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Abstract—Studies show that artificial intelligence (AI) with
embedded physics solvers has improved the accuracy of pre-
dictions on various physics problems, especially those associated
with fluid dynamics. The crucial element in optimizing weight
training for estimating flow fields within the AI network lies
in the choice of the loss function. In addressing regression-type
problems, particularly those involving the temporal evolution
of flow fields, the mean square error (MSE) loss function is
commonly employed at the current and single time step. However,
an issue arises in existing methodologies that utilize MSE-based
loss functions with single-time step information for predicting
unsteady flow. Most of these approaches overlook the significance
of incorporating the temporal history of the flow, a factor
that cannot be disregarded in the context of numerical solvers.
Hence, in this work, a physics-based AI (PbAI) method with
higher-order loss functions is applied to unsteady scenarios, in
particular to two distinct turbulent flows where a multitude of
fine structures is present, namely, forced and decaying turbulence.
Direct numerical simulations on uniform Cartesian grids are
conducted to simulate these scenarios, generating two distinct
datasets for training and inference. Each dataset comprises 32
randomly initialized conditions spanning 4, 848 time steps for
each turbulent flow type. Five distinct models are devised, incor-
porating features such as rollouts from coarse numerical solvers
and temporal considerations in the loss function calculation. The
constructed PbAI models demonstrate consistent improvements
in predictive performance over the entire temporal domain. These
findings are further corroborated through vorticity correlation
analyses. The empirical result demonstrates that the accuracy of
the baseline case improves by up to 48% and 30% for forced
and decaying turbulence, respectively. These results significantly
underscore the importance of the temporal histories of flow in
the loss function in enhancing predictive capabilities for complex
and unsteady turbulent flows.

Index Terms—loss functions, unsteady simulations, turbulence,
physics-based AI

I. INTRODUCTION

Deep learning has recently gained attention for its potential

in predicting physical systems [1], thereby offering an alter-

*Corresponding author for CFD. **Corresponding author for AI.

native method in the field of computational fluid dynamics

(CFD). The fluid flows and dynamics are governed by the

Navier Stokes (NS) equations, a set of partial differential

equations (PDEs), that can be solved directly using direct

numerical simulation (DNS) [2], large-eddy simulation (LES)

[3], or Reynolds-averaged Navier Stokes (RANS) [4], ordered

in decreasing computational demand. Fine grids and small time

steps are often required for obtaining high-fidelity solutions,

which incur enormous computational costs and the simula-

tion may become intractable. Thus, deep learning becomes

an alternative tool to reduce computational resources while

maintaining accuracy.

Most works that leverage different types of deep learning

methods in various physical systems, such as fluid dynamics

[5, 6, 7], solid mechanics [8, 9], chemical mixing [10],

combustion [11], and weather forecasting [12], focus on ac-

celerating the simulation process through super-resolution [5],

improving LES or RANS modeling [6, 7, 13, 14, 15], training

the closure models [11, 16], and embedding physical laws into

neural networks [7, 17, 18, 19].

Many works have shown the capability of deep learning

in reducing the conventional simulation cost. Reference [5]

studies the correlation between high (DNS or LES) and low-

resolution simulations and showcases the capability of convo-

lutional neural networks (CNN) in achieving excellent accu-

racy with coarser mesh while promising substantial computa-

tional cost reduction. Their work, however, requires structured

grids due to the use of CNN and large dataset inputs (high-

resolution simulation). Another work [6] embeds the trained

CNN in RANS simulation to accelerate the convergence speed.

This method shows promising results but is limited to steady

flow problems, while most engineering applications involve

unsteady flows. References [11, 15, 16] have used supervised

learning with high-fidelity datasets to train models to represent

the unresolved small scales for turbulence closure.

The selection of an appropriate loss function plays a piv-

950

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00173



otal role in training neural networks to accurately model

complex relationships within data. Loss functions quantify

the disparity between predicted outputs and actual ground

truth labels, thereby guiding the optimization process during

model training. One commonly employed loss function is

the mean squared error (MSE), which calculates the average

squared difference between predicted and actual values. This

loss is often suitable for regression tasks. For classification

problems, cross-entropy loss [20], including binary and cate-

gorical variants, is widely used. It evaluates the dissimilarity

between predicted probability distributions and actual class

distributions. The hinge loss [21], employed in support vector

machines and popularized in the context of deep learning with

linear support vector machines, is commonly applied to binary

classification tasks. Additionally, specialized loss functions

such as Huber loss [22] and the Kullback-Leibler divergence

[23] serve specific purposes, addressing issues like robustness

to outliers and probability distribution divergence, respectively.

The choice of a loss function depends on the specific charac-

teristics of the task, the desired model behavior, and the nature

of the data. In the context of fluid dynamics, MSE-based loss

functions [5, 9, 8, 7] are commonly employed regardless of

the flow type or regime. The MSE-based loss function, owing

to its summation of pointwise errors, adeptly captures spatial

discrepancies within flow fields. However, the limitation of

MSE-based loss functions becomes evident in their failure

to adequately encapsulate temporal changes when exclusively

minimizing current time-step flow fields [5, 8]. To address

this shortfall, novel loss functions incorporating information

from past and/or future flow fields have been proposed. The

integration of temporal context enables the network to discern

temporal evolution trends, thereby enhancing overall predictive

performance. Five MSE-based loss functions are proposed

to use either coarse field output from a numerical solver

or fields from different time steps based on a backward or

central difference scheme in order to investigate the influence

of different loss functions on predicting unsteady flow type

simulations.

The rest of the paper is organized as follows: Section II

describes the dataset preparation for training and testing.

Section III proposes five different loss functions. Section IV

reports the experimental results and comparisons. Finally,

Section V draws conclusions and discusses limitations.

II. SIMULATION PARAMETERS AND DATASETS

In this work, a comprehensive numerical solver, JAX-CFD
[5], is employed to facilitate data generation and as the initial

step in constructing the machine learning models. The solver

incorporates a staggered square mesh structure within a finite

volume framework. The computational domain is discretized

into distinct computational cells, where the velocity field is

assigned to the edges, while the pressure is determined at the

cell centers. Rather than utilizing a spectral method, a real-

space formulation of the NS equations is solved for its superior

adaptability in accommodating boundary conditions.

The incompressible fluid (i.e., density, ρ, is constant) is

governed by the NS equation and takes the following form,

∇ ·U = 0 , (1a)

∂U

∂t
= −(U · ∇)U+ ν∇2U− 1

ρ
∇p+ f , (1b)

where U, p, ν, and f represent the velocity vector, pressure,

kinematic viscosity of the fluid, and external forcing vector

term, respectively. The diffusion term, denoted as the second

term on the right-hand side of (1b), is treated implicitly,

utilizing a second-order central difference scheme to discretize

the Laplace operator. Simultaneously, the convection term,

represented by the first term on the right-hand side of (1b),

is solved by advecting all velocity components utilizing a

high-order scheme based on the Van-Leer flux limiter [24].

Additionally, the Poisson equation is solved at each time

step to determine the pressure field. To achieve this, a fast

diagonalization approach is employed, utilizing explicit matrix

multiplication [25].

To replicate the statistical properties of fully developed

turbulent flows, Kolmogorov force [26] is introduced as an

external force term in (1b). The Kolmogorov force is defined

as follows,

f = (fx , fy) = (Ksin(ky) , 0) , (2)

where K represents the Kolmogorov scale, and k denotes

the forcing wavenumber. It is important to note that an

additional linear forcing proportional to the velocity is incor-

porated, introducing a negative coefficient to prevent energy

from accumulating solely in large vortices. This forcing term

exhibits statistical homogeneity and isotropy while adhering

to a power-law distribution in the wavenumber space. The

incorporation of Kolmogorov forcing within numerical sim-

ulations enables the study of turbulence and its statistical

behaviors under controlled conditions, where parameters such

as the magnitude K and the wavenumber k can be adjusted

accordingly.

Two types of Kolmogorov flow simulations are gener-

ated for datasets, namely forced and decaying turbulence,

specifically at a Reynolds number (Re) of 1000, within a

two-dimensional domain size of [2π × 2π]. The process of

generating the datasets encompasses three distinct steps: (i)

initiating a burn-in simulation from a random initial condition;

(ii) conducting a simulation for a predetermined duration using

a high-resolution solver; and (iii) downsampling the obtained

solution to a lower-resolution grid for subsequent training and

testing of the model.

During the burn-in stage, the initial condition is defined

by several key parameters, namely the random seed number,

resolution, and initial peak wavenumber. The initial peak
wavenumber corresponds to the peak wavenumber of the

log-normal distribution utilized for sampling random initial

conditions. To ensure the reliability of the subsequent analysis,

the initial transient results are disregarded, and the duration of

this burn-in phase is determined by the maximum amplitude of
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TABLE I
PARAMETERS USED IN THE DATASET GENERATION.

Types of Turbulence Forced Decaying
Datasets Train Test Train Test
initial peak wavenumber 4
number of initial conditions 32
burn-in time 40 4.5
simulation time [s] 34
simulation resolution 2048× 2048
save resolution 64× 64
maximum velocity [m/s] 7
viscosity [kg/m/s] 0.001
Kolmogorov scale 1 N.A
forcing wavenumber 4 N.A
linear coefficient -0.1 N.A

the initial velocity field, referred to as the burn-in time. Sub-

sequently, the velocity field results obtained at the simulation
resolution are downsampled to the save resolution, forming

the dataset. The same procedures are applied to generate the

decaying turbulence dataset by treating the external force term

as zero. The specific values assigned to these aforementioned

parameters for training and testing datasets are briefly sum-

marized in Tab. I.

III. CONVOLUTION NEURAL NETWORK (CNN) WITH

MULTI-ORDER LOSS FUNCTIONS

The machine learning (ML) model employed in this work

is based on the fully convolutional architectures proposed by

[5]. The schematic representation of the network, as depicted

in Fig. 1, illustrates the integration of CNN with a numerical

solver to advance the state of the flow field. In [5], the mean

square error (MSE) between the predicted field, û and ground

truth, uGT , is utilized as the loss function during training. In

this work, the loss function is tailored to encompass not only

the present time step but also to incorporate information from

preceding and/or subsequent time steps. This modification is

envisaged to enable the network to capture temporal varia-

tions in velocity and ultimately enhance the overall predictive

capacity.

Fig. 1. The pipeline of a convolutional neural network controlling learned
approximations inside the convection calculation of a standard numerical
solver.

Considering MSE as the main measurement in the loss

function, L as stated in (3), as such,

L = MSE([uGT
t + uGT

∗ ], [ût + û∗]) , (3)

where uGT
∗ and û∗ are defined accordingly as follow,

• Baseline Method [5], ‘baseline’:

uGT
∗ = 0 ; û∗ = 0

• Pure numerical solver, ‘coarse’ (Physics-driven loss func-

tion):

uGT
∗ = uGT

t ; û∗ = uNS
t

• Zeroth order backward, ‘zeroOrder’:

uGT
∗ = uGT

t−1 for t = 0,uGT
∗ = uGT

0

û∗ = ût−1 for t = 0, û∗ = û0

• 1st order backward, ‘1stOrder’:

uGT
∗ = uGT

t−1 + (uGT
t−1 − uGT

t−2) ,

for t = [0, 1],uGT
∗ = [uGT

0 ,uGT
1 ]

û∗ = ût−1 + (ût−1 − ût−2) ,

for t = [0, 1], û∗ = [û0, û1]

• 2nd order backward, ‘2ndOrder’:

uGT
∗ = uGT

t−1 + (uGT
t−1 − uGT

t−2)

+
1

2
(uGT

t−1 − 2uGT
t−2 + uGT

t−3) ,

for t = [0, 1, 2],uGT
∗ = [uGT

0 ,uGT
1 ,uGT

2 ]

û∗ = ût−1 + (ût−1 − ût−2)

+
1

2
(ût−1 − 2ût−2 + ût−3) ,

for t = [0, 1, 2], û∗ = [û0, û1, û2]

• Central difference, ‘centerDiff’:

uGT
∗ = uGT

t−1 +
1

2
(uGT

t − uGT
t−2) ,

for t = [0, 1],uGT
∗ = [uGT

0 ,uGT
1 ]

û∗ = ût−1 +
1

2
(ût − ût−2) ,

for t = [0, 1], û∗ = [û0, û1]

The supplementary terms (u∗) introduced in (3) can be

acquired through various methodologies. Three primary ap-

proaches are considered: (i) ‘coarse’, which is derived from

the output of the pure numerical solver (uNS
t ) at coarse grid

resolution (64 × 64), where uNS
t is the 1-time step roll-out

from pure numerical solver that is fed with previous time step

ût−1 as input; (ii) multi-order ‘backward’, which is obtained

by incorporating information from one or more preceding time

steps; and (iii) ‘centerDiff’, which is computed by employing

central differencing along the temporal dimension. Addition-

ally, the CNN is configured with hyperparameters specifying

11 hidden layers, 64 hidden channels, 2 output channels,

and 5 kernel sizes across all models. The optimization is

performed using the Adam optimizer with a learning rate of

10−3, b1 = 0.9, and b2 = 0.98.
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Fig. 2. Forced turbulence: (a) Comparison of vorticity contours of all models. (b) Ensemble average of L2 norm of velocity error distribution over 32 initial
conditions against time steps for different models. (c) Ensemble average of L2 norm of velocity error relative to the baseline model. (d) Comparison of the
ensemble average of vorticity correlation over 32 different initial conditions for each model.

IV. RESULTS AND DISCUSSIONS

Vorticity is a fundamental concept in the field of fluid

dynamics, serving as a descriptor for the local rotation or

swirling motion exhibited by fluid particles within a given

flow field. As a vector quantity, it is defined as the curl of the

velocity vector field, mathematically represented as

ω = ∇×U . (4)

The vorticity vector is orthogonal to the plane of rotation,

with its magnitude denoting the local rate of rotation, while its

sign indicates the direction of rotation. Regions characterized

by high vorticity signify pronounced rotational motion, often

observed in vortex cores or regions exhibiting concentrated

turbulence. Conversely, regions of low vorticity correspond to

relatively smooth and non-rotating flow regions.

Fig. 2(a) presents a comparative analysis of vorticity field

evolution among five models, including the baseline model

proposed by Kochkov et al. [5] and ground truth at a specific

sample. Each successive column in the snapshot sequence

corresponds to a temporal separation of 250 time steps, while

each row represents the progress of the turbulent flow under

distinct models. The yellow boxes in the last column em-

phasize the differences in vortical structures between the five

models, the baseline, and the ground truth. Both ‘coarse’ and
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Fig. 3. Decaying turbulence: (a) Comparison of vorticity contour of all models. (b) Ensemble average of L2 norm of velocity error distribution over 32 initial
conditions against time steps for different models. (c) Ensemble average of L2 norm of velocity error relative to the baseline model. (d) Comparison of the
ensemble average of vorticity correlation over 32 different initial conditions for each different model.

‘centerDiff’ models exhibit vortices similar to those observed

in the baseline and ground truth. This agreement is further

corroborated by the ensemble average of the L2 norm of

velocity error, presented in Fig. 2(b), defined as,

< εuv >=
1

N

N∑

i=1

||ûi − uGT
i ||2 , (5)

where N is the total number of initial conditions, û and uGT

are the predicted and ground truth velocity fields, respectively,

as a specific time instant. A series of subplots are presented

at three distinct time instants, indicating that both ‘zeroOrder’

and ‘centerDiff’ models outperform the baseline performance

at all time points, achieving a maximum reduction in error of

48% compared to baseline as illustrated in Fig. 2(c).

In another perspective, the ensemble average vorticity corre-

lation with respect to the ground truth is plotted in Fig. 2(d),

indicating that all models perform better than the baseline,

especially the ‘centerDiff’ model which has the best perfor-

mance over a longer period, approximately 80 time steps more

provided the threshold criterion is set at a correlation of 0.95.

Fig. 3(a) depicts the temporal evolution of the decaying

vorticity field originating from a specific initial condition, as

generated by the decaying turbulence dataset and processed

through various loss function models within the neural net-
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TABLE II
SUMMARY OF TRAINING TIME, GPU MEMORY, AND RAM USAGES OF ALL MODELS USED IN BOTH FORCED AND DECAYING TURBULENCE DATASETS.

Models Tot. training time [hr]
Peak GPU memory usage
during training [GB]

Peak RAM usage
during training [GB]

F
o
rc

ed

baseline 3.81 6.66 10.5
coarse 3.62 11.67 15.8
zeroOrder 3.30

6.66
10.51stOrder 3.29

2ndOrder 3.32
centerDiff 3.46 10.9

D
ec

ay
in

g
baseline 3.78 6.66 10.5
coarse 4.41 11.67 15.9
zeroOrder 3.34

6.66
10.51stOrder 3.32

2ndOrder 3.28
centerDiff 3.46 10.8

TABLE III
COMPARISON OF INFERENCE AND SIMULATION TIMES OF ALL MODELS

FOR BOTH FORCED AND DECAYING TURBULENCE DATASETS.

Models Total inference time [s] Total simulation time [s]

F
o
rc

ed

baseline 30

3654
coarse 107
zeroOrder 53
1stOrder 24
2ndOrder 44
centerDiff 49

D
ec

ay
in

g

baseline 24

2159
coarse 77
zeroOrder 20
1stOrder 24
2ndOrder 29
centerDiff 39

work framework. The highlighted yellow boxes reveal both

the ‘coarse’ (third row), and ‘centerDiff’ (last row) models

demonstrate compatibility with the ground truth and even

outperform the baseline model.

This observation is further substantiated quantitatively by

the ensemble average of εuv , which is computed for 32 initial

conditions based on (5) and shown in Fig. 3(b) for all mod-

els. As corroborated by Fig. 3(c), the ‘coarse’, ‘centerDiff’,

and ‘zeroOrder’ models yield better inference results relative

to the baseline. Similarly, the vorticity correlation plots in

Fig. 3(d) unambiguously demonstrate that all models, except

the ’2ndOrder’ model, exhibit enhanced long-term predictabil-

ity compared to the baseline, particularly the ‘coarse’ and

‘centerDiff’ models. Overall, the ‘centerDiff’ model offers

a stable and more reliable predictive capability across two

distinct turbulent flows.

Tab. II provides a concise summary of the total training time

required for 32 distinct initial conditions for each model, along

with the corresponding peak GPU memory and RAM utiliza-

tion during the training process. Tab. III offers a comparative

assessment of the time necessary for each model to generate

a total of 4848 time steps of flow fields for 32 diverse initial

conditions, in contrast to the time taken by the pure numerical

simulation and baseline model by [5]. Evidently, the network

has expedited the simulation of unsteady turbulent flows by a

minimum of two orders of magnitude.

V. CONCLUSION

In this work, we propose incorporating preceding and future

time steps into the loss function to improve the performance of

turbulent flow prediction. The loss function employed by the

baseline only considers the current time step. During longer

roll-outs, the model only retains information from the most

recent time step, neglecting data from previous and future

time steps. By incorporating preceding and future time steps

into the loss function, the model is compelled to jointly

optimize for the current and earlier time steps. This approach

enables the model to remember the temporal evolution, thereby

learning better.

While this work highlights the potential and feasibility of

employing neural networks with higher-order loss functions

to advance the simulation of unsteady fluid flows at reduced

computational costs, while maintaining a reasonable degree

of accuracy, it is pertinent to acknowledge certain limitations.

Notably, the present approach is constrained to structured grids

due to the inherent nature of CNNs, which are designed for

uniform mesh processing. Additionally, errors are introduced

when utilizing coarse grids, with cumulative effects occurring

when employing neural networks for prediction tasks.

To address the limitations stemming from the use of

structured grids and the accumulation of errors when using

coarse grids, future works could explore several potential

approaches for improvement. First, assembling different loss

functions with trainable weights could refine the predictions.

Additionally, exploring alternative network architectures, such

as graph convolutional networks, which can better handle

non-uniform grids, could be beneficial. Finally, conducting

a comprehensive sensitivity analysis on grid resolution and

network architecture parameters may provide insights into

optimizing the model’s performance on non-uniform grids. By

addressing these aspects, future work can strive to enhance

the accuracy and applicability of neural network models in

simulating unsteady fluid flows across a broader range of grid

types and problems.
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