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Abstract—Facial kinship verification is a task that aims to rec-
ognize biological relationships between individuals based on facial
images. Kinship verification is challenging because it requires
identifying subtle similarities between relatives. The supervised
contrastive loss applied to kinship verification generates a large
number of redundant pair-wise samples. As an improvement,
we propose a mining contrastive (MC) loss to enhance the
discriminative ability of contrastive loss through a hard sample
mining strategy which emphasizes the balance between positive
and negative samples, improving overall verification accuracy.
Compared with supervised contrastive loss, our proposed MC
loss achieves better performance on FIW dataset.

Index Terms—Kinship verification, contrastive loss, deep learn-
ing, sample mining

I. INTRODUCTION

Face kinship verification [1], [2] is a challenging domain of

computer vision. The focus of this task is to identify whether

there is a family relationship between individuals based on

pair-wise facial images, as shown in Figure 1. This task

attracts a lot of attention due to its applications in areas such

as locating missing individuals, mining social relationships,

genetic studies, and behavioral analysis [3].

With the development of deep learning, convolutional neural

networks become the main feature extraction techniques. Li

et al. [4] introduced two network structures, employing star-

shaped and hierarchical graphs respectively for relation infer-

ence. Huang et al. [5] proposed the adaptive weighted k-order

triplet metric network, a method that combines local and global

features by engaging in high-order feature interactions and

synergizing multi-layer convolutional features. This approach

effectively captures discriminative features and emphasizes

challenging negative samples, thereby enhancing performance

metrics.

In this paper, we propose a mining contrastive (MC) loss to

optimize the feature extraction network. Our MC loss function

combines hard sample mining strategy and weight balance

between positive and negative samples, effectively improving

the problem of supervised contrastive loss [6], [7] being unable

to handle sample pair redundancy. The main contributions of

this paper include: (1) we propose the mining contrastive loss

and adopt a hard sample mining strategy and weight balance

to overcome the limitations of supervised contrastive loss in

handling sample pair redundancy; and (2) better results are

achieved on FIW dataset in most relationships compared to

the supervised contrastive loss.

This work was supported by the National Natural Science Foundation of
China under Grant 62006013. (Corresponding author: Junlin Hu.)

Fig. 1. The relations include bb (brothers), ss (sisters), sibs (siblings), fs
(father-son), fd (father-daughter), ms (mother-son) and md (mother-daughter).
If two samples have a kinship, the result is positive, otherwise it is negative.

Fig. 2. The framework of our MC method.

II. METHOD

The overall framework of our MC method is illustrated

in Figure 2. The framework includes two main components:

neural network encoder and mining contrastive loss function.

A. Neural Network Encoder

The backbone model of the encoder f is ResNet18, with
a batch size N . The inputs include N pairs kinship images

(xi,yi), and the outputs consist of N pairs of feature vectors

(f(xi), f(yi)). The input images xi and yi have dimensions

of [112, 112, 3], and dimensions of the output feature vectors
f(xi) and f(yi) are 512. All N pairs of input images

are positive samples, indicating the presence of a kinship

relationship between the two individuals.

B. Mining Contrastive Loss Function

When computing the loss, the N pairs feature vectors are

combined into N positive pairs and N2−N negative pairs. We

use the supervised contrastive (SC) loss function [6] as base-

line, which has shown good performance in the facial kinship

verification task. Its formulation is expressed as follows:

L =
1

2N

N∑
i=1

(S(f(xi), f(yi)) + S(f(yi), f(xi))), (1)
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Fig. 3. Compared to supervised contrastive loss, mining contrastive loss can
first filter out invalid samples (red triangles) in the new feature space.

where S(., .) is computed by:

S(zi, zj) = − log
esim(zi,zj)/τ∑2N

k=1,k �=i e
sim(zi,zk)/τ

, (2)

in which sim(., .) represents cosine similarity between two
feature vectors, and τ is a free parameter.
Supervised contrastive loss (1) exists two issues [8]. Firstly,

it adopts a uniform weight allocation strategy to allocate equal

weights to all sample pairs, which ignores the difference in

the weight of positive and negative sample pairs and fails

to consider the actual contribution and importance of each

pair. Secondly, it lacks an effective sample mining strategy

and cannot eliminate the negative impact of invalid samples.

To address them, we propose a mining contrastive (MC)

loss. Let X = (x1,x2, ...,xN )T , Y = (y1,y2, ...,yN )T , and
M = XYT . For positive samples, we first conduct sample

mining to filter samples that satisfy the condition: Mpos−ε <
max(Mneg). Then the positive loss can be formulated as:

lpos =
1

N

1

α
log

(
1 +

N∑
i=1

e−α(Mii−λ)

)
. (3)

Similarly, for negative samples, samples that satisfy the criteria

Mneg +ε > min(Mpos) are selected, and the negative loss is:

lneg =
1

N

1

β
log

⎛
⎝1 +

N∑
i=1

N∑
j=1,i �=j

eβ(Mij−λ)

⎞
⎠ , (4)

where ε, α, β, and λ are hyperparameters.
Finally, we formulate the loss function of our MC method

over each training batch as:

LMC = lpos + lneg. (5)

Figure 3 depicts the basic ideas of supervised contrastive (SC)

loss and our mining contrastive (MC) loss.

III. EXPERIMENTS

Dataset. FIW dataset [9] comprises images from 1000

families, ensuring that each family member has at least one

TABLE I
ACCURACY (%) OF SUPERVISED CONTRASTIVE (SC) LOSS AND MINING

CONTRASTIVE (MC) LOSS ON DIFFERENT KINSHIP RELATIONS.

Method bb ss sibs fs fd ms md Mean
SC [6] 85.0 76.3 81.0 84.0 80.3 74.5 71.6 78.9
MC 86.8 77.3 83.7 86.3 79.5 75.8 74.8 80.6

photograph. This dataset provides a comprehensive reflection

of real-world facial image information. The dataset includes

seven types of relationships: bb, ss, sibs, fs, fd, ms, and md. We

select the first 2000 positive samples and the last 2000 negative

samples for each relationship as the test set. Except for the test

set, the first 200 positive samples and the last 200 negative

samples in the remaining data are selected as the validation

set. Since our model training only requires positive samples,

all remaining positive samples are used as the training set.

Before training, image preprocessing is performed, resizing

the images to 112×112 pixels and applying random cropping

and normalization. We set hyperparameters α = 0.2, β = 3.1,
λ = 1.5 and ε = 1. The default batch size is 32. We measure
the accuracy of our method using the ROC curve.

Results. The accuracies for kinship verification in different
relationships are shown in Table I. Our method achieves

an average accuracy of 80.6%. Importantly, the MC loss

outperforms supervised contrastive (SC) in the majority of

relationships, demonstrating its effectiveness.

IV. CONCLUSION

We have proposed a mining contrastive loss to consider

the mining of effective samples and the balance of positive

and negative samples. Our method achieves better results than

supervised contrastive loss on FIW dataset.
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