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Abstract— The use of Machine Learning (ML) algorithms 
for predictive modeling to monitor transmission rates of dengue 
has gained significant attention worldwide. Earlier research has 
focused on specific weather variables and algorithms, there is a 
significant demand for models incorporating a wide range of 
variables and algorithms for superior performance. This study 
aims to predict transmission rates of dengue at the ward level in 
National Capital Territory (NCT) Delhi, India using different 
ML models. Data regarding incidence of dengue along with 
population and meteorological data as predictors during the 
period 2015-2022 have been used. The incidence data of dengue 
and population data have been collected from the Municipal 
Corporation Delhi (MCD) and Census of India, respectively. 
Meteorological data consisting of 20 parameters has been 
downloaded from NASA POWER. Five ML algorithms, 
including an ensemble approach, have been trained and 
validated. Comparative assessments using the Receiver 
Operating Characteristic (ROC) with the Area Under the Curve 
(AUC), accuracy, and F1 score have been carried out. It has 
been found that the accuracy of ensemble ML methods, such as 
Gradient Boosting, and Random Forest outperformed other 
models, such as Logistic Regression, Decision Tree, and Support 
Vector Machine. A correlation coefficient (r) of 0.40 has been 
used to evaluate the influence of meteorological variables on 
dengue transmission. Variables that exceed this threshold are 
considered to make a significant contribution to the 
transmission of dengue. Variable importance analysis shows 
significant contribution of Surface Soil Wetness (r= 0.48), 
Relative Humidity at 2 Meters (r= 0.45), Precipitation (r= 0.42), 
Wind Direction at 2 Meters (r= -0.54), Wind Direction at 10 
Meters (r= -0.53), Temperature at 2 Meters (r= -0.47), and Earth 
Skin Temperature (r= -0.46). This study provides an excellent 
basis for future research, notably on dengue transmission 
modeling in dense urban environments and early warning 
systems using predictive models. This study provides insight on 
how ML algorithms may forecast dengue transmission rates and 
emphasizes the need to examine a variety of variables for model 
success.  

Keywords— Machine Learning, Dengue, Predictive Modeling, 
Remote Sensing, NASA POWER, Ensemble Approach  

I. INTRODUCTION 

In recent years, the utilization of Machine Learning (ML) 
algorithms has emerged as a pivotal tool in public health, 
particularly in the predictive modelling of infectious 
diseases[1], [2]. Dengue is one of the mosquito-borne viral 

infectious disease which poses a significant threat to global 
health[3], [4]. Thus, researchers are encouraged to monitor its 
various factors related to it occurrence and transmission rates. 
Occurrence of dengue and its transmission is mostly governed 
by the meteorological factors which provides favourable 
conditions for development and growth of dengue vectors[5]–
[7]. While high temperatures and humidity may provide 
favourable conditions for the growth and survival of mosquito 
eggs, heavy rains provide new mosquito breeding 
locations[8]. Temperature and precipitation have been found 
to be positively linked with dengue occurrences in the 
majority of investigations[9]–[12]. Patil and Pandya [13] 
found that mean minimum temperature and rainfall are 
moderately significant, while mean wind speed is the least 
significant component and is marginally negatively correlated  
with dengue occurrences[13]. Earlier studies have 
predominantly focused on a limited set of meteorological 
variables, specifically temperature, precipitation, and 
humidity. It is observed that these variables are correlated 
amongst themselves, so the transmission of dengue is 
influenced by a combination of environmental, ecological, 
and human factors. Further, other factors such as urbanization, 
population density, and public health interventions also 
contribute significantly to the spread of dengue. Thus, there is 
a need to study the role of the additional factors in relation to 
the occurrence of dengue. 

Another important observation is that the  current trend of 
predictive modelling techniques in dengue involves the 
utilization of predominantly single ML-based models for 
dengue modelling[1], [12], [14]. As large variety of models 
are applied in dengue-related studies, many researchers felt 
that a single modelling technique might not be reliable. Thus, 
several studies compared the performance of different models 
to predict dengue outbreaks.  

A study in Manila by Carvajal et al., [15] compared ML 
models using 5-year dengue data and climatic variables as 
predictor. Four different ML techniques, namely Generalized 
Additive Model (GAM), Seasonal Auto Regressive Integrated 
Moving Average with eXogenous factors (SARIMAX), 
Random Forest (RF) and Gradient Boosting Model (GBM) 
have been used. It was found that RF shows best performance 
with Mean Absolute Error (MAE), of (0.23, followed by GBM 
(0.24). Similar performance of RF was found and assessed by 
Zhao et al., [16] who compared RF and Artificial Neural 
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Network (ANN) to predict dengue burden, in Colombia, at 
national and local scales. It was concluded that using Mean 
Absolute Error (MAE), RF (0.86) performed slightly better 
than ANN (0.95) and provided better result at the national 
scale. Patil and Pandya [13] compared RF, Decision Tree 
(DT), Support Vector Regression (SVR), and Logistic 
Regression for 9 cities in Maharashtra, India. The study 
concluded that the RF regression is the best-fit regression 
model working on five out of nine cities[13]. Thus, in order  
to  advance the field of predictive modelling in dengue studies, 
it is essential to conduct a thorough comparative assessment 
of model performance of different models. This may lead to 
development of a more comprehensive framework for models 
that encompass a broader spectrum of variables, aiming for 
superior predictive capabilities.  

The present study aims to contribute to the predictive 
modelling by forecasting transmission rates of dengue at the 
ward level in the NCT Delhi, India. The geographical 
specificity of this study adds granularity towards 
understanding of disease dynamics at fine scale. Additionally, 
the study aims to identify the least optimal scale or 
administrative level that would enhance prediction accuracy. 
This study also employs various ML models, recognizing the 
diversity and complexity inherent in dengue transmission. 

II. STUDY AREA 

     The National Capital Territory (NCT) of Delhi, is situated 

within the extent 28° 52' 59.88"N, 76° 50' 16.08" E and 28° 

24' 15.84" N, 77° 17' 23.64" E covering an area of 1,484 km2 

(Fig 1). It has diverse urban landscape, consisting of 11 

administrative districts and 282 wards, each characterized by 

unique features and varying population densities[17]. The 

infrastructure of NCT encompasses a mix of high-rise 

buildings, slum settlements, and expansive residential 

colonies, reflecting its diversified urban character. The 

climate of the region is hot and humid, with temperatures 

ranging from 25°C to 45°C during the summer months[18], 

[19]. The monsoon season lasts from June to September with 

an annual average rainfall of 670.7 mm[19]. Such conditions 

may lead to flooding and stagnant water, providing ideal 

breeding conditions for mosquitoes. 

 
Fig. 1. Location of study area 

III. DATA AND METHODS 

Here a comprehensive analysis of meteorological 
parameters and their effect on dengue transmission during 
2015-2022 has been done. The details of data used, and 
methodology adopted are explained in the following sub-
sections. 

A. Details of dataset used 
    The primary data consists of daily hospitalized and 

laboratory confirmed dengue cases in Delhi during 2015-
2022. The distribution of cases with respect to month during 
this period is shown in Fig 2.  

 

Fig. 2. Monthly distribution of dengue cases during 2015-2022 

The administrative ward boundary of NCT Delhi has been 

downloaded from the website of Survey of India[20].  

Population data for each ward in Delhi has been taken 

from Census of India 2011 (Census, 2011) along with Sample 

Registration System (SRS) statistical report for each year 

during study period[21]. The base population in the year 2011 

projected for annual population determination during the 

study period using the Cohort Component method. 

Meteorological data consisting of 19 parameters during the 

study period are listed in Table 1 have been downloaded from 

NASA POWER data access viewer[22]. The listed 

parameters have been derived from the NASA's GMAO 

MERRA-2 assimilation model and GEOS 5.12.4 FP-IT.This 

data is available on daily scale and are available from NASA 

POWER data acesss viewer. The horizontal resolution of the 

dataset is ½° x ⅝° grid. 

TABLE 1. Details of parameters used in study 
T2M    Temperature at 2 Meters (ºC) 

TS Earth surface temperature (ºC) 

T2M_RANGE        Temperature at 2 Meters Range (ºC) 

T2M_MAX          Temperature at 2 Meters Maximum (ºC) 

T2M_MIN Temperature at 2 Meters Minimum (ºC) 

RH2M Relative Humidity at 2 Meters (%) 

QV2M Specific Humidity at 2 Meters (g/kg) 

PRECTOTCORR Precipitation Corrected (mm/day) 

PS Surface Pressure (kPA) 

WS2M   Wind Speed at 2 Meters (m/s) 

WS2M_MAX   Wind Speed at 2 Meters Maximum 

(m/s) 

WS2M_MIN Wind Speed at 2 Meters Minimum (m/s) 

WD2M Wind Direction at 2 Meters (Degrees) 

WS2M_RANGE Wind Speed at 2 Meters Range (m/s) 

WS10M Wind Speed at 10 Meters (m/s) 

WS10M_MAX  Wind Speed at 10 Meters Maximum 

(m/s) 

WS10M_MIN Wind Speed at 10 Meters Minimum 

(m/s) 

WS10M_RANGE Wind Speed at 10 Meters Range (m/s) 

WD10M  Wind Direction at 10 Meters (Degrees) 

GWETTOP Soil wetness 

PD Population density (person/sq km) 
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B. Methodology adopted 
      To model dengue cases with variation of meteorological 
parameters, five different machine learning models have been 
used. The flowchart of methodology adopted is shown in Fig 
3. The first step is to collect and download data from various 
sources. As data comes from different sources, preprocessing 
is a very important step to bring all data in a common format 
and spatial resolution. This is done using pre-processing of the 
data. Pre-processing step includes segregation of columns, 
formatting of dates and accounting for the missing values in 
the dataset.  

 

Fig. 3. Flowchart of methodology 

As the vulnerable period of dengue in NCT Delhi is 
generally from July to December, therefore data only for this 
period has been extracted in order to avoid biasness. Statistical 
parameters are then computed for all 20 parameters such as 
minimum, maximum, mean, 25 percentiles and 75 percentiles. 
Therefore, two approaches have been adopted. The first 
approach uses statistical correlation analysis to understand the 
relationship between different variables and identify potential 
patterns or trends. For this, the cases of dengue are rescaled to 
a coarser resolution of meteorological parameters, i.e. at ½° x 
⅝° grid. Statistical correlation analysis between 20 parameters 
and cases of dengue has been carried out.  

In the second approach, for modelling, the meteorological 
parameters are re-scaled at ward level to model the 
transmission of dengue with respect to the selected 
parameters. The derived statistical parameters are associated 
to ward scale by linking the centroid of the ward to the nearest 
data point. To model the transmission of dengue at ward scale, 
DT, SVR, LoR, RF and GBM have been used. For modelling, 
data has been split as training and testing dataset in ratio of 
80:20 at random state 42. 

Each ML model used in the study have been configured 
with specific parameter values to model the incidences of 
dengue. For DT model, a complexity parameter (ccp_alpha) 
of 0.0, indicating no preference for simpler trees, a criterion 
(criterion) of 'gini' to measure impurity, and default settings 
for class weight, minimum samples per leaf, minimum 
samples for splitting, and the splitter strategy has been used. 
RF, on the other hand, used bootstrap sampling 
(bootstrap=True), a 'gini' criterion for splitting, and selected 

the square root of the number of features 
(max_features='sqrt'). For rest of the parameters, such as 
minimum samples per leaf, minimum samples for splitting, 
and the number of estimators, default settings have been used. 
Parameters for LoR included a regularization strength (C) of 
1.0, the 'lbfgs' solver, and default settings for other parameters 
such as fit intercept, maximum iterations, and penalty type. 
For SVR, a penalty parameter (C) of 1.0, an 'rbf' kernel, have 
been used.  For other parameters such as cache size, maximum 
iterations, and kernel coefficient default settings have been 
used. Lastly, for GB model, a learning rate (learning_rate) of 
0.1, a 'friedman_mse' criterion for splitting, have been used. 
Other parameters including the number of estimators, 
maximum depth, and early stopping criteria have been taken 
as default. The configurations used for the models have been 
selected based on trial and error, and the efficacy in optimizing 
model performance. 

Each technique is further evaluated based on key metrics 
such as Mean Absolute Error (MAE), Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE) and R-squared 
(R2)[1], [2]. MAE, MSE, and RMSE focus on the accuracy of 
predictions and closeness to the actual values[23]. Lower 
values for these metrics indicate better accuracy[2], [24]. R2 
provides an overall measure of the variance in the data. Higher 
R2 values (greater than 0.5) may suggest a better fit, but it is 
essential to consider simultaneously  other metrics to get a 
comprehensive view of the model performance[2]. 

IV. RESULTS AND DISCUSSION

A. Statisitcal correlation analysis 
   Due to differences in resolution of meteorological data and 

cases of dengue, second approach of analysis has been 

performed by converting and rescaling cases of dengue data 

at ½° x ⅝° grid. This leads to reduction in data points in 

gridded dataset which comprise of 48 grids. The statistical 

correlation analysis of number of dengue cases with statistical 

parameters of meteorological variables is shown in Fig 4. The 

Correlation Coefficient (CC) indicates the strength and 

direction of linear relationship between each meteorological 

variable and the occurrence of dengue cases. 

 
 

Fig. 4. Result of statistical correlation analysis 

 

      Analysis of statistical parameters at 25% and 75% 

percentile shows a negative correlation with WD2M_P25%, 

WD10M_P25%, T2M_P25%, TS_P25% , thus suggesting a 

negative association between these meteorological variables 

and the number of dengue cases. For example, a higher 

negative correlation for WD2M_P25% (-0.54) implies that 

for 25% times at 2m height wind direction is strongly 

associated to higher number of dengue cases. On the other 
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hand, positive correlation with QV2M_min, T2M_max, 

PS_min, RH2M_max, GWETTOP_mean suggests a positive 

association between these meteorological variables and the 

number of dengue cases. 

     At higher wind speeds the mosquitoes, may make it 

difficult to fly. As strong winds may disperse mosquitoes, 

making it challenging for them to locate and feed on hosts, 

including humans. This may temporarily reduce the risk of 

dengue transmission[15]. Further, wind direction may 

influence the movement of mosquitoes. For example, if the 

wind is blowing towards populated areas, mosquitoes may be 

carried into urban or suburban regions, increasing the risk of 

dengue transmission in those areas[15].  

   Temperature plays a significant role in the transmission 

dynamics of dengue as it affects the growth of both mosquito 

vector and dengue virus[11]. Aedes mosquitoes, particularly 

Aedes aegypti, thrive in warmer climates[5]. The 

development and activity of Aedes Aegypti are strongly 

influenced by temperature. Higher temperatures generally 

lead to shorter incubation periods for mosquito eggs, faster 

development of larvae, and increased activity of adult 

mosquitoes. Also, high humidity levels may enhance 

mosquito survival and activity[25]. Soil moisture content on 

the other hand, may influence the availability of water for 

mosquito breeding sites. Adequate moisture is essential for 

the development of mosquito larvae[26]. The top-layer soil 

moisture content may affect the presence of suitable breeding 

sites for Aedes mosquitoes, thereby influencing mosquito 

population dynamics and dengue transmission. 

B. Modelling incidence of dengue at ward scale 

   The study focusses on the implementation of a predictive 

modeling approach to estimate the incidence of dengue 

within ward level as an administrative unit. This section 

presents the outcomes of the analysis which is primarily 

aimed at gaining insights into the spatial distribution and 

factors influencing dengue occurrence at this localized level. 

Table 2 provides a summary of the performance metrics for 

different machine learning techniques applied for modelling 

incidences of dengue. These metrics offer insights regarding 

accuracy, precision and overall goodness of fit of each model. 

TABLE 2. Summary of model performance 

Model 
Performance metrics 

Inference 
MAE MSE RMSE R2 

DT 0.49 0.59 0.76 -0.34 
Poor 

agreement 

SVR 0.50 0.48 0.33 0.12 
Weak 

agreement 

RF 0.47 0.39 0.12 0.54
Moderate 

agreement 

LoR 0.49 0.34 0.22 0.32 
Weak 

agreement 

GBM 0.46 0.31 0.30 0.56 
Moderate 

agreement 

    It is observed that DT performs poorly as compared to 

other ML models based on MAE, MSE and R2 whereas, 

GBM shows the lowest values for MAE (0.46), MSE (0.31), 

and RMSE (0.56) among the listed models, indicating 

superior predictive performance. The positive and higher 

value of R2 further supports the model's effectiveness in 

capturing variance in the data. GBM is followed by RF in 

terms of predictive performance metrics. 

C. Variable of importance 
      It is observed that GBM is the best model for modelling 

cases of dengue. Dengue is highly sensitive to meteorological 

conditions. The vectors, their growth, and the development of 

virus in vectors and hosts occur at specific meteorological 

conditions. The variable of importance for this model is 

shown in Fig 5. It is observed that at ward level, population 

density (0.58) is major factor governing transmission of 

dengue. In general, high population density is associated with 

urbanization. Urban areas tend to have a higher concentration 

of human-made structures such as open water storage 

containers, flower pots, discarded tires that may serve as 

mosquito breeding sites [27]. Further, in densely populated 

areas, inadequate waste management and sanitation 

infrastructure may contribute to the accumulation of water-

holding containers, creating favorable conditions for 

mosquito breeding[28]. 

 

 
Fig. 5. Variable of importance 

 

        The next variable of importance is T2M_P25% (0.13), 

followed by T2M_MAX_P25% (0.05), PS_P25% (0.03), 

WS10m_min (0.02), RH2m_mean (0.02). Similar results 

have been reported by different studies where temperature, 

rainfall, humidity [29]–[32] have been found to be the 

governing factors. An increase in temperature (26˚C-28˚C to 

30˚C) increases the dengue risk by providing favorable 

conditions as it  enhances the rate of mosquito development, 

reducing virus incubation time, increasing the rate of 

transmission [18]. A similar condition is observed in the case 

of rainfall as heavy rainfall may lead to the washing away of 

eggs, larvae and pupae from breeding grounds. At the same 

time, the residual rainwater may create breeding habitats [33]. 

The speed of wind may affect their ability of mosquitoes to 

fly, feed, or rest[15]. Therefore, wind speed may also be 

considered as an important factor governing the spread of 

dengue.  

       It may be noted that resolution of input data plays a 

important role as it may impact the accuracy of modelling 

approaches[34]. Higher resolution models capture fine-scale 
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details and variations in the data  leading to better 

representation of complex processes and phenomena. In 

climate modeling, higher spatial resolution may yield better 

simulation of local weather patterns and capture short-term 

fluctuations in data patterns[35]. Certain variables may be 

critical at smaller scales but may not be apparent at coarser 

resolutions and vice versa. At lower spatial resolutions, 

certain variables may dominate the model due to their impact 

on larger-scale patterns. However, this may overlook 

variables that are crucial at smaller scales.  

V. CONCLUSION 

   This study gives valuable insights into the complex 

dynamics of dengue transmission using different 

meteorological variables, demographic factors, and the 

incidence of dengue at the ward level. GBM and RF are found 

to be the best-performing models for NCT Delhi. A threshold 

value of 0.40 for correlation coefficient has been found 

suitable to evaluate the effect of meteorological variables on 

dengue transmission. The statistical correlation analysis 

reveals that the parameters close to the ground have a positive 

correlation to dengue incidences and negative correlation for 

parameters which are a higher height from ground. Thus it 

may be inferred that wind direction and wind speed at 10m 

above ground level, show an inverse association with 

incidences of dengue cases. Overall, population density is a 

major factor contributing to dengue followed by temperature 

at 2 m and surface pressure. The findings of this study also 

highlights the importance of combining data at same 

resolution and selecting appropriate modeling techniques to 

achieve accurate predictions at the localized ward level by 

comparing different techniques.  
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