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Abstract—Reinforcement Learning (RL) has shown remark-
able capabilities in various domains, yet struggles in environ-
ments with sparse rewards. A significant challenge in such
environments is the exploration depth and the robustness of
performance. This paper introduces WODID framework, aiming
to enhance exploration in Model-Based Reinforcement Learning
(MBRL) without relying heavily on initial or early-stage tra-
jectory data. We identify one primary issue of the transition
model of MBRL: trained with random policy when forming
the transition model, which hinders exploration and causes high
dependency on the success of dataset collection by random policy.
By pre-training world models using diverse state data, WODID
improves the quality of the transition model, leading to deeper
exploration and stabilizing its performance. Our empirical stud-
ies, particularly in the challenging sparse reward environment:
Montezuma’s Revenge, demonstrate that WODID outperforms
the baseline methods, achieving more profound exploration with
fewer environmental steps. Furthermore, our approach offers
a human-free method to feed trajectory data, promoting less
dependency on initial samples and paving the way for more
robust and efficient RL agents.

Index Terms—artificial intelligence, reinforcement learning,
model-based reinforcement learning, neural networks

I. INTRODUCTION

Reinforcement Learning (RL) has witnessed transformative

advancements, enabling computers to achieve remarkable

feats, from mastering intricate board games like GO to

outperforming humans in multifaceted games such as DOTA

[1], [2]. At the core of RL lies the principle of learning

through interaction, whereby agents continuously adapt their

actions based on the rewards received from an environment.

Despite these celebrated successes, RL has its share of

challenges that hinder its broader applicability, especially in

complex real-world scenarios.

One of the most formidable challenges in RL is the

notorious “sparse reward” problem [3]. In many real-world

tasks, rewards are not frequently encountered, making it

challenging for the agent to discern the optimal sequence of

actions leading to the desired outcome. Imagine a scenario

where an RL agent is tasked with searching for survivors in

a disaster-stricken area. The goal is abstract: “find survivors

and report their location”. This high-level directive lacks the

step-by-step guidance an agent might need. Consequently, the

agent might explore vast areas without any feedback, making

learning slow and inefficient. Such tasks exemplify the

challenge of sparse rewards, where the reward signals are few

and far between. Furthermore, these sparse reward functions

often lead to unintended local optima, where the agent might

get stuck performing suboptimal actions believing them to be

the best [4]–[7].

The implications of sparse rewards are manifold. Firstly,

they lead to poor sample efficiency, implying that agents

require a massive amount of interaction data before they

can learn anything meaningful. This limitation is especially

detrimental in real-world applications where obtaining such

data is either expensive, time-consuming, or both. Secondly,

due to the inherent difficulty in exploring the environment

efficiently, the stableness of exploration of an agent in the

environment varies. It is significant that an agent can achieve

a stable performance regardless of the initial setting or a lucky

exploration especially when the application is in reality.

To circumvent the sample efficiency problem, researchers

have turned to Model-Based Reinforcement Learning

(MBRL). Unlike its model-free counterpart, which learns

purely from trial and error, MBRL leverages “World Models”

[8]–[10] that capture and generalize the dynamics of the

environment.

These models, which often learn compact representations of

sensory, can predict the outcomes of potential actions, thereby

enabling more informed planning. By capturing essential

characteristics of the environment, world models have proven

effective in tasks ranging from virtual environments like

Minecraft [11] and Crafter [12] to real-world robotic tasks

[13]. While MBRL has made strides in addressing the sample

efficiency problem, it introduces its own set of challenges.

A pivotal concern is the deviation of the transition model

from real-world transitions, which can lead to policies that,

although optimal in the model, perform poorly in the actual

environment. Also, since the training data of world models

are dependent on its RL agent, the stability problem remains

in MBRL too.

In light of these challenges, this paper introduces WOrld

Model pretrained with DIverse Data (WODID), a novel ap-
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proach that harnesses the power of state data to pre-train world

models in MBRL. Our primary aim is to enhance the depth of

exploration and stabilize it, thereby addressing the challenges

posed by sparse rewards and model inaccuracies. Through

WODID, we hope to bridge the gap between theoretical RL

successes and its practical, real-world applications.

The key Contributions of this paper are summarized as

follows:

• Enhanced Exploration: We propose methods that signif-

icantly improve exploration in the RL domain, ensuring

agents can effectively navigate environments, especially

those with sparse rewards.

• Reduced Dependency on Prefills: The performance of

traditional MBRL methods heavily relies on initial prefills

under random policy. Our approach minimizes this depen-

dency, paving the way for more adaptive and resilient RL

agents.

• Human-free Training Approach: Recognizing the chal-

lenges in preparing expert data, we introduce a new

training paradigm that is both human-free and efficient.

This method not only simplifies the training process but

also boosts both exploration and its stability.

• Framework-Centric Advancement: While algorithmic in-

novations are abundant in the field of RL, our work

uniquely emphasizes the overarching framework. We

believe that robust frameworks can amplify the benefits of

even simple algorithms, leading to some notable results.

In this paper, we introduce related research in Section II.

Section III introduce the core research to our work. Section IV

discusses how our system is built and more detail about how

the data is collected and used. we also present the application

of MBRL to our system. Section V sets up the metrics to see

the performance of our system and the comparison with the

baseline. We also introduce setups for hyperparameters and

environmental setups in the section.

II. RELATED WORK

In this section, we introduce research works on three

main topics: the World Model in MBRL, curiosity and

intrinsic motivations, and the application of expert data.

We first introduce the background of world models and

their challenges, especially with their exploration and stable

results. Then, we introduce intrinsic motivation which is

one of the dominant approaches for exploring rare states in

an environment and hence it is a critical topic for finding

unseen/not-so-much-seen state trajectories. The application of

expert data in RL is a widely used approach for improving

the policy of RL. We think it is important to present the

application of data as our work also employs datasets not

collected from the RL in MBRL. The MBRL is using an

internal model to train its RL agent instead of the actual

environments. The internal model is widely called the “World

Model” and it is the model that we want to enhance its

representation of transitions.

World Models in MBRL One of the pivotal advances in the

RL domain has been the integration of world models in MBRL

[8], [10]. Distinct from the traditional model-free methods that

predominantly rely on trial and error, MBRL leverages internal

representations of the environment to anticipate outcomes of

potential actions. These representations, commonly termed

“World Models”, are pivotal in enabling agents to generalize

across varied scenarios. Notably, these world models have

found applicability in diverse environments ranging from

virtual realms like Minecraft [11] to real-world robotic

challenges [13]. Nevertheless, challenges persist. The fidelity

of these world models is paramount; even slight deviations

from real-world dynamics can render derived policies

ineffective to explore deeply and perform stably, highlighted

by prior works [8], [9], [14]–[18] and these problems should

be solved in order to apply MBRL in more complicated

real-world tasks.

Curiosity and Intrinsic Motivation Approach Beyond

world models and expert data, there has been a burgeoning

interest in endowing RL agents with intrinsic motivations to

bolster exploration [3], [19]–[23], especially in sparse reward

settings. One such approach is the integration of curiosity-

driven mechanisms [24], [25]. By fostering an intrinsic

desire to explore unfamiliar states or actions, agents can

navigate environments more effectively, even in the absence

of frequent external rewards. This approach is particularly

pertinent in challenging real-world problems characterized

by hard-exploration settings, where traditional reward signals

might be insufficient to guide effective learning. However, the

“detachment” and “derailment” problems [26] hinder Intrinsic

Motivation approaches from further investigating states worth

exploring, resulting in some states and their transitions being

unable to be discovered.

Application of Expert Data in RL The realm of RL

has also seen a surge in methods that employ expert data.

Traditionally, RL methods, especially in complex scenarios,

have benefited from expert-guided trajectories, aiding agents

in navigating environments more effectively and with higher

stability of performance [27]–[31]. One notable approach

is Behavior Cloning [32]. Although it is a classic approach

in the field of utilizing demonstration, the applications vary

from complicated games such as Minecraft to computer

control [33], [34]. GAIL [35] is an approach to model

reward by discriminating expert trajectories from agents’

trajectories. Such discrimination method (discriminator) is

further extended to masking action from the trajectories

[36], [37]. Expert data are also used to annotate datasets.

MineDojo [38] and VPT [33] add information of action based

on external information to the existing dataset. However,

preparing the expert data can be cumbersome and demanding

especially when it is human data. Also, reliance on expert

data may improve the policy of an agent in RL but it

does not necessarily broaden the diversity and adaptability

of the transition model, limiting the policy of the agent

only to specific situations and not to further improve its
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policy. Moreover, though some approaches are learning from

demonstration to benefit its action or reward, not many works

focus on improving the transition model of MBRL to stabilize

the performance.

III. PRELIMINARIES

Here, we demonstrate core algorithms to the framework of

WODID. we first briefly explain the state-of-the-art (SOTA)

algorithms in hard exploration, Go-Explore [26]. It is critical

to have a mechanism to collect useful state data for training

the transition model of WODID and Go-Explore provides a

hint for such data collection. In Section III-B, we summarize

the Recurrent State Space Model (RSSM), the World Model

mechanism of the Dreamer series. The MBRL part of our

architecture is based on RSSM and hence it is crucial to

understand RSSM in order to understand our system.

A. Go-Explore

Deep exploration, especially in sparse reward environments,

necessitates innovative techniques. Here, we integrate the Go-

Explore architecture, which is unique for its architecture mem-

orizing states ripe for exploration and subsequently returning

to these promising states.

To collect important state transitions that can refine the

transition model within MBRL, we leverage the Go-Explore

architecture. This architecture utilizes memorizing promising

states and its transitions to resolve detachment (prioritizing

easier access to intrinsic rewards that hinder intrinsic rewards

in deeper exploration) and derailment (not being able to return

to a promising state) problems in sparse reward environments.

The promising states and its sequence of transitions are

saved in the system called “Archive” where the states are

downsampled and called cells. The cell selection in Go-

Explore plays a crucial role in determining states considered

as “important”. This selection uses a heuristic approach

to score the importance of each state. Cells are chosen at

each iteration by first assigning them a score, which is then

normalized across all cells in the Archive, determining the

probability of each cell being selected. The score of a cell is

the cumulative sum of separate subscores. A significant set of

these subscores termed the count subscores, are derived from

attributes representing the frequency of interactions with a

cell. These interactions include the number of times a cell has

been chosen, the number of times a cell was visited during

the exploration phase, and the number of times a cell has

been selected since its last productive exploration. For each

of these attributes, a lower count typically indicates a more

promising cell to explore from.

CellScore(c, a) = wa ·
(

1

v(c, a) + ε1

)pa

+ ε2 (1)

In the equation, c represents the specific cell for which

we’re determining the score. The function v(c, a) provides

the value of the attribute associated with cell c. Each attribute

a has an associated weight, denoted as wa, and a power

hyperparameter, represented as pa. Also, ε1 and ε2 are

hyperparameters set as 0.001 and 0.00001 respectively in

Go-Explore.

B. RSSM

High-dimensional environments, especially those with

image inputs, present unique challenges to MBRL. To

navigate these, some state-of-the-art MBRL models employ

the Recurrent State Space Model(RSSM) [9] as its world

model system. The RSSM, with its ability to predict

using compact model states, stands out as a formidable

tool for planning [14], [39]. Unlike traditional prediction

methods in image space, RSSM facilitates efficient parallel

planning. This not only allows handling large batch sizes

but also minimizes accumulating errors [40]. The following

components formulate RSSM:

Encoder: et = encφ(xt)

Posterior: qφ(st|st−1, at−1, et)

Dynamics: pφ(st|st−1, at−1)

Image Decoder: pφ(xt|st)

(2)

The Encoder and The Image Decoder leverage the prowess

of convolutional neural networks (CNNs). Encoder (encφ)

represents encoding the image input xt. Image Decoder (pφ)

plays as a generative model of input xt given st which is

the latent variable of state at time step t. st also composes

a deterministic component that uses the recurrent state of a

Gated Recurrent Unit (GRU) [41]. The two functions Encoder

and Decoder work to reduce the dimension of inputs and

make it able to generate the next input.

The Posterior (qφ) and the Dynamics (pφ) are the models

that utilize the latent variable of previous input st−1 and

the previous action at−1 to generate the next latent variable

st. During the training, the Dynamics is trained under the

Posterior. Instead of the Posterior, the Dynamics model is

used as the transition model of the agent since the Posterior

takes et as input which goes against the POMDP. The training

is formulated using multi-layer perceptrons. An end-to-end

training paradigm is adopted, optimizing the evidence lower

bound using stochastic backpropagation [42], [43] with the

assistance of the Adam optimizer [44].

IV. METHOD

Deep exploration in MBRL has garnered significant at-

tention due to the potential rewards it promises. However,

this is not without its challenges. A central issue lies in the

collection of trajectories rich in diverse state transitions, which

in turn can fortify the transition model intrinsic to MBRL. This

paper presents a novel method, termed the WODID, tailored

to address this very challenge. In this section, we first state

the problem of the transition model in MBRL and illustrate
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Fig. 1. The overview of WODID. The world model takes the trajectory data from the Archive that saves the trajectory (state, reward, action) of different
states to train itself. The agent in the world model learns its policy from trajectories of compact representations predicted by the world model.

the design concept of our work. After that, we present what

is needed for the desired MBRL. Then, we define how our

system can overcome the presented issue and how WODID is

composed. Section IV-C discusses the dataset size required for

the pretraining data of WODID. Lastly, in Section IV-D we

note the application of WODID in terms of MBRL to clarify

how the WODID may be used for various scenes.

A. Design Concept

Before introducing WODID, we would like to state how

Basic MBRLs are structured and identify what limitations they

have. The following are the training process of MBRL:

1) Collect N steps of the trajectory of states (s, a, r) in the

real environment.

2) Use the collected trajectories to train the transition

model.

3) Use the transition model as an environment for an agent

to update its policy.

From the structure of this MBRL, there are two main

shortages: random sampling and the quality of representation

of the transition model.

Random Sampling: MBRLs without specific usage of

demonstration data are normally trained with random policy

when first forming the transition model in MBRL. This is

because there are no trained policies to be used to collect

the dataset for training the transition model at the beginning.

However, such a pretraining method for the transition

model may be highly dependent on the dataset collected.

Training the transition model with random policy in the hard

exploration environment with various transitions can lead

to transitions not as realistic as the real environment. The

random policy lacks deep exploration which is necessary to

discover new states (transitions) and thus can feed deficient

kinds of state transitions to the transition model. An agent

learning the wrong sequence of transitions will make the

learned policy hardly applicable in the real world. The policy

will fail to explore enough in the real environment and end

up with another poor transition model and policy. In addition,

although there may be some chance that random exploration

may succeed, it is very unlikely in hard-exploration tasks and

the succeeded result is hardly reproducible. In other words,

such MBRLs have high variance in results which is not the

agent we desire.

The Quality of Representation: Unlike Model-Free

Reinforcement Learning (MFRL) MBRL trains its policy

in the learned transition model as its nature. Although the

nature enables MBRL to do the planning, it also forces the

success of learning policies in the transition model dependent

on the quality of representation. Indeed, MBRL in the real

environment where it is under few transitions such as GO,

shogi, and chess has superhuman achievement [27] whereas

in the environments where they have diverse and complicated

transitions even SOTA MBRL models cannot beat average

human score [17], [45]. These contrasting results demonstrate

the representation of the transition model plays a key role in

MBRL.

Criteria for better Transition Model: For MBRL to

achieve profound exploration, the transition model’s accuracy

is paramount. It is this accuracy that dictates the quality of

policy learning. Consequently, we posit that feeding the model

with pivotal states enhances its accuracy. But what constitutes

a “better transition model”? By our definition, it is a model

that predicts transitions with heightened accuracy. Given

that transition models learn from collected state trajectories,

initial stages of training often grapple with unseen or rarely

observed state transitions. Although certain transitions can

be generalized from the trained data, a model necessitates a

threshold volume of data for effective generalization.

To counteract this, we emphasize training with infrequently

observed state transitions. The “Archive” in Go-Explore proves

invaluable here. It not only retains rarely observed states but

also their associated sequences of trajectory, ensuring that our

transition model can be both comprehensive and robust.
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B. WODID

In the previous section, we clarify the two drawbacks of

MBRL: random sampling and the quality of representation

of the transition model. To overcome these challenges, our

approach hinges on two foundational principles: the strategic

collection of a dataset and the subsequent pretraining of

a world model. The dataset is meticulously curated, with

states archived over the course of interactions. Unlike con-

ventional methods that rely on random trajectory collections,

our archive-driven method ensures a richer variety of states and

associated trajectories. Such a dataset, by virtue of its diversity,

equips the transition model to encapsulate a broader spectrum

of state transitions. Fig.1. is the overview of our system where

the left-hand side represents the pretraining process and the

right-hand side shows the MBRL structure.

The pretraining phase of our transition model in MBRL is

transformative. Instead of the ubiquitous random prefill, which

is contingent on a random policy for dataset collection and

widely used in general MBRL, we employ the Archive for

the prefill collection. This ensures that the model remains

immune to the exploration tendencies of a random policy,

thereby enhancing the quality of the transition model with

more robustness.

The number of steps to run in Go-Explore (iterations) is

denoted as N stated in Fig.1. Then, a dataset is created from

the Archive. It is constituted by the trajectory of states -

sequences of state, reward, and action referred to as s, a, and

r respectively.

In WODID, it saves “important” states in the Archive for

N steps shown in the left-hand side of Figure 1. We employ

“Go-Explore” to run it. At each step, the algorithm first selects

a state s saved in the Archive and goes to the state selected.

The agent then explores randomly from the selected state s and

the destination state s′ will be updated to the Archive. Then,

we modify the Archive after N steps to a dataset depicted

in the middle of Figure 1. This modification depends on what

MBRL is used in WODID but the common dataset D contains

sequences of state sn, action an, and reward rn. On the right-

hand side of the figure, it represents the pre-training phase of

MBRL to construct its transition model and the MBRL used

in WODID follows the original cycle of its algorithm.

C. Dataset size for pretraining

Deciding the dataset size is difficult since there are no

benchmarks for the size. However, there are some heuristic

ideas for the requirements. Here we set two conditions for de-

termining the size of the dataset needed to meet the following

rule:

1) Hold more than enough trajectory of states to improve

the transition model of MBRL.

2) The total steps of states in Archive are equivalent to the

steps the original MBRL collects using random policy.

Since 1 is dependent on tasks an agent is in and 2 is depen-

dent on hyperparameter, we make a heuristic determination for

deciding the dataset size to fulfill both 1 and 2 according to

the task we use. The detail of heuristic determination is stated

in Section V-B.

D. Application on MBRL

Since our framework focuses on the collection of useful data

for MBRL and the dataset is used for training the transition

model of MBRL, WODID applies to all MBRLs that follow

the steps in Section IV-A. MBRLs require further modification

when there are system changes in 2) and 3). WODID acts as an

external dataset supplier to 1) and therefore the modifications

in the algorithms of MBRL are very few. Such a simple-

to-apply system to MBRL for its further improvement in

exploration and narrowing down the variance can play an

easy option for both research and industries to apply on their

system.

V. EVALUATION

Our evaluation focuses on the following questions.

1) Does WODID have a more stable transition model?

2) Is WODID able to do deeper exploration in a sparse

reward environment?

To evaluate these research questions, we first set the condition

of environments and the hyperparameters.

A. Environment

We evaluate WODID on a hard-exploration benchmark

from Arcade Learning Environment (ALE) [27], [46]:

Montezuma’s Revenge. It is necessary for an algorithm to

make correct sequences of more than tens of actions in

order to receive rewards in Montezuma’s Revenge. The

requirements of these actions make Montezuma’s Revenge a

hard exploration task and a crucial benchmark for evaluating

how deep an algorithm can explore.

Evaluating in a Deterministic Setup: The Atari envi-

ronment, particularly Montezuma’s Revenge, operates under

deterministic state transitions. The actions and states are

predictably interlinked, ensuring the absence of randomness

in transitions. While such an environment simplifies our

evaluation, it’s worth noting that evaluating in stochastic

environments would necessitate a different approach. The

task of determining the importance of states would become

multifaceted.

B. Experimental Setup

Type of Go-Explore: To collect the dataset pretraining the

transition model in WODID, we employ Go-Explore without

domain knowledge and goal-conditioned reinforcement

learning [47]. Although Go-Explore with demonstration

and restore system is the one that achieved a superhuman

score in Montezuma’s Revenge the model we run uses

goal-conditioned reinforcement learning to go to the state

selected from the Archive. We used this Go-Explore because

we wanted to eliminate human intervention in the framework

of WODID so that it can be a human-free system.
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Dataset size for the experiment: As presented in Section

IV-C, we take a heuristic approach to determining the size

of the dataset feeding to MBRL in WODID. To fulfill the

conditions we set in 1 and 2 in Section IV-C, we decided to

run Go-Explore 10 million (M) steps in Montezuma’s Revenge

to collect various states in the Archive. This Archive has the

highest score of 500, the mean score is around 300, and there

are 198 kinds of trajectory of states. We selected this size of

Archive for 2 reasons. The first reason is that the total steps

of trajectories in the Archive are equivalent to the number of

randomly sampled steps from the baseline (Dreamer V2 [18]

prefills 50,000 steps). We want to equalize these steps so that

we can merely compare the differences between the dataset

from the Archive and the dataset from random prefill. Another

reason is that heuristically there are sufficient transitions in

the Archive considering the highest score and average score

it has scored. An agent can score 100, 300, and 100 (sum to

500) in the first few rooms. Transitions in those rooms are

composed of dying from touching skulls, dying from jumping

from a certain height, climbing ladders, etc. Many transitions

in Montezuma’s Revenge are variants of the transitions seen

in the early rooms. Thus, learning various transitions from the

first few rooms not only be useful to improve the quality of

representation in the transition model in the early rooms but

may also be helpful to represent the transitions in later rooms.

Also, from a score perspective, since the Archive after 10M

steps has reached to score of 500 and the average is around

300, meaning the agent has some experiences and exploration

after reaching the score of 500, the dataset seems to satisfy

the conditions.

Overall, our size of the dataset set to fulfill both conditions

1 and 2 and thus we used the Archive after 10M environmental

steps.

Model Configuration For the MBRL configuration within

WODID, we intentionally employed the Dreamer V2 algo-

rithm. It is a SOTA MBRL algorithm in Atari and we used

it to see whether WODID is capable of overtaking it. For the

hyperparameters of WODID, we kept the same parameters for

the sake of mere comparison with the baseline in exploration

and the consistency of exploration. Furthermore, a variance

of actor-critic-based RL [48], [49] algorithm that is used in

Dreamer V2 is also used in WODID to keep the condition of

MBRL identical.

C. Metrics

To answer the stated research questions, our evaluation

hinges on two main metrics:

Average Results: We use this metric to assess research

question 1. This metric acts as a beacon of the RL agent’s

exploration prowess within the transition model, as it offers

insights into the model’s effectiveness in terms of the resilience

of the algorithms in exploration. We compare this metric under

reward gain, variance, and standard deviation for both WODID

and the baseline to evaluate their stability.

Average Environmental Steps: To answer research ques-

tion 2, we used Average Environmental Steps as its metric.

TABLE I
COMPARISON OF RESULTS BETWEEN WODID AND THE BASELINE

Avg Reward Steps to 2500 Variance SD

baseline 1080 4̃,000,000 1,707,000 1306

WODID 2080 6̃,000,000 882,000 939

This metric elucidates the model’s exploration capabilities and

also serves as a reflection of the transition model’s represen-

tational quality. Since the RL algorithm between our model

and the baseline are the same, the number of environmental

steps can be a reflection of the quality of the transition

model in both architectures. In this metric, we compare the

succeeding experiment with our work and the baseline to

evaluate the effect of using the pretraining data under our

collection mechanism.

D. Results

Average Results As we stated in the metrics, we use aver-

age results to evaluate research question 1. Our comparison

of WODID against baseline algorithms averaged over five

experiments, confirmed WODID’s dominance over Dreamer

V2 in Table 1 showing the statistics of the results. The

numbers speak for themselves: WODID registered a mean

score of 2080, dwarfing Dreamer V2’s 1080 — more than 90%
performance enhancement. This data doesn’t just highlight

numbers but narrates a story of WODID’s unmatched ability

to enable the Dreamer V2 agent to navigate deeper states with

an unparalleled level of stability. The Variance and Standard

Deviation (SD) WODID are nearly 50% and 66% of the

baseline respectively also displaying the robustness of policy

learning in WODID. Furthermore, Figure 2 and Figure 3

show 5 runs of WODID and the baseline in different seeds

where the y-axis is the number of reward gains and the x-

axis is the number of environmental steps taken. 4 out of 5

experiments of WODID are able to reach a reward of 2500

whereas only 2 of the baseline experiments were able to reach

it and 2 experiments are unable to receive rewards, showing

an unstable performance.

These results illustrate that our proposed model, WODID

can not only improve the world model to be able to fasten

the deep exploration but also improve the Dreamer V2 to

have more stable results with a human-free dataset.

Average Environmental Steps Answering research question

2, the evaluation is shown in the reward gain of WODID in

Montezuma’s Revenge over environmental steps in Figure

4. In the comparison of reward gain over the environmental

steps, our findings paint a compelling picture. WODID, in

its performance, surpassed the benchmarks set by Dreamer

V2. Specifically, WODID achieved a reward of 2500 on

average at around 40M steps, contrasting with Dreamer V2’s

performance, which clocked in at around 60M steps. The

result shows that WODID requires only 66% environmental

steps to reach its highest score, meaning its transition

model is more representative and allows the agent to do

deeper exploration. Additionally, WODID still requires fewer
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Fig. 2. 5 experiments of WODID in Montezuma’s Revenge. The y-axis is
the gained reward and the x-axis is the number of environmental steps.

Fig. 3. 5 experiments of the baseline in Montezuma’s Revenge.

environmental steps to achieve a reward of 2500 even if we

count 10M environmental steps from the preparation of the

pretraining dataset (50M in total) although WODID is not

fully trained with all transitions of 10M exploration from

Go-Explore.

Our evaluation stands as a testament to WODID’s

potential to explore deep with higher stability, especially

when benchmarked against stalwarts like Dreamer V2.

The empirical data, gleaned from our rigorous testing,

underscores WODID’s promise as an innovative approach,

especially potent in environments like Montezuma’s Revenge,

characterized by their sparse rewards and demands for

accurate transition to explore deeply. The results, in their

clarity and depth, validate our hypotheses and lay a strong

foundation for future explorations in this domain.

VI. CONCLUSION

In this research endeavor, we introduced WODID, a model-

based reinforcement learning approach, distinguished by its

unique pretraining framework for the transition model. To

actualize this, we delineated the features of importance within

a transition model and subsequently architected a framework

tailored to accrue such pivotal data. The empirical outcomes

reaffirmed the potential of WODID, showcasing a marked

improvement over the established Dreamer V2 algorithm.

Fig. 4. Comparison of WODID and the baseline in terms of required
environmental steps for exploring and performing in Montezuma’s Revenge.
Results are smoothed.

However, every research endeavor has its constraints, and

ours is no exception. A notable limitation of WODID is its

singular data collection paradigm. The one-dimensional data

collection approach, while effective, offers a ripe avenue for

further enhancement. Moreover, our current methodology is

underpinned by a specific definition of “important” data and

its acquisition mechanism. An enticing direction for future

research is to broaden this scope. By generalizing the concept

of “important data” for transition models in model-based re-

inforcement learning, it can potentially create a more versatile

framework that isn’t bound by the constraints of specific data

types or environments such as stochastic environments.

In sum, while WODID stands as a testament to the potential

of targeted pretraining in model-based reinforcement learning,

the horizon ahead is replete with opportunities for further

refinement and innovation. We are optimistic that the insights

gleaned from this research will catalyze future endeavors in

the realm of reinforcement learning.
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