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Abstract—This study focuses on identifying texts related to
maritime contexts using an advanced Large Language Model
(LLM) and cost-sensitive approach for handling data imbal-
ances. Firstly, a comprehensive dataset specifically for maritime-
context queries is collected and augmented. Secondly, the dy-
namic contextual representations of input query considering
the context of each word are obtained by a pre-trained LLM
which incorporates Bidirectional Encoder Representations from
Transformers (BERT) and Convolutional Neural Network (CNN).
Thirdly, a Multi-Layer Perceptron (MLP) is constructed as the
classifier to fine-tune the whole network on the newly collected
dataset. Finally, the Focal loss is introduced for more effective
parameter optimization to tackle the challenge of data imbalance
between positive and negative samples, Extensive experiments
have been conducted and the following promising results have
been obtained: 1) The proposed approach achieves an impressive
99.97% F1 score in recognizing maritime-context texts; 2) The
ConvBERT model, an enhancement over the original BERT,
demonstrates superior performance in text representation while
being more computationally efficient; 3) The Focal loss method
outperforms other cost-sensitive learning strategies like class
weighting and oversampling techniques; and 4) the proposed
method surpasses other deep learning and BERT-based methods
in text classification tasks.

Index Terms—Maritime, Large Language Model (LLM), Con-
vBERT, text classification, imbalanced

I. INTRODUCTION

In recent years, the advancements in Artificial Intelligence

(AI) within the maritime sector are indeed significant and

transformative. The development of AI-driven tools like Esti-

mated Time of Arrival (ETA) estimation [1], fuel consumption

prediction [2], traffic hotspots forecasting [3], vessel trajec-

tories prediction [4], [5], maritime risk assessment [6], and

vessel recognition/identification [7], [8] shows a substantial

shift in how maritime operations are managed and optimized.

These AI practices not only enhance efficiency but also con-

tribute to safer and more sustainable maritime practices. The

notion of developing a dedicated AI model store or repository

for the maritime sector is both necessary and beneficial. Such

a repository would serve as a centralized platform where

practitioners, researchers, and developers can access, share,

and collaborate on AI models tailored to maritime needs.
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This would accelerate innovation, improve the quality of

maritime AI applications, and potentially lead to standardized

practices across the industry. The involvement of the Institute

of High Performance Computing (IHPC) at the Agency for

Science, Technology and Research (A*STAR), Singapore in

developing this concept is promising. Their expertise and

resources could be pivotal in realizing an effective and robust

maritime AI model store/repository. This initiative could pave

the way for broader use and continuous improvement of AI

models in maritime transportation, ensuring that the industry

remains at the forefront of technological advancement. As this

concept evolves, it will be interesting to see how it shapes

the future of maritime operations and how it might influence

similar developments in other industry sectors. The focus on

collaboration and shared development in the field of AI reflects

a growing trend towards open innovation and could lead to

significant breakthroughs in the application of AI technologies

in maritime.

To address the need for improved connections between

industry partners and AI models within the maritime ecosys-

tem, we are inspired to develop a new Question and Answer

(Q&A) system specific to this sector. A primary challenge in

accomplishing this system is to accurately identify whether in-

coming queries or texts pertain to maritime scenarios. Relevant

maritime texts trigger further processing, while non-maritime

queries are disregarded as they fall outside the system’s

scope. In this work, we have proposed an imbalanced learning

approach to detect maritime-context texts. The following are

the key contributions to highlight:

∙ We established a new human-annotated text/query dataset

within the maritime field, designed to support and ad-

vance future research endeavors;

∙ We implemented a cutting-edge contextual representation

method for text classification in the maritime domain;

∙ We developed a deep learning approach tailored for

imbalanced learning in maritime text classification;

∙ We conducted evaluations using the newly established

dataset to demonstrate the effectiveness and superiority

of our approach.

The subsequent parts of this article are organized as follows.

Section II presents a comprehensive review of previous studies

on text classification in transportation. In Section III, we

explain the proposed method in detail. Section IV details the

results of the experiments and analyses. Finally, in Section V,

we conclude this study.
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II. RELATED WORK

The text classification methods in transportation can be

generally divided into five categories: rule-based methods,

machine learning methods, neural network methods, large

language models (LLMs), and hybrid methods. The machine

learning methods in this section do not involve the concepts of

neural networks and LLMs. Rule-based methods apply a col-

lection of specific rules or patterns to analyze, interpret, or ma-

nipulate natural language data. In [9], a specialized dictionary

was created, featuring unique keywords, to categorize tweets

into seven distinct travel-related activities, including eating,

entertainment, home activities, shopping, and more. For the

machine learning methods, the most frequently used models in

transportation-related text classification are the Support Vector

Machine (SVM) and Naive Bayes (NB). In [10], the SVM

was utilized to filter out texts not related to transportation.

Specifically, the SVM was trained to categorize texts into

two groups: positive and negative, with the positive group

representing texts relevant to transportation. Styawati et al.
[11] transformed the comment texts from Gojek and Grab into

vector representations using Word2Vec, a method that clusters

similar contexts in the corpus closely in the vector space [12].

Following that, they applied SVM for sentiment classification

based on the text representations. Klaithin et al. [13] used the
NB classifier to classify the event from Twitter comments into

six categories, including accident, announcement, question,

orientation, request and sentiment. In a different study by

Mogaji et al., the authors used TextBlob, a well-known Python
library for machine learning, for sentiment analysis. This tool

assesses the sentiment of input texts by assigning them polarity

scores between -1.0 and 1.0, and subjectivity scores ranging

from 0.0 to 1.0.

In this field, cutting-edge neural network methods are widely

employed, with most studies favoring architectures based on

Recurrent Neural Networks (RNN) and Convolutional Neural

Networks (CNN). Chen et al. [14] applied the Continuous Bag
of Words (CBOW) approach for word embeddings and devel-

oped a deep learning model that combines Long Short-Term

Memory (LSTM) and CNN. This model was designed for bi-

nary text classification, effectively differentiating between texts

relevant and irrelevant to traffic. In a similar work [15], the

authors utilized CBOW for word embedding and a CNN model

to identify traffic-related microblogs. Their approach demon-

strated superior performance compared to methods based on

SVM and Multi-Layer Perceptrons (MLP). Azhar et al. [16]
utilized Global Vectors for Word Representation (GloVe) to

embed words from tweets. Subsequently, they implemented

RNN, Gated Recurrent Units (GRU), and LSTM networks for

detecting traffic-related tweets and classifying the severity of

traffic situations. The task of identifying traffic-related tweets

was approached as a binary classification problem. In this

context, the LSTM network achieved superior performance

compared to GRU and RNN, recording an accuracy of 94.2%,

against 93.7% for GRU and 91.6% for RNN. Xu et al. [17]
combined Word2Vec with a CNN to categorize fault types

in aircraft maintenance logs. Their study showed that the

CNN classifier outperformed both MLP and SVM classifiers

in terms of effectiveness. Su et al. [18] developed a model

based on the GRU for classifying sentiments in comments

from Chinese railway users, integrating a multi-feature fusion

approach.

In transportation research and applications, LLMs like Bidi-

rectional Encoder Representations from Transformers (BERT)

and its variants are highly prevalent. Wan et al. [19] utilized
BERT for categorizing tweets into traffic-related and unre-

lated groups. BERT has also proven effective in multi-class

classifications, such as sorting tweets into six categories, in-

cluding incident, road construction, road closure, traffic delay,

public transportation and unrelated information, achieving an

impressive accuracy of 99.37%, significantly outperforming

traditional machine learning methods like NB, Decision Tree

(DT), and SVM. Osorio et al. [20] applied BERT to analyze

sentiments in tweets about Madrid Metro, classifying them

into positive and negative emotions. Oliaee et al. [21] also em-
ployed BERT to classify traffic injury severity in crash reports.

In another study by Babbar et al. [22], RoBERTa was used

for sentiment classification, outperforming existing techniques

like Word2Vec, GloVe, FastText, BERT, and XLNET, with

97% accuracy, 96% recall, and 95% F1-score.

The hybrid methods incorporate two or more categories of

methods for modelling by leveraging the advantages of differ-

ent methods. Jidkov et al. [23] introduced the BERT to obtain

the vector representation of texts, and architectures of Artificial

Neural Network (ANN), CNN and LSTM are then appended as

the classifier for binary incident classification, i.e., if the text

contains maritime incident or not. In [24], BERT was used

for feature representation learning from tweets, followed by

the integration of a CNN for classifying traffic events from

these tweets. The study found that BERT, as a contextual

word embedding tool, outperformed other models like ELMo

and Word2vec. The results showed that the best-performing

neural network architecture is LSTM, with an accuracy of

94.4%. In the research work by Khodadadi et al. [25], TF-IDF,
POS tagger and n-grames were employed for feature extraction

from customer service report data. Then, the Chi-Squared

method was utilized for dimension reduction. Furthermore, the

LSTM-CNN model was developed for customer service claim

validation, which classifies the claim into three types: valid,

fake or vague. If the claim is predicted as valid, a machine

learning method, namely Gradient Tree Boosting, is used to

assign the corresponding request to sixteen different service

departments.

III. PROPOSED METHOD

Fig. 1 outlines the structure of the maritime-context text

identification framework and its integration into maritime AI

models. Our approach to detecting maritime-context text is

based on ConvBERT, an enhanced variant of BERT. This

method utilizes ConvBERT to generate contextual text rep-

resentations and subsequently employs an MLP for refining
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Maritime AI Model 
Store/Repository

• ETA prediction
• Fuel consumption prediction
• Trajectory prediction
• Waiting time prediction
• Direct berthing prediction
• Hotspot prediction
• Risk evaluation and prediction

…

Provide Addi. 
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Interactions

Dialogue
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ConvBERT

• Multi-head self-attention
• Mixed-depthwise convolution
• Few-shot fine-tuning
• Imbalanced learning

Connections

Maritime-
context

Non-maritime-
context

Fig. 1. The framework of maritime-context text identification and its application in connecting maritime AI models.

ConvBERT through fine-tuning with a focal loss. After iden-

tifying inputs with maritime context from end users, further

steps are taken to establish connections with the designated

AI models in the maritime AI model store/repository.

ConvBERT [26] can effectively capture both local and

global contextual through the incorporation of convolutional

layers. It employs the fundamental Transformer unit similar

to BERT. This Transformer unit adheres to the standard

architecture initially introduced by Vaswani et al. [27]. Each
layer’s self-attention mechanism can be characterized as

Attention (𝑄,𝐾, 𝑉 ) = Softmax

(
𝑄𝐾𝑇√
𝑑𝑘

)
𝑉 , (1)

where 𝑄, 𝐾 , and 𝑉 are the query, key, and value matrices

respectively, and 𝑑𝑘 is the dimension of the key vectors.

ConvBERT introduces a mixed-depthwise convolutional

layer. The layer applies a convolution operation to the se-

quences after the multi-head attention mechanism. The con-

volutional layer can be formulated as

𝐶 (𝑥) = ReLU (𝑊 ∗ 𝑥 + 𝑏) , (2)

where 𝑥 is the input, 𝑊 is the convolutional filter, 𝑏 is the

bias, and ∗ denotes the convolution operation.

In ConvBERT, the multi-head self-attention is modified

to incorporate the grouped linear transformations, reducing

the computational cost. The modified self-attention can be

represented as

G-Attention (𝑄,𝐾, 𝑉 ) = Concat
(
head1,⋯ , head𝑔

)
𝑊 𝑂, (3)

and

head𝑖 = Attention
(
𝑄𝑊

𝑄

𝑖
,𝐾𝑊 𝐾

𝑖
, 𝑉 𝑊 𝑉

𝑖

)
. (4)

Like BERT, ConvBERT is pre-trained using a Masked Lan-

guage Model (MLM) objective, which can be formulated as

𝐿MLM = −
∑
𝑖∈𝑀

log𝑃
(
𝑤𝑖|𝑤−𝑖; Θ𝐶𝑜𝑛𝑣𝐵𝐸𝑅𝑇

)
, (5)

where 𝑀 is the set of masked indices, 𝑤𝑖 is the masked

word, 𝑤−𝑖 is the context, and Θ𝐶𝑜𝑛𝑣𝐵𝐸𝑅𝑇 represents the model

parameters.

Given a sequence of tokens represented as a series of tuples,

denoted as

𝑋 =
{
𝑥𝑡 | 𝑡 = 1, 2,⋯ , 𝑛

}
, (6)

this sequence 𝑋 is input into the pre-trained ConvBERT model

to obtain its vector representation, which is formulated as

𝑦𝑟𝑒𝑝 = 𝑓𝐶𝑜𝑛𝑣𝐵𝐸𝑅𝑇
(
𝑋; Θ𝐶𝑜𝑛𝑣𝐵𝐸𝑅𝑇

)
, (7)

where 𝑓𝐶𝑜𝑛𝑣𝐵𝐸𝑅𝑇 signifies the ConvBERT model that has

been pre-trained. Following that, 𝑦𝑝𝑟𝑒 is connected to an MLP

block, as represented by

𝑦𝑀𝐿𝑃 = 𝑓𝑀𝐿𝑃

(
𝑦𝑝𝑟𝑒; Θ𝑀𝐿𝑃

)
, (8)

where 𝑓𝑀𝐿𝑃 signifies the MLP classifier constructed, and

Θ𝑀𝐿𝑃 stands the parameters of MLP. A Sigmoid activate

function (𝑓𝑆𝑖𝑔𝑚𝑜𝑖𝑑) is then appended to predict the probability,

as shown by

𝑦𝑜𝑢𝑝 = 𝑓𝑆𝑖𝑔𝑚𝑜𝑖𝑑
(
𝑦𝑀𝐿𝑃

)
. (9)

The Focal loss is employed as the loss function for optimiza-

tion, which is formulated as

 = −𝛼
(
1 − 𝑦𝑜𝑢𝑝

)𝛾
𝑙𝑜𝑔

(
𝑦𝑜𝑢𝑝

)
, (10)

where 𝛼 is a weighting factor and 𝛾 is the focusing parameter.

The objective of network training is to learn the parameters

of ConvBERT and MLP over the training data by minimizing

the loss function, as indicated by(
Θ𝐶𝑜𝑛𝑣𝐵𝐸𝑅𝑇 ,Θ𝑀𝐿𝑃

)
= argmin

Θ𝐶𝑜𝑛𝑣𝐵𝐸𝑅𝑇 ,Θ𝑀𝐿𝑃

. (11)

In a similar way to the basic deep neural network training [28],

the optimal parameters Θ𝐶𝑜𝑛𝑣𝐵𝐸𝑅𝑇 and Θ𝑀𝐿𝑃 are obtained

by a widely-used back-propagation algorithm with an Adam

optimizer.

IV. EXPERIMENTS AND EVALUATION

A. Dataset
The dataset in this study is sourced from two segments:

a publicly available open-access dataset and data we gath-

ered independently. For positive instances (maritime-related

queries), we initially compiled 525 queries, which expanded

to 38,885 samples after applying data augmentation techniques
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like synonym replacement, Round-Trip Translation (RTT), ran-

dom swap, and introducing spell/keyboard errors. The negative

instances (non-maritime-related queries) were derived from

Google’s Natural Questions dataset1, encompassing 50,550

queries from various domains. The dataset exhibits a slight

imbalance with a ratio of 1.3. Examples of queries from

both positive (maritime-related) and negative (non-maritime-

related) categories are illustrated in Fig. 2 for clarity.

(a) Positive samples (maritime-related)

(b) Negative samples (non-maritime-related)

Fig. 2. Examples of positive and negative samples.

B. Experimental Settings
We developed our model using Python and TensorFlow,

and executed all tests on a system outfitted with an Intel(R)

Xeon(R) Gold 6248 CPU, which runs at 2.50GHz, com-

plemented by an NVIDIA Tesla V100 GPU with 32GB of

memory. In terms of dataset division, we adhered to a training-

validation-test split of 70%, 20%, and 10%, respectively.

C. Evaluation Metrics
To assess our model’s effectiveness, we utilize various met-

rics including accuracy, precision, recall, F1-score, Matthews

Correlation Coefficient (MCC), and the Area Under the Re-

ceiver Operating Characteristic (ROC) Curve (AUC). The

ROC curve is derived from the True Positive Rate (TPR) and

False Positive Rate (FPR), which are defined as

𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (12)

and

𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
. (13)

Additionally, the other five evaluation metrics are defined as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, (14)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (15)

1https://ai.google.com/research/NaturalQuestions

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (16)

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
, (17)

and

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√
(𝑇𝑃 + 𝐹𝑃 ) (𝑇𝑃 + 𝐹𝑁) (𝑇𝑁 + 𝐹𝑃 ) (𝑇𝑁 + 𝐹𝑁)

,

(18)

where TP, FP, FN, and TN represent true positive, false

positive, false negative, and true negative, respectively.

D. Results and Analyses
The performance of our proposed model on maritime-

context text identification has been presented in Table I. Our

method obtained a high and reliable performance on the test

data. The F1-score, accuracy, precision, recall, MCC and

AUC achieve high rates at 99.97%, 99.97%, 99.95%, 99.99%,

99.94% and 99.99%, respectively. The results are promising

and encouraging. The standard BERT can achieve a very

competitive performance to the ConvBERT we utilized. How-

ever, ConvBERT requires fewer computational resources than

BERT, as demonstrated in Figure 3, making it an advantage.

ConvBERT reduces 52.93% (i.e., 630 s v.s. 1339 s) the training

time, as it is a lightweight neural network with much less

parameters (i.e., 1.75 × 107 v.s. 10.95 × 107) than BERT.

Furthermore, five deep learning models, including Encode-

Decoder LSTM, Bidirectional Gated Recurrent Unit (BiGRU)-

CNN, Attention Bidirectional LSTM (BiLSTM), and Temporal

Convolutional Network (TCN) are constructed to compare

with ConvBERT. For all of the deep learning methods, the

input texts are first represented by a spare word embedding

technique, namely the Global Vectors for Word Representation

(GloVe), and then feed into the deep learning model for

training and inference. Table I gives the comparison regarding

the performance. The deep learning model with the spare

word representation technique cannot outperform the BERT

and ConvBERT, as BERT and ConvBERT are pre-trained

on large corpora of text data which is better for Contextual

Understanding. TCN performs the best among the deep learn-

ing models in the task of maritime-context text identification,

with a high F1-score of 0.9705. ConvBERT surpasses it by at

least 2.92% in terms of F1-score. Encode-Decoder LSTM and

BiGRU-CNN perform the worst, obtaining inferior F1-scores

of 0.4091 and 0.7234, respectively.

The ConvBERT model incorporates the Focal loss as an

imbalanced learning strategy, and its performance is compared

with other popular imbalanced learning approaches. These

include oversampling techniques such as the Synthetic Mi-

nority Over-Sampling Technique (SMOTE) and the Adaptive

Synthetic Sampling Approach (ADASYN), as well as cost-

sensitive learning methods like class weighting. The compar-

ative results are detailed in Table II, revealing that the Focal

loss yields the best performance. In general, the cost-sensitive

learning methods demonstrate superior performance compared

to the oversampling techniques. Notably, class weighting out-

performs SMOTE [29] and ADASYN [30] by a margin of
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TABLE I
PERFORMANCE COMPARISON BETWEEN OUR METHOD AND THE BASELINE METHODS

Model F1-score Accuracy Precision Recall MCC AUC

Encoder-Decoder LSTM 0.4091 0.6649 0.8768 0.2668 0.3489 0.8570

BiGRU-CNN 0.7234 0.8064 0.9545 0.5824 0.6299 0.9270

Attention BiLSTM 0.9229 0.9344 0.9441 0.9026 0.8661 0.9816

BiLSTM-CNN 0.9269 0.9392 0.9836 0.8747 0.8792 0.9897

TCN 0.9705 0.9749 0.9917 0.9501 0.9493 0.9974

BERT 0.9996 0.9997 0.9995 0.9997 0.9993 0.9999
ConvBERT 0.9997 0.9997 0.9995 0.9999 0.9994 0.9999

TABLE II
PERFORMANCE COMPARISON BETWEEN DIFFERENT LEARNING STRATEGIES

Model F1-score Accuracy Precision Recall MCC AUC

ConvBERT + SMOTE 0.9673 0.9715 0.9939 0.9949 0.9901 0.9998

ConvBERT + ADASYN 0.9660 0.9700 0.9509 0.9997 0.9816 0.9968

ConvBERT + Class Weighting 0.9988 0.9990 0.9981 0.9996 0.9980 0.9995

ConvBERT + Focal Loss 0.9997 0.9997 0.9995 0.9999 0.9994 0.9999

at least 3.15% (0.9988 vs. 0.9673) in terms of F1-score.

Furthermore, the Focal loss surpasses them by at least 3.24%

(0.9997 vs. 0.9673) in F1-score.

V. CONCLUSIONS

This paper introduces an LLM-based approach designed

for detecting maritime-context texts. Initially, a self-collected

dataset specific to maritime content is constructed, serving

both as an experimental resource and a facilitator for future

NLP research in the maritime transportation domain. Follow-

ing this, an advanced LLM named ConvBERT is employed

to capture the representation of the text data. To classify the

text into either maritime-context or non-maritime-context, a

classifier based on a multi-layer perceptron is constructed.

Addressing the imbalanced nature of the data, the study

utilizes the Focal loss. Experimental results indicate that the

proposed approach is highly effective, achieving an impressive

F1-score and accuracy of 99.97%. Notably, ConvBERT outper-

forms BERT, demonstrating slightly better performance while

requiring less computational cost, reducing computational time

by 52.93%. Furthermore, the proposed method surpasses other

state-of-the-art deep learning models with a spare word em-

bedding technique. These promising results suggest potential

applications in the Q&A system, exhibiting the prospects of

integrating comprehensive AI models in the maritime domain.
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