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Abstract—Active Learning (AL) and Few Shot Learning (FSL)
are two label-efficient methods which have achieved excellent
results recently. However, most prior arts in both learning
paradigms fail to explore the wealth of the vast unlabelled
data. In this study, we address this issue in the scenario where
the annotation budget is very limited, yet a large amount of
unlabelled data for the target task is available. We frame this
work in the context of histopathology image classification, where
labelling is prohibitively expensive. To this end, we introduce
an active few shot learning framework, Myriad Active Learn-
ing (MAL), including a contrastive-learning encoder, pseudo-
label generation, and novel query sample selection in the loop.
Specifically, we propose to massage unlabelled data in a self-
supervised manner, where the obtained data representations and
clustering knowledge form the basis to activate the AL loop. With
feedback from the oracle in each AL cycle, the pseudo-labels of
the unlabelled data are refined by optimizing a shallow task-
specific net on top of the encoder. These updated pseudo-labels
serve to inform and improve the active learning query selection
process. Furthermore, we introduce a novel recipe to combine
existing uncertainty measures and utilize the entire uncertainty
list to reduce sample redundancy in AL. Extensive experiments on
two public histopathology datasets show that MAL has superior
test accuracy, macro F1-score, and label efficiency compared to
prior works, and can achieve a comparable test accuracy to a
fully supervised algorithm while labelling only 5% of the dataset.
Code is available at https://github.com/mesophil/MyriadAL

Index Terms—artificial intelligence, deep learning, computer
vision, data efficient learning, active learning, histopathology

I. INTRODUCTION

Deep learning [20] has achieved numerous successes in

supervised settings, producing state of the art accuracy and

generalization [22], [26], [34]. However, for tasks with a

scarcity of labelled data, deep learning is not nearly as effec-

tive [14], [37]. With the ever increasing amount of unlabelled

data, and the growing annotation cost, innovation has shifted

towards more label efficient strategies [19], [35]. In recent

years, two label efficient learning paradigms have emerged:

Active Learning (AL) and Few Shot Learning (FSL). AL

tackles the data scarcity problem by selecting only the most

informative data for labelling [27]. However, conventional

AL models require moderate annotation budgets and often

underperform otherwise [23]. On the other hand, FSL takes
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a different approach, utilizing transfer learning or model

adaptation/generalization techniques and only a handful of

labelled samples from the target dataset [28], [31].
Despite the promising performance, it should be noted that

both AL and FSL utilize only a few pieces of annotated data

in model training, leaving the unlabelled samples as untapped

potential. We argue that the effective use of the unlabelled data

would further improve the performance, especially under the

scenario where only a small annotation budget is available. To

tackle this challenge, we propose a novel framework for Active

Few Shot Learning: Myriad Active Learning (MAL). Our first

contribution stemming from MAL is a framework that in-

corporates self-supervised learning, pseudo-labels, and active

learning in a positive feedback loop. The pseudo-labels of the

unlabelled data are updated every AL cycle and supplement the

uncertainty measurement for a more precise and diverse query

selection. Our second contribution is designing an algorithm

to make the most efficient use of the pseudo-labels in the

query selection. The new recipe combines classic uncertainty

measures to precisely define sample types based on their

comparative uncertainty. We then sample evenly from these

types using a self-regulating algorithm, facilitating pseudo-

label updates in the next cycle.
We frame the target problem in the context of digital

histopathology, where expert pathologists are required to anno-

tate samples in a prohibitively expensive and time-consuming

process [2]. In contrast, the number of unlabelled histopathol-

ogy images is extremely high, as a single scan can produce

hundreds of unique images due to the underlying tissue struc-

tures. Under the setting of a very limited annotation budget,

we evaluate MAL on two histopathology image sets, and

show its superiority to classical active learning techniques via

comparison and ablation. Notably, MAL can achieve a com-

parable test accuracy to a fully supervised learning algorithm

while labelling only 5% of a target dataset, demonstrating its

potential for effective label efficient learning.
To the best of our knowledge, no benchmark currently exists

for histopathology in the limited budget active learning setting;

therefore, MAL also functions as a new benchmark for future

works to be compared against. For the purpose of comparing

our method against the best available alternatives, we have

reworked several well known active learning and few shot

learning methods to fit the limited budget setting.
Our contributions are summarized as follows:

1) We formulate a new problem: active few-shot learning to
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address high annotate cost in digital histopathology. The

proposed framework utilizes the abundant unlabelled

data for more label-efficient model learning.

2) We develop a novel uncertainty-based active learning al-

gorithm, Myriad Active Learning (MAL). MAL defines

a new type of sample diversity, effectively supplement-

ing the existing annotated data for rapid classification

accuracy increases.

3) We show that the proposed method achieves state-of-the-

art performance on histopathology datasets in the target

setting. As well, with a higher annotation budget, MAL

can quickly obtain test accuracies comparable to that of

a fully-supervised model.

II. RELATED WORK

Self-Supervised Learning (SSL) aims to learn generic

representations from unlabelled data as a preliminary step

to train encoders to efficiently solve subsequent traditional

supervised learning tasks [3]. SSL explores data relations by

constructing self-supervised pretext tasks based on the unla-

beled inputs to produce these representations [1]. A prominent

type of SSL is contrastive learning [13], including the recent

variant Momentum Contrastive Learning (MoCo) By He et

al. [12], which has produced state of the art results on many

image-based datasets. SSL algorithms have also produced

results competitive with supervised learning on histopathology

datasets [5], [16] when the datasets are large. However, most

recent efforts to incorporate a limited annotation budget in

computational histopathology have been unsuccessful in terms

of label efficiency [5], [21].

Deep Active Learning (DAL) is another option to tackle

the data hungry nature of Deep Learning (DL). The key

proposition of DAL is that the majority of the benefits can be

obtained from a minority of the samples. In DAL, the training

set is unlabelled, optionally with a small number of labelled

samples, called the seed. A portion of the unlabelled samples

is selected for labelling every cycle, and then included in the

training set.

Sample selection strategies [25], [37] are the subject of

much innovation, and can be broadly classified into two

categories: uncertainty based, and diversity based. Uncertainty

based algorithms evaluate samples based on predefined cri-

teria, such as Entropy [29]. CEAL [35], a recent sampling

method, labels the least uncertain samples with their predicted

labels, possibly greatly increasing the labelled set size for no

additional labelling cost. However, all of these classical tactics

underperform expectations on histopathology datasets [11],

[37]. Diversity sampling methods, such as k-means clustering,

or VAAL [30], posit that the model cannot predict uncertainties

accurately enough to be useful. Instead, these methods gather

as many types of samples as possible, in order to label, and

expose the model to, as many classes as possible. These

methods are broadly more effective on histopathology datasets,

but are more inconsistent due to their random selection nature

within clusters or buckets.

Few Shot Learning (FSL) attempts to tackle the data

scarcity problem by learning through only a handful of labelled

samples (often <1% of the dataset) in the task domain. This

is often accompanied by a well pre-trained model on a large

source dataset. FSL has seen great success in histopathol-

ogy [28], but is still in a primitive stage with regards to label

efficiency research. Active Few Shot Learning provides an

potential avenue to solve this problem [23], [36], but the results

in many applications, especially histopathology, have not met

expectations. This may be a result of the underperformance of

active learning on low annotation budgets in general.

Semi-Supervised Learning (SemiSL) is another method

dedicated to maximizing performance on a limited number of

labels. Halfway between supervised learning and unsupervised

learning, the label information given is often in the form of

pre-labelled data, or a randomly selected labelled subset. Ac-

tive SemiSL has seen success in natural image classification,

such as the work by Gao et al. [10], and in label effective

methods utilizing GANs, such as the VAAL method in active

learning [30].

III. METHODS

A. Motivation

In this work, we aim to investigate active few-shot learning

solutions under very low annotation budgets. An example

of such a scenario is computational histopathology, where

annotation budgets are small, and labelling is prohibitively

expensive, but unlabelled data is relatively abundant.

When constructing an effective and efficient solution for

this setting, we considered many paradigms and components.

We could not utilize many conventional methods, such as

knowledge distillation [8], due to the lack of a well-labelled

source dataset. Although it is still technically possible to

use these methods, they would have to be trained on a

more general image dataset, such as ImageNet [6]. Such a

dataset would contain primarily natural images, and this would

introduce a large domain gap between the source and target

datasets, biasing the model for the downstream tasks.

Therefore, we decided to pursue active-few shot learning,

a paradigm which has not yet been explored in the context

of histopathology, but has the potential to operate effectively

without nearly as many resources.

B. Problem Formulation

Mathematically, the problem can be formulated as follows:

we are given a large data set D = {(xj)}Nul
j=1 consisting of

Nul unlabelled samples x from K categories, and a very small

annotation budget. In this case, data sample x ∈ RH×W×C is

an image, where W,H are the image width and height, and

C = 3 represents the colour channels. Under the annotation

budget, up to K samples can be selected from D for annotation

in each active learning cycle. The target is to learn a model M
to predict the categories of queries, i.e., image classification.

Fig. 1 provides a visualization of MAL. Initially, two sets

are constructed: one unlabelled set U0 = D, and one empty set

T0 = {∅} to record the labelled samples from the downstream
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Fig. 1. Diagram of the proposed framework Myriad Active Learning. Pseudo-labels of the unlabelled set are updated and explored for query sample selection.

AL cycles. To explore the rich information in the unlabelled

set D, we utilize a constrastive learning algorithm to train an

encoder, mapping raw histopathology images into numerical

features, fx = E(x). Then, the encoder is frozen and a one-

layer classifier is added on top. In the tth active learning cycle,

a batch of unlabelled samples Q are removed from Ut−1 for

annotation, and the newly labelled samples, {(xi, yi)}Ki=1, are

added into the labelled set, i.e. Ut = Ut−1 − {(xi)}Ki=1 and

Tt = Tt−1 ∪ {(xi, yi)}Ki=1, where yi ∈ (0, 1)K is the one-hot

label vector for xi over the K classes. The classifier is then

optimised on Tt and generates pseudo-labels Pt for all samples

in Ut, preparing information for the t+ 1th cycle. The active

learning cycles continue until the budget is exhausted.

C. Self Supervised Learning

In the Myriad Active learning framework, we first train an

encoder with self-supervised learning on unlabelled samples

in U0. The encoder is then frozen and the extracted numerical

features from the unlabelled samples form the basis of the

down-stream active learning classification problem. Particu-

larly, the initial clustering effect of SSL encoder helps generate

the initial pseudo-labels, which remedies the cold start problem

in subsequent active learning. This self-supervision stage is

visualized in the top portion of Fig. 1.

For our framework, we utilize the SSL algorithm known

as Momentum Contrastive Learning (MoCoV2), by Chen et

al. [4], which has shown state-of-the-art results on many

image-based datasets, including in histopathology [5]. Mo-

CoV2 learns positive/negative (similar/dissimilar) representa-

tions from the data, which becomes a list of positive/negative

pairs. MoCoV2 formulates this as a dictionary lookup prob-

lem, with keys for the representations. Given an unlabelled

sample x ∈ U0, we perform two different data augmentations

on x and denote the data augmented versions as x′ and x′′

respectively. Then a query representation q = fx′ = E(x′)
and corresponding key representation k+ = fx′′ = E(x′′)

form the positive pair in MoCoV training. Representations

from other images constitute a set of negative samples k−.

The loss function for encoder optimization is formulated in

Eq. (1).

Lq,k+,{k−} =

− log
exp(q · k+/τ)

exp(q · k+/τ) + Σk− exp(q · k−/τ) (1)

where τ is the temperature hyper-parameter. The large, dy-

namic dictionary utilized by MoCoV2 is also more efficient

than many SSL algorithms [4], increasing its usability in real-

world settings.

Note that in this study, we chose not to use more specialized

SSL algorithms, such as HistoSSL by Jin et al. [16], to

show that it is not necessary to use a histopathology specific

pretraining algorithm for our solution to be effective.

D. Pseudo-Label Generation

Once the SSL model is pretrained on the unlabelled dataset,

the learned features are used as an input to a shallow network -

a one layer classifier. It is important to use a shallow network

in this case to reduce the chance of overfitting, as we will

only have a few labelled samples per class in the low budget

setting.

Initially, there is no training data for the target task, as we do

not use an initial seed; therefore, the shallow network cannot

provide any meaningful information to the active learning al-

gorithm. Instead, we use K-Means clustering on the numerical

features from the frozen encoder to form K clusters in the first

cycle. The first query is composed of one sample selected

from each of the clusters. From the second cycle onwards,

the framework proceeds in a closed-loop fashion, as depicted

in Fig. 1. The classifier is updated using the labelled samples

in Tt, and generates the set of pseudo-labels Pt to use in the

next cycle. The pseudo-labels ŷ are generated based on the
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predicted class probabilities for each sample xj ∈ Ut; defining

ŷj as the most likely class label of xj , the set of pseudo-labels

Pt = {ŷj}Nul
j=1 is formed. Excellent pseudo-labels are crucial

to the function of our framework, as the pseudo-labels will

inform the diversity of the active learning query and be the

best mode of prevention against redundant samples.

E. Myriad Active Learning

Myriad Active Learning (MAL) provides a solution to the

goal of collecting a diverse query, minimizing redundancy, and

maximizing the accuracy in each cycle. To accomplish this, we

utilize conventional active learning techniques in a novel way,

allowing for more precise and deliberate sample selection.

MAL uses a modified version of conventional uncertainty-

based strategies, the pseudo-labels obtained using the methods

in Sec. III-D, and a novel sample selection strategy. First, we

combine margin sampling and entropy sampling into Margin-

Entropy (M-E) Sampling to allow for a more precise mapping

of the uncertainties (using M to denote the model):

σm-e(x,M) =
1

σmargin(x,M)
+ σentropy(x,M), (2)

σmargin(x,M) = pM(ŷ1|x)− pM(ŷ2|x), (3)

σentropy(x,M) = −Σk
i=1pM(yi|x) log pM(yi|x), (4)

where pM(ŷ|x) represents the class probability of sample x un-

der model M. The aforementioned classical uncertainty sam-

pling strategies are defined as follows: Margin Sampling [24]

gives the uncertainty based on the difference between the

probabilities of a sample’s most and second most likely labels

(ŷ1 and ŷ2, respectively). In this case, a lower value means a

larger uncertainty. Entropy Sampling [29] selects data based

on the maximal entropy. When combined, the 1/σmargin is

used rather than σmargin to ensure larger values map to larger

uncertainties.

Margin sampling favours samples closer to the decision

boundaries [24], regardless of how many classes intersect at

those boundaries. Entropy sampling favours the most uncertain

samples close to the decision boundary of as many classes

as possible, and therefore often picks out noisy or difficult

samples. Classically, the samples will be selected from the

most uncertain to the last uncertain until the per cycle quota

K is filled.

The reason for this is that these sampling methods only

provide concrete information on where the highest uncertainty

samples will be found. As a result, similar samples are often

labelled, potentially wasting label information. A visualization

of these conventional methods can be found on the left side

of Fig. 2.

Comparatively, M-E has a much more predictable structure:

a low M-E uncertainty sample is likely to be found near

the centre of a cluster, due to a low margin score and a

low entropy. Conversely, a high M-E uncertainty sample will

Algorithm 1 Myriad Active Learning

Require: Nul ≥ K, K ≥ 1, t > 1
α ← [ ], β ← [ ], Q ← [ ], S ← [ ], n ← 0
for all xi ∈ Ut do: append: σm-e(xi,M) onto α
β ← ArgSort: α in descending order

Split: β into K approximately equally sized subarrays
β0, ..., βK−1

while len(Q) < K do
for i in βn do

if Pt(i) not in S then
append: Ut(i) onto Q
append: Pt(i) onto S
break

end if
end for
if n ≥ K − 1 then n ← 0 else n ← n+ 1

end while

almost certainly be found near a decision boundary. In this

way, the entire list of uncertainties can be deliberately utilized.

The overconfident predictions at the low end of the list serve

to establish anchors, while the top end of the list samples the

usual suspects from conventional methods. We utilize these

characteristics by splitting up the sorted uncertainty list into

K sub-arrays, so that no more than one sample will be selected

from the same area. A visual representation of this is given in

Fig. 2, intuitively showing the difference between MAL and

the current techniques.

Combining M-E sampling with the diversity presented by

the pseudo-labels, we create the novel selection algorithm

Myriad Active Learning (MAL). The pseudocode for MAL

can be found in Alg. 1. A summary of the algorithm follows:

MAL takes in Ut, Pt, and K as inputs, calculates the uncer-

tainty σ for every sample in Ut, and stores them in order in an

array α. This array is argument sorted into β, such that β[i]
is the index of the ith most uncertain sample in Ut. β is then

split into K sub-arrays β0, ..., βK−1, and one-by-one the most

uncertain sample from each sub-array is added to Q. After

each sample is selected, its corresponding pseudo-label from

Pt is appended to S, and subsequent samples added to Q must

have a pseudo-label which is not in S. This is to ensure that

a sample with a different pseudo-label is selected from each

sub-array. This portion loops until Q contains K samples, at

which point they are sent to the oracle for labelling.

IV. EXPERIMENTS

A. Datasets

The proposed framework, MAL, is evaluated on two public

histopathology datasets.

NCT-CRC-HE-100K (NCT) [17] provides 100,000 non-

overlapping histopathology image patches cropped from 86

H&E stained tissue slides by the National Center for Tu-

mor Diseases and the University Medical Center Mannheim

pathology archive. All images in NCT are color-normalized

with 224x224 pixels at 0.5 microns per pixel. The 9 tissue
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Fig. 2. Abstracted t-SNE plot of example data (3-class). Left: 6 samples selected by classical active learning methods with entropy sampling, notably
selecting many samples from the same area which are highly likely to be redundant. Right: 6 samples selected using MAL, finetuning several of the borders
simultaneously, while providing anchor samples for two of the classes.

Dataset PrT LR PrT Batch Size PrT Epochs LR Batch Size Epochs

NCT 0.015 128 200 0.0004 128 200

BreaKHis 0.0005 32 20 0.0012 128 100

TABLE I
HYPER-PARAMETERS (I.E. LEARNING RATE, BATCH SIZE, AND TRAINING EPOCH NUMBER) FOR SSL-PRETRAINING (DENOTED PRT) ENCODER AND THE

ACTIVE LEARNING LOOP. A WEIGHT DECAY OF 0.0005 IS USED IN ALL CASES.

categories included in this dataset are adipose, background,

debris, lymphocytes, mucus, smooth muscle, normal colon

mucosa, cancer-associated stroma, and colorectal adenocarci-

noma epithelium.

Breast Cancer Histopathological Database (BreaKHis)

[32] is composed of 9,109 H&E stained breast tumor images

from 82 patients, with 2,480 benign and 5,429 malignant

samples. Aside from the binary labels of benign and malig-

nant, images in BreakHis are further categorized into 8 cat-

egories, which are adenosis, fibroadenoma, phyllodes tumor,

and tubular adenona, carcinoma, lobular carcinoma, mucinous

carcinoma, and papillary carcinoma. All images in BreaKHis

is with 700X460 pixels in the PNG format of 3-Channel

RGB, 8-bit depth in each channel. Different from the NCT

dataset, BreakHis is a very difficult dataset since it includes

images with different magnifying factors (40X, 100X, 200X,

and 400X) which makes computational image diagnosis more

challenging.

B. Experimental Protocol

In our study, NCT and BreaKHis constitute 9-category

classification and 8-class diagnosis tasks, respectively. For

each dataset, images are divided into unlabelled training set

and test set with a ratio of 80:20. The samples were divided

randomly, as we operate under the assumption that we do not

know the underlying distribution of the datasets (i.e. we have

no label information at this stage).

This study focuses on the scenario of active few-shot

learning where a very low annotation budget is available.

That is, we allow only n-shot samples for data annotation

in experimentation, where n = 1, 5, 10.

The self-supervised learning model is composed of a

ResNet-50 backbone and a 2-layer MLP head (2048-

dimensional hidden layer with a ReLU activation). We follow

the study in Chen et al. [4] for data augmentation. One

exception is that for the BreaKHis dataset, a 460x460-pixel

crop was used for the randomly resized images. The one-

layer classification network is initialized using Xavier uniform

distribution and is optimized with ADAM [18]. The hyper-

parameters including learning rate, batch size, and training

epoch number, are specified in Table IV-A.

C. Comparison Baseline

To the best of our knowledge, no prior works address the

active few-shot learning scenario in histopathology, so we

will make our comparisons over several different paradigms.

Specifically, we divide our comparison experiments into two

main parts. First, we compare MAL to a recent few-shot

learning benchmark, FHIST [28]. Here, we use classification

accuracy and macro F1 scores as the performance metrics.

Then, we compare our methods to popular active learning

methods, summarized by Zhan et al. [37].

Note that both the few-shot learning results and active

learning results reported in this paper were reproduced using

the official code published by their respective authors. The

active learning methods required an initial seed, as they do

not utilize pretraining, so they are given K randomly chosen

labelled samples initially. All results are reported with the

mean and sample standard deviation from 3 seeds.
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Accuracy F1 Score

Datasets Method ↓ 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot

NCT
MAL 48.7±6.7 77.9±2.0 87.1±0.5 51.2±9.0 79.5±2.3 88.0±0.4

FHIST [28] 56.2±10.8 75.4±8.1 80.9±7.2 30.3±6.2 41.8±4.5 44.9±4.0

BreaKHis
MAL 33.9±6.6 51.6±4.0 65.1±1.7 16.2±5.5 29.7±3.1 37.2±0.9

FHIST [28] 33.8±7.36 53.1±8.54 62.0±7.44 18.0±4.1 29.1±4.9 34.2±4.2

TABLE II
TEST ACCURACIES (%) AND MACRO F1 SCORES (%) ON THE NCT AND BREAKHIS DATASETS IN THE FEW SHOT LEARNING SETTING. FHIST BY

SHAKERI ET AL. [28] IS A RECENT STUDY PRESENTING A FEW-SHOT LEARNING BENCHMARK ON HISTOPATHOLOGY IMAGES.

Dataset Method [37] → MAL Rand. Margin Entropy VarRatio CEAL KMeans

NCT

1-shot 48.7±6.7 29.0±3.3 32.5±1.5 24.5±0.9 27.0±5.0 30.2±2.2 28.4±7.7

5-shot 77.9±2.0 35.7±4.1 39.9±4.5 33.7±2.4 32.0±7.7 31.7±10.5 33.7±3.9

10-shot 87.1±0.5 47.7±3.8 42.5±2.3 38.0±10.0 42.7±10.0 37.9±5.0 33.7±3.0

BreaKHis

1-shot 33.9±6.6 25.6±13.4 38.3±2.8 31.9±7.3 44.3±0.5 39.5±2.1 43.7±0.6

5-shot 51.6±4.0 44.5±0.9 44.6±0.8 44.6±6.3 45.7±2.2 43.1±2.9 42.6±1.4

10-shot 65.1±1.7 43.4±0.9 49.1±0.3 46.1±2.2 48.9±0.8 44.2±2.1 46.2±2.1

TABLE III
TEST ACCURACIES (%) FOR THE NCT AND 8-CLASS BREAKHIS DATASETS IN THE ACTIVE LEARNING SETTING. MAL IS COMPARED TO CONVENTIONAL

DEEP LEARNING METHODS EVALUATED IN ZHAN ET AL. [37].

Dataset Method [37] → MAL Rand. Margin Entropy VarRatio CEAL KMeans

NCT

1-shot 51.2±9.0 22.0±7.1 24.1±2.5 17.4±2.4 21.3±7.1 23.0±5.0 20.5±8.9

5-shot 79.5±2.3 31.3±2.1 36.2±4.7 27.5±3.2 24.6±6.9 25.8±9.8 27.1±3.3

10-shot 88.0±0.4 44.5±4.8 40.6±1.8 34.6±12.0 34.6±12.0 34.8±6.1 27.0±3.6

BreaKHis

1-shot 16.2±5.5 6.0±1.9 11.0±1.2 10.1±2.3 9.3±1.2 9.5±1.0 11.9±1.6

5-shot 29.7±3.1 9.1±0.9 10.4±1.3 15.6±1.4 13.0±1.8 13.9±0.6 9.9±1.3

10-shot 37.2±0.9 8.9±0.9 15.7±0.7 15.3±0.7 14.3±0.9 14.9±2.2 12.5±1.4

TABLE IV
MACRO F1 SCORES (%) FOR THE NCT AND 8-CLASS BREAKHIS DATASETS IN THE ACTIVE LEARNING SETTING. MAL IS COMPARED TO

CONVENTIONAL DEEP LEARNING METHODS EVALUATED IN ZHAN ET AL. [37].

D. Main Results and Discussion

Few-Shot Learning Comparisons: FHIST [28] is a re-

cent few shot learning benchmark particularly designed for

histopathology images. FHIST uses a large neural network

pretrained on a well-annotated pathology image set, which is

then transferred to and finetuned with the few-shot samples

from the target dataset (NCT and BreaKHis in this case). Table

II shows the n-shot learning results on NCT/BreaKHis with

FHIST and MAL.

It is reasonable that the 1-shot accuracies are lower, as the

classifier in MAL trains only on K samples, or a possible one

sample per class from K-means, while FHIST takes advantage

of the knowledge transferred from the extra annotated data.

However, when more data is selected and annotated, for

example, in 5-shots and 10-shots, MAL substantially improves

the test accuracy and macro F1 score of the model, and

significantly outperforms FHIST. Notably, in all 10-shot cases,

MAL outperforms FHIST.

Higher budget settings are also explored in Table V. A CNN

trained from scratch achieves 96.16% accuracy on NCT [9],

which can be boosted to 99.76% using transfer learning [7].

MAL achieves comparable results at only 5% labels, with a

test accuracy of 95.9%.

Active Learning Comparisons: Next, we compare MAL

against other classical deep active learning methods, using

the methodology described by Zhan et al. [37] on the 8-class

BreaKHis dataset and the NCT dataset. As shown in Tables

III and IV, MAL improves upon popular deep active learning

methods in the few shot setting. Specifically, macro F1 score

is improved by 4.3%, 14.1%, and 21.5% at 1, 5, and 10-shots,

respectively for the BreaKHis dataset. For NCT, a similar trend

is observed with a 27.1%, 43.3%, and 43.5% increase in macro

F1 score at 1, 5, and 10-shots, respectively. Similar trends are

observed for the test accuracies.

Higher Budget Settings: In this setting, we relax the

few-shot condition and investigate the performance of MAL

with a higher annotation budget and report its performance

in Table V. For a reference, a fully supervised CNN-based
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10-shot (0.11% Lbl) 0.5% Lbl 5% Lbl 20% Lbl 50% Lbl 100% Lbl

Acc 87.1±0.5 91.1±0.5 95.9±0.3 96.8±0.1 97.2±0.1 97.3±0.0

F1 87.3±0.4 91.2±0.4 95.4±0.2 96.9±0.1 97.3±0.1 97.4±0.0

TABLE V
MAL IN HIGHER ANNOTATION BUDGET SETTINGS ON THE NCT DATASET. TEST ACCURACIES (%) AND MACRO F1 SCORES (%) ARE SHOWN FOR ALL

LABEL AMOUNTS. FOR A REFERENCE, A FULLY SUPERVISED CNN-BASED CLASSIFIER TRAINED ON THE ENTIRE NCT DATASET ACHIEVES 96.16%
ACCURACY [9], [33].

Pseudo-Labels SSL Pretraining Sub-arrays M-E 1-shot 5-shot 10-shot

× × × × 21.2±5.1 49.5±9.2 59.4±3.5

� × × × 35.3±3.6 55.3±3.5 68.4±2.7

� � × × 42.0±7.5 64.7±2.8 75.6±1.4

� � � × 45.4±6.4 71.2±3.2 78.5±0.2

� � � � 48.7±6.7 77.9±2.0 87.1±0.5

TABLE VI
ABLATION ON THE COMPONENTS OF MAL. THE NUMERICAL NUMBERS ARE TEST ACCURACY (%) ON THE NCT DATASET.

classifier trained on the entire NCT dataset achieves 96.16%

accuracy [9], [33]. That is, MAL is able to achieve similar

performance with only 5% annotation by always selecting the

most informative samples to supplement model learning.

Discussion and limitations: Our experiments show that

MAL outperforms prior FSL and AL methods on histopathol-

ogy images [28], [37] in terms of accuracy, macro F1 score,

and label efficiency.

There is a notable large gap in macro F1 score between

MAL and the other FSL and AL methods on the NCT dataset.

This is due to the nature of MAL to select a more balanced

query, which results in more even performance increases

across the classes, and thus a higher macro F1 score for a

comparable test accuracy.

One limitation of MAL is relatively low performance in

the 1-shot setting, which is due to the use of K-Means

clustering to circumvent the lack of information in the first

cycle. This could be remedied, at the cost of budget, by using

an initial seed. In addition, the use of pseudo-labels in MAL

is simple and straightforward. A more sophisticated design

would potentially improve the performance. For example, one

can assign multiple pseudo-labels to each sample, and reduce

overlap on the whole set of pseudo-labels, rather than the most

likely one. We leave the pursuit of these directions for future

work.

E. Ablation Studies

MAL Components: In this ablation study, we gradually re-

move the four essential components of MAL to measure their

impact on the overall performance on the NCT dataset. The

four components are pseudo-label generation, the SSL pre-

trained encoder, the segmentation of the uncertainty list into

sub-arrays, and margin-entropy sampling. These are denoted as

pseudo-labels, SSL pretraining, Sub-array, and M-E in Table

VI, respectively. In each case, the relevant feature is either

omitted, or replaced by a conventional version. Specifically,

where the SSL encoder is not used, a few-shot learning model

pretrained on the CRC-TP dataset (280 000 images, 7-classes

of colorectal cancer) [15] is used; and when M-E sampling is

not used, the conventional entropy sampling is used instead.

As seen in Table VI, when each piece of MAL is removed,

the test accuracies drop a significant amount at 5 and 10

shots. The 1-shot performance is once again hampered by

the lack of target dataset information, but generally decreases

as parts are removed. This high variance can be attributed

to the lack of knowledge in the early cycles - in the first

cycle, the algorithm has no information on the target dataset,

so the samples selected are generally low quality, and do not

accurately represent the underlying distribution of data.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed Myriad Active Learning (MAL),

a framework to efficiently and effectively increase the classifi-

cation accuracy of an active few shot learning model by utiliz-

ing unlabelled data. MAL exploits the nature of uncertainty-

based active learning sample selection by combining classical

uncertainty estimation techniques for a more precise and

deliberate query selection strategy. Pseudo-labels generated by

an SSL encoder and classifier informed the active learning

queries, allowing each sample to be ”aware” of the others for

a consistently more diverse and less redundant query. MAL

produced excellent results, achieving comparable classification

accuracy of a fully supervised model on the NCT dataset with

only 5% annotation. MAL also outperforms current few-shot

learning methods at 5 and 10 shots, and outperforms common

active learning methods in the limited budget setting.
One may notice that in our few-shot active learning

paradigm, a SSL encoder is trained on the unlabelled data

for the initial pseudo-label generation, avoiding cold start in

active learning. Recently, we witness the surge of foundation

models. We hypothesize the knowledge in these foundation

models would be another good source for pseudo-labels. We

will validate this hypothesis in future studies.
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