2024 IEEE Conference on Artificial Intelligence (CAI)

Neuroevolving monotonic PINNs for particle
breakage analysis

Abhishek Gupta
School of Mechanical Sciences
Indian Institute of Technology Goa
Goa, India
abhishekgupta@iitgoa.ac.in

Abstract—Artificial intelligence has the potential to positively
impact various facets of today’s minerals industry. This paper is a
first showcase of physics-informed neural networks (PINNs) for
simulating the breakage of large particles into smaller fragments
in a grinding mill, which is undeniably one of the most energy-
intensive phases in the processing of mineral ores. The breakage is
governed by a population balance integro-differential equation,
whose accurate solution is crucial to support precise planning and
control of processes to meet product specifications and
sustainability goals. However, solutions derived using existing
PINN algorithms, while computationally efficient, are found to
violate a basic mathematical property of monotonicity of the
modelled cumulative distribution function over particle sizes. This
renders the solution of little practical use. Guided by the implicit
function theorem, we discover that a synergy of existing
techniques with neuroevolutionary algorithms can lead to the
desired creation of monotonic PINNs. Real-world data of a batch
grinding mill is used to validate our method, establishing PINNs
as a powerful tool for simulating particle breakage dynamics.

Keywords—Industrial Al, physics-informed neural networks,
neuroevolution, particle breakage analysis

L

A grinding mill is used for breaking a system of large
particles (e.g., mined ores) into smaller fragments by inducing
compressive stresses through impact loads. Grinding mills in the
minerals industry process 40,000 — 100,000 tons of material per
day, consuming such enormous amounts of electrical energy that
power costs can be as high as half the total processing costs [1].
Much research attention has therefore been devoted to the
accurate modelling and simulation of the grinding phenomenon,
with research outcomes expected to assist with precise planning
of environmentally sustainable processes. A one-dimensional
population balance equation (PBE) is widely studied in this
regard, and can be posed in continuous form as the following
integro-differential equation [2]:

INTRODUCTION

OF (x,t) _
at

aF (x'

t
o). dx’

wa(x', t)-B(x,x')-

X

(M

governing the evolution of the cumulative distribution function
F(x,t) over particle sizes. F(x,t) represents the fraction of
particles in the system by mass whose size is less than x at time
t. By definition, F(x,t) must increase monotonically from 0 to
1 for particle sizes between 0 and Xp,,,, Where X4, is the
maximum size in the initial feed distribution F(x,t =0).

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00181

1001

B. K. Mishra
School of Chemical and Materials Science
Indian Institute of Technology Goa
Goa, India
bk@iitgoa.ac.in

S(x',t) is the selection function that specifies the rate at which
particles of size x" break at time t. Eq. (1) is rendered nonlinear
when the selection function depends on the time dependent state
of the entire particulate system [3]. Finally, B(x,x") is the
breakage distribution function which gives the cumulative
fraction of particles by mass less than size x that break out of
particles of size x’, with x" > x.

While several numerical schemes have been considered for
solving Eq. (1), they usually involve some kind of discretization
of time or particle size (aka, a mesh) that limits the
resolution/precision at which particle size distributions can be
modelled [4]. Such (coarse) discretization leads to inadequacies
in industrial particulate system applications where the evolution
of the full distribution, spanning particles that may vary by
several orders of magnitude in size, is needed to precisely
control the physiochemical and mechanical product properties.
It is here that the emerging techniques of physics-informed
neural networks (PINNs) offer a powerful alternative. PINNs —
where governing equations of physical phenomena are
embedded in the training objective of the model [5, 6] — serve as
a mesh-free approach to solve differential equations central to
diverse applications in science and engineering. In comparison
to conventional deep learning, PINN generated outputs are more
likely to be physics-compliant, while simultaneously making
predictions of arbitrarily high resolution on arbitrarily fine grids
without the need for any model retraining. In the context of
grinding, the differentiability of a PINN allows the particle size
density function to be derived at any snapshot in time. To the
best of our knowledge, this work is among the first to study the
applicability of PINNs in the particulate processing industry,
making possible the accurate modelling and optimal control of
energy-intensive grinding processes governed by PBEs.

II. PINNS FOR THE BREAKAGE PBE

A PINN uses a neural network representation F (x,t; W,B)
to approximate F (x, t) in Eq. (1) for particles of size x € Q =
[0, %pax] and time t € [0, tpax] . W = {W;, W,, ..., W, } and
B =1{b,,b,,.., b} are the list of weights and biases,
respectively, in a depth-L network where L > 2. If the i-th
layer has n; neurons then W; € R™*™i-1 and b; € R™; n, =
2 since there are only two inputs x and t in the considered
PBE; n; = 1 since the cumulative distribution function is the
single output of interest. The output layer of a PINN is typically

linear with zero bias and the identity activation function, while
the hidden layers employ infinitely differentiable neural
activations such as the tanh, sigmoid, or Fourier functions [7].

Given this representation, the network parameters can be
tuned by minimizing the following loss function:

argming g Lp;yy = Lg + AicLyc + chlﬁBcl + ABCZLBCZa 2

where,
Lo = |2 = 7 SG0 Blox) T j%nx[o.tmax])’
(3a)
Lic = ||F(x,t =0) = F(x,0; W'B)”i?(n)’ (3b)
Loe, = 0= FOEW B, - (30)
Loe, = 1= Fman W B, o B

Eq. (3a) sums the squared residual of the PBE over the
simulation domain, with the integral term substituted by its
Riemann quadrature formula. Eq. (3b) refers to the satisfaction
of the initial feed distribution. Egs. (3¢) and (3d) refer to the
satisfaction of the extreme values of a cumulative distribution
function. Note that although the loss is formulated over a
continuous domain, in practice, the terms are computed using
only a finite set of collocation points distributed in the domain.
Arc> Apcy» and Agc, are hyperparameters that control the trade-
off between the different terms in the PINN loss function.
Examinations of the loss functions of PINNs have shown
that they are significantly more rugged than those encountered
in conventional data-driven deep learning [8]. This makes
PINNs difficult to train by gradient descent. Additionally,
Proposition 1 in [7] emphasized the point that wide neural nets
at initialization tend towards flat output functions with
vanishing derivatives. That is, F (x, t; W, B) is a constant when
W and B are initialized by the Xavier method common in the
PINNG literature. Such flatness is especially problematic while
OF (x,t;W,B) _ OF (x,t;W,B) -0
at ox
everywhere, substitution into Eq. (1) gives zero residual error.

This trivially and deceptively minimizes Eq. (3a), while still
being far away from the true solution that must also minimize
Egs. (3b) — (3d). The fact that the PBE residual is already zero
at initialization indicates that the objective of minimizing the
residual error supplies no information whatsoever for a purely
gradient-based model training.

A. Depth-2 Randomized PINNs

One way to bypass the challenge of gradient-based training
of PINNs for PBEs is to take a gradient-free route. The theories
of randomized neural nets [9] offer one such pathway.

Building on recent results that a shallow but wide network
suffices for physics simulation [10], we consider randomized
PINNs (rPINNs) of depth-2 with a list of weights W =
{W,, W,}. The bias B is left out of our implementation. Entries
of W are preset and fixed to random values sampled i.i.d. from

finding solutions to PBEs. Since

1002

(a)

rPINN simulation: feed
X Grinding data: feed

L e rPINN simulation @ t = 1 min

08k € Grindingdata @ t = 1 min 1
| =—— - rPINN simulation @ t = 2 min

0.7 ® (Grinding data @ t = 2 min
. rPINN simulation @ 4 min

0.6 B (rinding data @ 4 min l

Cumulative distribution

Fx,t)

2000

20 1000

500

Jime;(minufes) Particle size (micron)

0

0

Fig. 1. (a) Depiction of the close agreement between the short time
interval rPINN simulation and the real-world batch grinding data. (b)
Surface plot of F(x, t) reveals severe monotonicity violations in long-
time breakage simulation.

some user-defined interval [—r,7]. Weights of the output layer,
on the other hand, are derived by closed-form least squares
(LSQ) computation, hugely speeding up model training by
circumventing the long training times that result from iterative
gradient-based optimization. Details of the LSQ computation
procedure applicable to both linear and nonlinear differential
equations are available in [11]. Since the same steps apply to
PBEs as well, they are not repeated in this short paper.

B. Applying rPINNs to Real-world Grinding Data

We employ the rPINN to solve a discrete version of Eq. (1)
in the form of a system of ordinary differential equations. This
formulation is sometimes encountered in real-world grinding
processes where particles are categorized into discrete classes.
Real data of particle size distribution was collected in [12]. The
data, discrete system of equations, and discrete forms of the
selection and breakage distribution functions are openly
accessible in [3]. The PINN method is unique in its ability to
produce smooth, differentiable predictions of arbitrarily high
resolution in particle size and time despite only having access
to discrete data. Its differentiability allows density estimates to
be readily derived from the modelled cumulative distribution
function, setting PINNs apart from other numerical methods.

(a) Ground truth (b) rPINN

F(x,t)

02
o0l
®

S

i o0
Time (min) Particle size (micron)

Time (min) m P

(c) Adam+LSQ (d) Neuroevolved PINN

F(x,t)

Particle size (micron)

Fig. 2. (a) Surface plot of the ground truth solution to the system of equations governing the real-world batch grinding process. (b) rPINN simulation
result whose pronounced waviness points to monotonicity violations of the modelled cumulative distribution function F (x, t). (c) Output of the
Adam+LSQ optimization procedure showcases some reduction in waviness. (d) Neuroevolved PINN solution that not only matches well with the
ground truth but also shows no apparent signs of monotonicity violation. The rPINN, Adam+LSQ and the neuroevolved PINN make use of the
same LSQ computation procedure to determine the best-fit output layer weights.

Based on a parameter sweep, we configure the rPINN with
100 neurons, tanh neural activation, r = 0.01, A;c = 100, and
Ape, = Apc, = 1. Fig. 1a shows close agreement between the
resulting simulations and the short time interval batch grinding
data (for t,,,4, = 4 min) that’s provided in [3]. However, when
the total simulated time is prolonged to t,,4, = 60 min, for long-
time breakage simulation, then monotonicity violations appear
in the predicted cumulative distribution function. The violation
is highlighted by the pronounced waviness of the surface plot of
F(x, t) depicted in Fig. 1b. The prediction in Fig. 1b is therefore
of little practical use, pointing to the need for more powerful
training procedures to achieve monotonic PINNs.

[II. NEUROEVOLUTION OF PINNS FOR THE PBE

Inspection of Eq. (1) confirms that the monotonicity of
F(x, t) is strictly implied by the PBE itself. Since minimization
of the squared residual of Eq. (1) is a part of the loss function
defined in Eq. (2), monotonicity hints are already contained in
the loss function by construction. We therefore turn our
attention from the loss function to its optimization algorithm.

The basic idea is to retain the fast LSQ computation for
determining output layer weights while derandomizing the first
layer of the rPINN. To this end, appealing to the classic implicit
function theorem [13], we conclude that the LSQ computation
provides best-fit output layer weights, denoted as Wy, that are
a continuously differentiable function of W;. That is, we may
write W5 = @(W,). Importantly, even though derivatives of
the implicit function ¢ (+) exist, we may often be unable to write
down explicit mathematical expressions for them.

On substituting W, with the best-fit W, = @(W;) in the
PINN loss function, let the resulting reduced loss be written as
L;,NN(Wl, (p(WQ). This transforms Eq. (2) to:

argminWl L;INN(WI' ‘P(W1))‘ “)
We then have,
aLpinn _ OLpINN (d_Wz*) + LNy (5)
dwy owy dw, owy

Since we generally don’t have a formula for the derivative of
W5, the loss gradient becomes difficult to explicate.

Seeing the difficulty in accessing the true/exact gradients of
the reduced loss function, we propose to tackle Eq. (4) by

1003

means of natural evolution strategies (NES) that make use of a
population of candidate solutions to obtain stochastic estimates
of the gradient descent direction [14]. Specifically, we let the
population of candidates be sampled from a search distribution
model pg(W;). For mathematical convenience, pg is usually
taken to be a multivariate Gaussian distribution with mean and
variance encapsulated by 6. With this probabilistic viewpoint,
the NES further transforms the reduced loss of Eq. (4) into the
following expected loss under the search distribution:

J(6) = Eg[Lpyw(W)] = fLI*JINN(Wl) ‘pg(Wy) - dW;. (6)

The gradient of the expected loss function with respect to 8 can
be readily estimated using the log-likelihood trick as:

M
VIO =5) Lo (™) Vo logpe (W), (1)
-

where Wl(l), Wl(z), s Wl(M) is a population of M samples
drawn from py(W,). Each Wl(m) points to a separate PINN
solution with output layer <p(W1(m)) and loss Lp;yn (Wl(m)).
The gradient estimate in Eq. (7) provides a descent direction in
the space of search distributions. In our implementation, we
employ the state-of-the-art XNES algorithm [14] to make use of
this estimation to gradually update the distribution parameters
6, and hence the population of solutions sampled from it,
towards the optimum Wj". Alternate gradient-free optimizers
like the CMA-ES could also be used [15] with no change to the
overall procedure. The corresponding output layer weights are
simply @ (W), obtained by LSQ computation.

IV. NUMERICAL STUDY

We carry out long-time breakage simulation of the discrete
version of the PBE. Although real data of the batch grinding
process is only available up to 4 min, the governing system of
equations under special (time independent) forms of the
selection function can be solved by the eigenvalue method to
get more ground truth data for comparison. The simulation
outcomes of the basic rPINN and the evolved PINNs can
therefore be rigorously compared against the ground truth.
Neuroevolution was performed with a population size of M =
20 for 1000 generations. The reduced loss function

evaluations of population individuals were parallelized on a
single machine with a 14-core/20-thread CPU.

Our numerical study also includes an implementation of
gradient-based optimization where Adam updates [16] of W,
are hybridized with LSQ computations for determining W' .
Gradient descent is carried out for 1000 iterations. Adam+LSQ
hybridization is made possible by approximating the gradient
ofthe reduced PINN loss by dropping the first term on the right-
hand side of Eq. (5). Danskin’s theorem [17] suggests that this
approximation is a descent direction of the reduced loss, and
thus serves as a meaningful update direction for the weights W, .

The comparison of cumulative distribution surface plots is
shown in Fig. 2, where we have used the same neural network
configuration as in Section I1I-B. The only difference is that we
employ 200 neurons to demonstrate that the monotonicity
violations of the rPINN persist even when the number of
neurons is doubled. This is manifested in the pronounced
waviness of the surface plot in Fig. 2b. The Adam+LSQ
procedure showcases reduced waviness in comparison, but is
unable to eliminate it; see Fig. 2c. In contrast, neuroevolution
consistently leads to the creation of PINNs whose output shows
no apparent signs of monotonicity violation; see Fig. 2d. The
key enhancement of neuroevolution is that it not only
derandomizes the input layer, but also provides a globally
optimized basis space for subsequent synergy with LSQ
computation at the output layer. Adam on the other hand mainly
offers local optimization ability. The mean squared errors
achieved by the rPINN, the Adam+LSQ algorithm, and the
evolved PINN relative to the ground truth are given in Table I.
The neuroevolved solution is found to have almost three orders
of magnitude lower error than the rPINN and two orders of
magnitude lower error than Adam~+LSQ.

TABLE |

MEAN SQUARED ERRORS OF THE RPINN, ADAM+LSQ, AND
THE NEUROEVOLVED PINN RELATIVE TO THE BATCH GRINDING
GROUND TRUTH. BEST RESULT IS MARKED IN BOLD.

rPINN Adam+LSQ
4.70e — 4 6.77¢ — 5

Neuroevolution

8.46e -7

V. CONCLUSIONS

The experiments performed lead to the conclusion that
synergizing neuroevolution (of a subset of the weights of a
neural network) with LSQ computation (for determining the
remaining weights) forms a powerful PINN optimizer. We
apply the method for the first time to the problem of simulating
particle breakage in a batch grinding mill, where we model the
evolution of the monotonicity constrained cumulative
distribution function over particle sizes. The synergized
optimization algorithm is able to repeatably find highly
accurate, physically/mathematically valid solutions that cannot
be reliably found with other existing techniques. This paper
thus adds to a growing line of research on neuroevolution as a
noteworthy tool in the training of PINNs [8, 15, 18].

1004

A common argument against evolutionary algorithms is the
computational cost associated with sampling and evaluating
populations of candidate solutions. However, we believe that
once monotonicity preserving features have been discovered
through neuroevolution, these can be transferred to a new PBE
problem without the need to retrain the input layer from scratch.
This could lead to considerable savings in compute while
maintaining high levels of accuracy. This possibility will be
further investigated in future work.

REFERENCES

Mishra, B.K. and Rajamani, R.K., 1992. The discrete element method for
the simulation of ball mills. Appl. Math. Model., 16(11), pp.598-604.
Mishra, B.K., 2007. Monte Carlo method for the analysis of particle
breakage. Handbook of Powder Technology, 12, pp.637-660.

Gupta, A. and Mishra, B.K., 2024. Multi-head neural networks for
simulating particle breakage dynamics. Theoretical and Applied
Mechanics Letters, 14(2), p.100515.

Miiller, L., Klar, A. and Schneider, F., 2019. A numerical comparison of
the method of moments for the population balance equation. Mathematics
and Computers in Simulation, 165, pp.26-55.

Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S. and
Yang, L., 2021. Physics-informed machine learning. Nature Reviews
Physics, 3(6), pp.422-440.

Sharma, R. and Shankar, V., 2022. Accelerated Training of Physics-
Informed Neural Networks (PINNs) using Meshless Discretizations.
In NeurIPS Proceedings, 35, pp.1034-1046.

Wong, J.C., Ooi, C.C., Gupta, A. and Ong, Y.S., 2022. Learning in
sinusoidal spaces with physics-informed neural networks. [EEE
Transactions on Artificial Intelligence, 5(3), pp.985-1000.

Sung, N., Wong, J.C., Ooi, C.C., Gupta, A., Chiu, P.H. and Ong, Y.S.,
2023, July. Neuroevolution of Physics-Informed Neural Nets: Benchmark
Problems and Comparative Results. In Proceedings of the Companion
Conference on Genetic and Evolutionary Computation (pp. 2144-2151).
Li, M., Sonoda, S., Cao, F., Wang, Y.G. and Liang, J., 2023, July. How
powerful are shallow neural networks with bandlimited random weights?.
In ICML (pp. 19960-19981). PMLR.

Wang, Y. and Zhong, L., 2023. NAS-PINN: Neural architecture search-
guided physics-informed neural network for solving PDEs. arXiv preprint
arXiv:2305.10127.

Dong, S. and Li, Z., 2021. Local extreme learning machines and domain
decomposition for solving linear and nonlinear partial differential
equations. Comput. Methods Appl. Mech. Eng., 387, p.114129.

Hosten, C. and Avsar, C., 2004. Variation of back-calculated breakage
rate parameters in Bond-mill grinding. Scandinavian journal of
metallurgy, 33(5), pp.286-293.

Krantz, S.G. and Parks, H.R., 2002. The implicit function theorem:
history, theory, and applications. Springer Science & Business Media.
Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J. and
Schmidhuber, J., 2014. Natural evolution strategies. The Journal of
Machine Learning Research, 15(1), pp.949-980.

Wong, J.C., Ooi, C.C., Gupta, A., Chiu, P.H., Low, J.S.Z., Dao, M.H. and
Ong, Y.S., 2023. Generalizable Neural Physics Solvers by Baldwinian
Evolution. arXiv preprint arXiv:2312.03243.

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[2

[13

[14

[15]

[16] Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
[17] Al-Dujaili, A., Srikant, S., Hemberg, E. and O’Reilly, UM., 2019,

February. On the application of Danskin’s theorem to derivative-free
minimax problems. In AIP Conference Proceedings (Vol. 2070, No. 1).
AIP Publishing.

Wong, J.C., Gupta, A. and Ong, Y.S., 2021. Can transfer neuroevolution

tractably solve your differential equations?. JEEE Computational
Intelligence Magazine, 16(2), pp.14-30.

[18

