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Abstract—Globally, more than 30% of the world’s energy
consumption arises in buildings. Optimization of buildings is a
key opportunity for reducing energy consumption and carbon
emissions, improving operational efficiency and occupant well-
being and comfort. While building generative design and control
systems have received considerable research attention, optimizing
space utilization, particularly for flexible spaces is an under-
developed research area that is relevant to existing buildings.
Flexible spaces, for example, rooms with movable walls, are
increasingly common in modern building designs where space
requirements are dynamic. In this paper, a novel space usage
optimization framework is proposed, including a practical task
formulation that enables room reallocation, combination and
removal, a machine learning model for energy cost estimation
(XGBoost) based on real sensor data and a multi-objective
optimization component to minimize energy consumption and
maximize room thermal comfort simultaneously (NSGA-II). Its
effectiveness is tested and discussed through two representative
problem scenarios. Our case studies show that we can reduce
energy cost substantially by around 40% in comparison with the
original space usage setting, while additionally improving thermal
comfort for the occupants. This work shows great potential of
using AI techniques for optimizing building space usage.

Index Terms—Building Optimization, Building Space Manage-
ment, Flexible Space Utilization, Energy Optimization, Multi-
Objective Optimization, Machine Learning

I. INTRODUCTION

Buildings contribute to more than 30% of the world’s energy

consumption, with 17% of carbon emissions attributed to

heating and cooling in buildings [1], [2]. The challenge of

improving building energy efficiency has become a research

focus over the past few decades [3]. Identifying potential

optimal solutions will be crucial to addressing this challenge.

Specifically, flexible building space usage, where the space

can be redivided by moveable walls to meet working needs,

can enhance the energy efficiency of buildings by optimizing

space utilization. As behaviours in the modern workforce

and workload develops, requirements need to be mirrored in

contemporary workspaces. Furthermore, since the COVID-19

pandemic, many workers have adopted a blend of online and

This work was supported by EPSRC Early Career Researchers International
Collaboration Grants (EP/Y002539/1). FS is supported by a UKRI Future
Leaders Fellowship (MR/T043571/1).

offline work in the real world, directly resulting in a decrease

in the efficiency of building space utilization [4]. This shift

in work patterns also increases the importance of researching

flexible building space usage.

Optimizing building space usage needs to consider conflict-

ing criteria, such as energy consumption vs. thermal comfort of

indoor environment [5]. In general, as the indoor environment

becomes more comfortable for occupants, energy consumption

also increases. To estimate building energy consumption, there

are two main types of approaches: physical modelling and

data-driven approaches [2]. Physical modelling approaches

simulate energy consumption based on the understanding of

detailed building and environmental parameters and devel-

oping a complex physics-based mathematical formulation of

the problem. Examples of software that adopt such mod-

elling approaches are EnergyPlus and eQuest. However, this

information is not always available. In contrast, data-driven

prediction methods rely on data from installed sensors and

employ machine learning (ML) algorithms to learn and predict

energy consumption. They are easy to apply and have already

been used in building energy management and occupancy

analytics research [6] [7]. For the second criterion, thermal

comfort is defined as “the condition of the mind in which

satisfaction is expressed with the thermal environment” [8],

[9]. It is derived from calculating the Predicted Mean Vote

(PMV) [10] value associated with occupancy. In [11], the PMV

can be used to predict comfort conditions in buildings with

heating, ventilation, and air-conditioning (HVAC).

In building optimization, initially, research efforts were

focused on building envelope design and control systems

[5], [12], [13], while research focused on building space

optimization still needs to be explored, particularly regarding

flexible building space usage. In [14], the authors optimize the

space layout planning and formulate it as a linear assignment

minimization problem. While their work is related to opti-

mizing building space, they focus solely on space allocation

rather than space usage. In [15], the authors focus on space

use efficiency in academic buildings. Space use efficiency is

referred to as ensuring space availability for certain activities

while decreasing the building costs and increasing the usage

942

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00172



time. This is early work in this area by only allowing room

removals, so the optimization strategy for space usage lacks

flexibility.

This paper aims to offer the data-driven multi-objective

optimization framework, which has the following benefits:

1) enabling flexible building space usage to improve build-

ing space efficiency; 2) having great applicability without

requiring physical models of buildings; 3) allowing conflicting

objectives in optimisation. The contributions of this work are

listed as follows:

• We formulate the novel task of building space optimi-

sation that enables flexible space usage. The formula-

tion includes a mathematical model that considers two

conflicting objectives (energy consumption and thermal

comfort) and practical actions on room changes (room

division, combination and removal) in collaboration with

building domain experts.

• A ML algorithm, called eXtreme Gradient Boosting (XG-

Boost) [16], is used to learn the objective function of

energy consumption, based on a dataset including a wide

range of sensor data (i.e., indoor temperature data, indoor

humidity data, occupancy data, energy data and outdoor

environmental data).

• A multi-objective optimization algorithm, named Non-

dominated Sorting Genetic Algorithm II (NSGA-II) [17],

is used to find the optimal solutions for a given floorplan

with two types of rooms (i.e., office and meeting rooms).

• Through exploration of two case studies, we demon-

strated the potential of the proposed method for reducing

energy costs while improving occupants’ thermal com-

fort.

The paper is organized as follows: Section II details the

literature review. Section III presents the problem formulation

related to flexible building space usage and the mathemat-

ical formulas for multi-objective optimization. Section IV

describes the whole framework of flexible building space

usage optimization. Section V offers two case studies along

with experimental results obtained through the application of

this algorithm. Finally, Section VI concludes the paper.

II. LITERATURE REVIEW

In this section, we first review the optimization research

in the smart building field from three aspects: problem for-

mulation, objective functions, and optimization methods. The

new challenges introduced by flexible building space usage

optimization compared to traditional space optimization are

pointed out. We also briefly introduce the NSGA-II for multi-

objective optimisation [17]. Then, we review the mainstream

ML methods used to predict energy consumption and justify

the choice of using XGBoost in this research.

A. Optimization Methods in Smart Buildings

With regard to energy consumption and thermal comfort

in building optimization, there are three main research areas:

building architectural design, building control systems, and

building space efficiency. In [5], [12], the authors focus on

building architectural design, such as building orientation,

window–wall ratio, wall heat transfer coefficient, and more.

They consider at least two objectives: energy consumption and

thermal comfort. NSGA-II is applied to identify sets of optimal

solutions. In [13], the authors focus on the HVAC control sys-

tem to balance indoor air quality, thermal comfort and energy

consumption. The authors utilize a hybrid model incorporating

the extreme learning machine [18] and the grey wolf optimizer

[19] to predict and optimize indoor environments without

increasing energy consumption. For the last aspect, there has

been relatively limited previous research in optimizing build-

ing space usage, especially flexible building space usage. In

[14], the authors focus on the space layout problem, a classical

layout problem [20] to address the assignment of activities to

building spaces. They formulate the multi-objective optimiza-

tion problem as a linear assignment minimization problem,

considering three metrics: energy consumption, occupant flow

pattern, and occupant dissatisfaction. While they concentrate

on optimizing building space, their work centres more on

reallocating the original rooms within a given space rather

than optimizing building space usage. In [15], the authors

focus on space use efficiency in academic buildings. Four

indicators are developed for space use measurement, including

proportion of usage status, probability of concurrent usage,

planned occupancy rate and maximum possible occupancy

rate. Based on the results of the four indicators, the potential

optimization operation involves closing a small lecture hall,

resulting in a 6% reduction in the combined energy usage of

all eight investigated lecture halls. Although their work can

identify rooms that are not needed, their identified solutions

are not optimal in the sense that rooms are often used below

capacity. Different from the aforementioned work, our frame-

work includes a flexible building space optimization strategy

to reallocate room areas and types, and adjust the number

of rooms. The method we provide aims to optimize energy

consumption and thermal comfort simultaneously, considering

a flexible optimization strategy.

This paper adopted the well-known NSGA-II to solve the

multi-objective optimization problem. NSGA-II is a classic

multi-objective evolutionary algorithm. By employing the

Pareto nondominated sorting and crowding distance to dis-

tinguish between solutions, NSGA-II can provide a set of

high-quality trade-off solutions. This makes it well suited to

navigating the large number of possible solutions in flexible

building space optimization, where an exhaustive evaluation

would be computationally demanding. One reason we choose

NSGA-II is that the algorithm can maintain the diversity of

solutions in bi-objective cases (due to the nature of the used

crowding distance [21]), as our optimization problem falls into.

In addition, NSGA-II has been frequently used in building

optimization [5], [12].

B. Machine Learning Techniques to Predict Energy Consump-
tion

To predict the energy consumption of smart buildings, var-

ious regression ML techniques have been adopted, including
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random forest (RF), support vector regression (SVR), artificial

neural networks (ANNs), and eXtreme Gradient Boosting

(XGBoost) [1], [22], [23]. Given building sensor information

as inputs, including indoor environmental data, occupancy,

HVAC control, outdoor environmental data and building struc-

tural parameters, the estimated energy consumption is the

output of the learning task. This estimation can be used in

energy usage optimization as a key objective function. We

need an accurate and reliable estimation to guarantee an

optimal building control strategy.

Our paper adopts the XGBoost algorithm to train the

regression model. XGBoost is a scalable end-to-end tree

boosting system recognized for its efficiency and flexibility. It

is based on the gradient-boosting decision tree, which builds

an ensemble of weak learners with the new weak learner to

fit the predicted residual. The final predicted result is obtained

by summing the scores in the corresponding leaves [16], [24].

III. PROBLEM FORMULATION FOR FLEXIBLE BUILDING

SPACE OPTIMIZATION

In this section, we define the flexible building space usage

problem. On one building floor, we assume that rooms (such

as offices and meeting rooms) constitute an entire space,

and the walls between the rooms are movable. We aim to

tackle the challenge of reallocating and flexibly utilizing the

building space, specifically the problem of redividing the

overall space into different independent rooms. Based on the

assumptions, we then translate the problem into a multi-

objective optimization model. We aim to find a set of optimal

room division solutions under certain constraints, considering

the energy cost and thermal comfort simultaneously.

A. Assumptions, Decision Variables and Output

1) Assumptions: We first outline the assumptions regarding

time availability in both offices and meeting rooms. The

available office time is assumed to be suitable for all occupants

without considering any conflicting office usage hours. As

for the meeting rooms, we are presently not factoring in the

consequences of reducing the number of meeting rooms on the

schedule, including potential conflicts or meeting cancellations

due to the reduced availability of meeting rooms. As a surro-

gate for the simulation of the meeting schedule, we assume

each meeting room is available for 8 hours and use the number

of meetings and the number of participants in each meeting to

calculate the meeting room utilization rate and establish the

necessary constraints. The total sum of room areas and the

overall number of occupants remains constant.

2) Decision Variables: A solution for the flexible space

is given by X which is an array of rooms where each row

represents a different room and each column contains room

information as in Table I.

3) Output: The output of fcost is the estimated energy cost

for the entire space, given as an area-independent unit-less

value. The thermal comfort for all occupants is given by ftc,

which uses the sum of absolute PMV values (See Fig.1) to

measure the total deviation from comfortable conditions.

B. Mathematical Model
The mathematical model of two-objective optimization for

flexible building space usage is defined as:

Minimize fcost =

n∑

i=1

(wi · ModelML(Xi,rt, Xi,rh, ...

Xi,occ, doe)) (1)

Minimize ftc =

n∑

i=1

(|PMV(Xi,rt, Xi,rh)| ·Xi,occ) (2)

Subject to Xi,occ ≤ mci, i = 1, . . . , n

nocc =

n∑

i=1

Xi,occ

nmr∑

i=1

nm∑

j=1

utij ≤
nmr∑

i=1

ati

(3)

• fcost and ftc are the objective functions of cost and thermal

comfort respectively.

• X describes the division of the entire space into separate

rooms and for each, contains information about the avail-

ability, room type, room status, area, maximum capacity,

temperature, humidity and number of occupants.

• n is the number of rooms, which is equal to the number

of rows in X , and the i-th room is represented by i.
• wi =

Xi,area∑n
i=1 Xi,area

, the weighting for each room is

used with a machine learning model for estimating the

room cost, denoted as ModelML, which takes inputs of

Xi,rt, Xi,rh, Xi,occ and doe. Weighting allows the area-

independent energy cost prediction to be scaled to the

total area.

• Xi,area represents the room area in the i-th room.

• Xi,rt represents the room temperature in the i-th room.

• Xi,rh represents the room humidity in the i-th room.

• Xi,occ is the number of occupants in the i-th room.

• doe represents the outdoor environmental data, for exam-

ple, outdoor temperature and humidity which impacts the

cost of occupied rooms.

• PMV is an index used to predict the mean value of

votes of a group of occupants on a seven-point thermal

sensation scale shown in Fig. 1 [25], [26].

• In the constraints, mci is the maximum capacity of room

i, nocc is the number of total occupants, nm and nmr are

the number of meetings and meeting rooms, respectively,

ut is the usage time and at is the available time for a

meeting room, for example, utij represents the usage time

of the j-th meeting in the i-th room.

An array Z is defined following the encoding in Table I,

which contains the fixed initial temperature and humidity

information as ‘zones’ and is required to calculate the objective

values for solutions.
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TABLE I
ROOM ENCODING AND TEMPERATURE AND HUMIDITY ZONES

Room Encoding
Availability 0 (permanently closed) 1 (temporarily closed) 2 (used)

Type 0 (office) 1 (meeting room)
Status 0 (not used) 1 (used individually) 2 (combined rooms) 3 (divided rooms)

Area (m2) Xi,area (room area)
Maximum capacity mci (maximum capacity)
Temperature (◦C) Xi,rt (room temperature)

Humidity (%) Xi,rh (room relative humidity)
Occupants Xi,occ (number of occupants)

Temperature and Humidity Zones
Area (m2) Zj,area (zone area)

Temperature (◦C) Zj,zt (zone temperature)
Humidity (%) Zj,zh (zone humidity)

Fig. 1. PMV index for individual occupant thermal comfort [26]

IV. FLEXIBLE BUILDING SPACE USAGE OPTIMIZATION

In this section, we present the framework of flexible building

space usage optimization. In room encoding and updating

rules, we explain how to initialize room settings and adjust

the room usage. In the subsequent subsections, we introduce

the public dataset used to train the model, the ML algo-

rithm to predict the energy cost and the adapted NSGA-II

used to find optimal solutions. The code can be accessed

by GitHub using this link: https://github.com/soda-bread/

CAI-2024 Flexible-Building-Space-Usage-Opt/tree/master.

A. Room Encoding

Table I explains the room encoding that forms the poten-

tial solutions. Eight parameters are designed to characterize

fundamental room features, encompassing availability, type,

status, area, maximum capacity, temperature, humidity, and

occupants. All input values are numerical. Room type and

usage status are encoded with integers, while the remaining

variables are represented by their corresponding numerical

values.

B. Updating Rules

For operations involving the update of the room encoding

list, we consider three distinct optimization strategies to mod-

ify room occupancy usage. These strategies include combining

rooms, dividing a room into two smaller rooms, and removing

a room. Detailed update rules are shown below.

The flow chart of these operations is shown in Fig. 2.

For each solution in a generation, the algorithm uniformly

at random selects one of the three update rules (i.e., com-

bining, dividing, removing) and applies the corresponding

modification to a room. Then, it invokes the check function

to verify whether all updated rooms meet the constraints,

i.e., the number of occupants with maximum capacity and

the designated usage time for meeting rooms. Finally, the

algorithm updates the temperature and humidity values of each

room based on the initially provided temperature and humidity

zones.

1) Combining Rules: First, check if the number of rooms

is greater than 1. Then, randomly select two rooms with

adjacent room numbers, i.e., only adjacent rooms are allowed

to combine. Verify that the room types are the same. Create

the new room and update the maximum capacity, area, and

number of occupants.

2) Dividing Rules: First, randomly select a room number to

designate as the room to be divided. Next, generate two new

rooms and update the maximum capacity, area, and number

of occupants. The division of the original room is carried out

as evenly as possible, with the area, maximum capacity and

occupancy of the new rooms being half of those of the original

room. In cases where the number of occupants in the original

room is odd, a random selection is made to assign the last

remaining occupant to one of the two divided rooms. The

same applies to the maximum capacity.

3) Removing Rules: Initially, randomly select a room num-

ber for removal. Subsequently, remove the room by updating

the “Status” from 1 to 0 and the “Availability” from 2 to 1

(See Table I). The room is temporarily closed and unavailable

for use and therefore does not contribute to cost and has a

zero thermal comfort, but the physical space allocated to the

room is preserved. It means that when computing the total

area of all rooms, the area of the removed rooms will still be

included in the calculation, maintaining the overall total area

unchanged.

4) Checking Rules: To satisfy the constraints outlined in

Equation 3 above, we have defined two functions for validating

generated rooms. The first function checks whether the number

of occupants is less than or equal to the maximum capacity in
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Choose update rule

DivideCombine Remove

n > 1

Copy initial solution

Select two adjacent
rooms

Room types
are the same

Combine rooms:
sum area, sum
capacity, sum
occupancy.

Check constraints are
satisfied for room(s)

Update
Temperature and
Humidity for new

room(s)

F

T

F

T

F

Select a room

Divide rooms:
half area

capacity and
occupancy

Divide rooms:
half capacity and

occupancy

Divide rooms:
half capacity and
occupancy, and

randomly allocate the
last one

even odd

Select a room

The room is closed

Start Selected initial
solution

T

End

Fig. 2. Flow chart of room updating rules

each room. The second function verifies that the usage time is

less than or equal to the available time of meeting rooms. If

the newly generated solution meets all constraints, it will be

recorded; otherwise, the original solution will be retained.

5) Updating Temperature and Humidity Rules: The tem-

perature and humidity values of the rooms are updated based

on the initial temperature and humidity in Z. The process of

calculating these values can be expressed as follows:

Xi,rt =

|Z|∑

j=1

Xi,area ∩ Zj,area

Xi,area
· Zj,zt for i = 1, . . . , n

Xi,rh =

|Z|∑

j=1

Xi,area ∩ Zj,area

Xi,area
· Zj,zh for i = 1, . . . , n

(4)

where Xi,rt and Xi,rh are the updated room temperature and

humidity, we use the notation Xi,area ∩Zj,area here to mean

the overlapping area of the room i with the zone j. Presently,

we consider the temperature and humidity to be static (not

evolving with time to allow equilibration) while solving the

optimization problem; the inclusion of heating devices and

vent locations is a future direction.

C. Building Operation Dataset Description

The dataset utilized to train the ML algorithm is sourced

from a room-level and building operation dataset [6] and was

collected by sensors from five rooms including two lecture

rooms, two offices and one library. This dataset contains

indoor environmental data, energy data, HVAC operations

data, outdoor weather data, Wi-Fi and occupancy data. In our

work, we utilize the indoor environmental data, the energy

data, the occupancy data, and the outdoor weather data to

build a regression model for energy cost estimation. We only

use the data from four rooms, comprising two offices and

two lecture rooms, and assume to treat the lecture rooms as

meeting rooms. Because the occupancy duration in lecture

rooms is similar to that in meeting rooms.

D. Machine Learning Algorithms to Predict the Energy Cost

To estimate the energy cost, we adopt the XGBoost algo-

rithm [16] to train a regression model based on the dataset

described above. The model learns the mapping from the

input including indoor environmental data, occupancy data

and outdoor weather data to the output including all indoor

energy consumption data. We utilize Optuna [27] to discover

optimal hyper-parameters, train the model, and leverage the

well-trained model to predict the energy cost when provided

with a set of input data. Detailed training process can be seen

in the Section V.

E. Optimization Using NSGA-II

To find high-quality solutions and establish a baseline for

the multi-objective optimization problem formulated above,

we employ the well-known NSGA-II. In our approach, for

generating new solutions (i.e., new rooms), we replace the

mutation operators of NSGA-II with the updating rules as in

Fig. 2. This is necessary due to the novel solution encoding

introduced for this problem, which also prevents the straight-

forward application of crossover operators.

V. RESULTS

We first perform hyper-parameters tuning of XGBoost using

Optuna. After 500 trials, the best hyper-parameter values (from

their testing ranges) for the XGBoost regression model of

offices are as follows: the maximum depth is 8 (3, 20), the

number of estimators is 607 (100, 2000), and the learning

rate is 0.138 (0.01, 0.3). For the model of meeting rooms, the

best hyper-parameters from the same ranges are as follows:

the maximum depth is 8, the number of estimators is 1396,

and the learning rate is 0.115. Next, we train the XGBoost

regression model for both meeting rooms and offices with

their respective best hyper-parameters. Our evaluation metric

is the Mean Squared Error (MSE). We conduct a thorough

comparison of three regression algorithms (which are linear

regression, neural network and XGBoost). XGBoost gives the

lowest MSE of 0.135 and 0.264 for both the office and meeting

room models.

In the case studies presented, our initial room settings are

derived from the room encoding. To predict the energy cost
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TABLE II
ROOM SETTINGS AND TEMPERATURE AND HUMIDITY ZONES IN CASE

STUDY 1

Room Encoding
Room number 1 2 3 4 5 6

Availability 2 2 2 2 2 2
Type 0 0 0 0 0 1

Status 1 1 1 1 1 1

Area (m2) 32 32 32 32 32 32
Maximum capacity 6 6 6 6 6 8
Temperature (◦C) 22.5 23 23.5 23.2 22.9 22.2

Humidity (%) 85 82 80 83 86 89
Occupants 2 3 4 5 6 0

Temperature and Humidity Zones
Area number 1 2 3 4 5 6

Area (m2) 32 32 32 32 32 32
Temperature (◦C) 22.5 23 23.5 23.2 22.9 22.2

Humidity (%) 85 82 80 83 86 89

using XGBoost, we input the outdoor temperature as 25◦C and

outdoor humidity as 85%. For calculating the PMV result, we

also set the airspeed to 0.1 m/s, the metabolic rate to 1 met,

and the clothing level to 0.5 clo. For NSGA-II, the population

size is set to 50 for both case studies, with a maximum of

50 generations for case study 1 and 80 generations for case

study 2. The initial population is generated by applying the

update rules randomly to 50 copies of the initial space layout.

These update rules are the source of variation introduction in

subsequent generations. The Empirical Attainment Functions

(EAF) [28] for each case study are calculated from 40 repeti-

tions and are included in the Supplementary Material.

A. Case Study 1

In case study 1, we consider a simple scenario: there are 6

rooms arranged in a row with a total area of 192 m2, as shown

in Fig. 3. The number of occupants is 20. Each room initially

has an identical area (i.e., 32 m2) and is arranged adjacent to

each other, with a minimum requirement of 5 m2 per room.

Table II shows the initial room settings with the temperature

and humidity zones. The constraints for meetings and meeting

rooms are as follows: each meeting room has an available time

of 8 hours; each meeting has a usage time of 1 hour; there

are 6 meetings, and the maximum occupancy for each meeting

room is 2.

We present the results from an example run for both initial

and obtained solutions in Table III, implementing around

40% energy cost reduction with around 5% thermal comfort

improvement. The objective optimization results are fcost and

ftc, while ftc/nocc gives the per-occupant thermal comfort

(see Fig. 1). After optimization using NSGA-II, the result is

shown in Fig. 4. Unique solutions can share the same objective

function values, (e.g. from similar closed spaces) resulting in

a sparse non-dominated set. For example, Fig. 4 contains 50

non-dominated solutions with a variety of space utilization

layouts. We select three points in this figure to illustrate the

outcomes. Solution A represents the highest thermal comfort

with the lowest total cost amongst the obtained solutions, while

solution C represents the lowest thermal comfort with the

highest total cost. Solution B represents a trade-off between

the two objectives. Fig. 3 shows the initial room usage and

obtained solutions after optimization.

Closed roomOffice Meeting room 

Temperature and humidity zonesT1 , H1 T2 , H2 T3 , H3

Room usage: obtained solution A 
fcost: 0.135
ftc: 17.140 

T1 , H1 T2 , H2 T3 , H3 T4 , H4 T5 , H5 T6 , H6

64 m2

1

16 m2

2

48 m2

3

16 m2

4

16 m2

5

8
m2

6

8
m2

7

8
m2

8

8
m2

9

Room usage: obtained solution B 
fcost: 0.143
ftc: 16.360 

T1 , H1 T2 , H2 T3 , H3 T4 , H4 T5 , H5 T6 , H6

48 m2

1

12 m2

4

8
m2

2

8
m2

3

12 m2

5

20 m2

6

36 m2

7

16 m2

8

16 m2

9

16 m2

10

Room usage: obtained solution C 
fcost: 0.161 
ftc: 16.130 

T1 , H1 T2 , H2 T3 , H3 T4 , H4 T5 , H5 T6 , H6

48 m2

1

28 m2

2

12 m2

3

40 m2

4

16 m2

5

16 m2

6

16 m2

7

8
m2

8

8
m2

9

Room usage: initial solution
fcost: 0.260 
ftc: 17.170 

32 m2

1

32 m2

2

32 m2

4

32 m2

5

32 m2

6

T1 , H1 T2 , H2 T3 , H3 T4 , H4 T5 , H5 T6 , H6

32 m2

3

Fig. 3. Case study 1: Initial solution of room usage and example optimized
solutions of room usage.

TABLE III
COST AND THERMAL COMFORT IN CASE STUDY 1

Initial solution Solution A Solution B Solution C
fcost 0.260 0.135 0.143 0.161
ftc 17.170 17.140 16.360 16.130

ftc/nocc 0.859 0.857 0.818 0.807

Fig. 4. Case study 1: Example NSGA-II result

Since the temperature and humidity zones (T1, H1 and

T6, H6) have the least comfortable conditions according to the

PMV calculation, closing rooms in these zones will greatly

improve the thermal comfort. This is illustrated in solution C

in both Figures 4 and 3. Similarly, solution A in these figures

indicates that a combination of mixed office sizes, smaller

meeting rooms and closed spaces can provide large reductions

in energy costs.
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TABLE IV
ROOM SETTINGS AND TEMPERATURE AND HUMIDITY ZONES IN CASE STUDY 2

Room Encoding
Room number 1 2 3 4 5 6 7 8 9 10 11

Availability 2 2 2 2 2 2 2 2 2 2 2
Type 0 0 0 1 1 1 0 0 0 0 0

Status 1 1 1 1 1 1 1 1 1 1 1

Area (m2) 30 40 40 40 20 20 20 20 20 20 30
Maximum capacity 8 10 10 12 6 6 4 4 4 4 6
Temperature (◦C) 22.7 23.4 23.0 23.0 22.6 23.0 23.3 23.5 23.5 23.1 22.9

Humidity (%) 87 84 82 85 88 85 84 82 82 83 85
Occupants 3 4 5 0 0 0 2 2 3 3 4

Temperature and Humidity Zones
Area number 1 2 3 4 5

Area (m2) 20 30 50 30 20
Temperature (◦C) 22.6 23.0 23.5 23.1 22.8

Humidity (%) 88 85 82 83 86

40 m230 m2 40 m2

Room usage: initial solution 
fcost: 0.217 
ftc: 21.640 

40 m2

CorridorCorridor Corridor

Closed roomOffice Meeting room 

Temperature and humidity zonesT1 , H1 T2 , H2 T3 , H3

1 2 3 4

20 m2

5

20 m2

6

20 m2

7

20 m2

8

20 m2

9

20 m2

10

20 m2

11

T1 , H1 T2 , H2 T3 , H3 T4 , H4 T5 , H5

Room usage: obtained solution A 
fcost: 0.122 
ftc: 20.180 

CorridorCorridor Corridor

20 m2

13

30 m2

14

10 m2

15

50 m2

16

T1 , H1 T2 , H2 T3 , H3 T4 , H4 T5 , H5

Room usage: obtained solution C 
fcost: 0.313 
ftc: 19.910

15 m2

1

75 m2

2

10 m2

3

5
m2

4

5
m2

5

20 m2

6
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20 m2
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10 m2
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1
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ftc: 19.940 
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Fig. 5. Case study 2: Initial solution of room usage and example optimized
solutions of room usage.

TABLE V
COST AND THERMAL COMFORT IN CASE STUDY 2

Initial solution Solution A Solution B Solution C
fcost 0.217 0.122 0.142 0.313
ftc 21.640 20.180 19.940 19.910

ftc/nocc 0.832 0.776 0.767 0.766

Fig. 6. Case study 2: Example NSGA-II result

B. Case Study 2

We consider a more complex and practical scenario in case

study 2. There are 11 rooms arranged in two rows with a

corridor in between, covering a total area of 300 m2 with

26 occupants. On the upper side, there are 4 larger rooms

(room number: 1–4) which consist of 3 offices and 1 meeting

room. On the lower side, there are 7 smaller rooms (room

number: 5–11) comprising 5 offices and 2 meeting rooms.

The rooms on the upper and lower sides are of different sizes,

also maintaining a minimum requirement of 5 m2 per room.

Table IV displays the initial room settings along with the

temperature and humidity zones. The constraints for meetings

and meeting rooms are as follows: available time for each

meeting room is 8 hours; usage time for each meeting is 1

hour; there are 10 meetings, and the maximum occupancy for

each meeting room is 3.

We present the results from an example run for both initial

and obtained solutions in Table V with around 7% thermal

comfort improvement. The obtained solutions are shown in

Fig. 6. We choose three points in this figure to illustrate the

different outcomes. Fig. 5 displays the initial room usage along
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with the obtained solutions.

The obtained solutions appear visually similar and improve

the thermal comfort compared to the initial value. However,

the differences in cost objective values are large. Thermal

comfort improvements may largely be driven by reallocation of

people to more comfortable spaces and the closing of rooms.

These solutions show that the distribution of occupants across

used spaces has a considerable impact on the cost and thermal

comfort of the entire space. Therefore, further work can also

consider the optimal allocation of people to flexible spaces.

VI. CONCLUSION

In this paper, we propose a data-driven optimisation frame-

work for flexible building space usage that optimizes both

energy cost and thermal comfort functions simultaneously.

XGBoost was used to learn the cost objective function with

the real data from a public building operations dataset and

PMV was used to calculate occupants’ thermal comfort.

NSGA-II was used to find a set of optimal solutions for the

proposed multi-objective modelling. In the two case studies,

we have demonstrated that our approach finds the optimal

space settings that reduce energy cost and improve thermal

comfort. In the near future, we will consider how to predict

energy cost over time and how to perform optimization in

dynamic environments. Additionally, we will consider case

studies with more complex floor plans to better align with

real-world scenarios.
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