTM

From a technical perspective, significant contextual model accurately predicts values, with some regions, such as
changes in our database may occur approximately four weeks R5&10, achieving 100% correctness in their predictions,
after the onset of an issue at each base station. If an issue while other regions exhibit acceptable MAE for WK22. It
persists for more than three Weeks’ it triggers an abnormality should be noted that site numbers do not exhibit a discernible
flag. The results illustrated in "Fig. 6" indicate that adopting a trend, and fluctuations typically occur based on various
5-week lookback window proves to be the most optimal circumstances. Therefore, forecasting the network using
choice for nearly all regions. classic machine learning algorithms is nearly impossible. The

provided predictions are based on the LSTM model, which
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incorporates a lookback period of 5 weeks and forecasts one
week ahead for planning and optimization purposes.
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In "Fig. 9", we present the actual output of our CDR
analysis for the following week, utilizing real values from raw
CDR reports. By comparing these actual values to our
predicted values (WK22) as an example, we assessed the
validity of our model.

We conducted weekly analysis and achieved MAE values
ranging from approximately 2 to 5 for each week ahead which
is completely acceptable for forecasting LTE user situation in
the site level scenario. This analysis provided optimization
owners with insights into the site situation and LTE user
behavior several weeks in advance. The predictive outlook
facilitated proactive actions that enhanced user experiences
and furnished us with a heatmap of user statistics for
intelligent site planning.

win

Fig. 9. Actual Time series on abnormal base stations

III. CONSLUSION

In this paper we evaluated the DNNs in the field of
telecommunication and their possibility and accuracy in
network analysis and smart optimization. Our results proved
that there is a considerable potential in Al applications in
telecommunication (smart planning and optimization). We
utilized CDR reports to analyze and predict the LTE user
behavior in site level scenarios. We categorized sites based on
the behavior of LTE users and provided a scale of abnormality
for them. In future, we plan to implement LSTM on user level
point of view to forecast their behavior in service level and
application level (application layer). it will be a considerable
advantage in radio planning and link budget planning for
special users having high revenue generation. We can
implement smart cell and hardware expansions based on the
dynamic user requests in each site location which is a leapfrog
in the field of mobile site planning and real-time smart
optimization.
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