
NL2IBE

– Ontology-controlled Transformation of Natural

Language into Formalized Engineering Artefacts

Nicolai Schoch

Corporate Research (DECRC)

ABB AG
Ladenburg, Germany

nicolai.schoch@de.abb.com

Mario Hoernicke

Corporate Research (DECRC)

ABB AG
Ladenburg, Germany

mario.hoernicke@de.abb.com

Abstract—Looking at Process and Automation Engineering
(P&AE) today, for the technically adept engineer, there are
many different tools available to support the engineering work
from translation of engineering intentions into module and plant
descriptions, to definition and parametrization of entire process
plant setups, for export to a control system. However, still today,
in the very early engineering phases, engineering intentions
either need to be entered already in a structured and controlled
expert language or require a human expert’s manual efforts for
translation from unstructured language into formalized
representations, in order for thereon-based consistent further
processing in the existing tools. This process is time-consuming,
fuzzy, and error-prone due to potential misconceptions and
ambiguities, even for domain experts. In this work, we therefore
present our NL2IBE Tool, which makes use of modern Natural
Language Processing in combination with Ontology Mining,
and which, based on and controlled by an underlying ontology,
allows for the deterministic transformation of natural language
intentions into structured and consistent engineering artefacts.
We describe the overall tool architecture as well as crucial
functionalities and implementation features, followed by an
evaluation by the example of a hydrogen generation and CCSU
use case. We conclude with a discussion of the proposed tool and
give an outlook on future research. (Abstract)

Keywords—process & automation engineering, intend-based
engineering, natural language processing, NLP, generative AI,
ontological domain representation.

I. INTRODUCTION & MOTIVATION

A. Engineering Context and Problem Description
Modular Automation (MA) Engineering has recently been

a trending topic in the industry [1]. Over the last years, there
have also been several pilot applications presented, e.g., by
ABB, Bayer, Merck and Evonik [2], and modularization is
considered an auspicious approach to handle the challenges of
changing production environments. At ABB research, a
concept for MA has been developed based on so-called
Function Modules (FMs) [3], which bring the benefits of MA
without requiring a dedicated controller for each module.

In the context of several partly ongoing research activities,
different tools have been developed to implement the FM
concept and its facilitation along the entire engineering
workflow, from early process engineering via automation
engineering to control code export onto target control systems
(such as ABB’s System 800xA). See Fig. 1, for a visualization
of the overall process and automation engineering (P&AE)
workflow and the respectively most relevant engineering
functionalities and engineering artefacts. In the early phases,
research mainly focused on "Intention-based Engineering"

(IBE) [4] to support the modeling and formalization of
engineering intentions into abstract service and module
representations, and on "Module Pipeline Generation"
(PipeGen) [5] to facilitate the automated generation of
module-to-module pipelines based on the semantic
description of modules coming from the IBE Tool and of the
intended to-be-processed materials. These two tools, as shown
in Fig. 1, are followed by the ‘Orchestration Designer’ Tool,
which facilitates module engineering and plant orchestration
[6]. Accompanying, the Semantic Facilitation & Integration
Layer (SemFIL) [7] guarantees and facilitates the seamless
and consistent integration of the above tools into the overall
workflow. The underlying SemFIL ontology and associated
knowledge graph therefore store the semantic knowledge and
data in a machine-readable way and represents the overall
domain knowledge in a controlled vocabulary. In total, these
applications thus provide solutions for the process and
automation engineering stages in the overall P&AE workflow,
see again Fig. 1.

However, still today, in the early engineering phases,
engineering intentions either need to be entered into the
existing engineering tools already in a structured and
controlled formal expert language or require a human expert’s
manual support for ‘translation’ from unstructured and
uncontrolled natural language into formalized (controlled and
structured) representations (for thereon-based consistent
further processing using the existing above-mentioned tools).

This process however is very time-consuming, fuzzy, and
error-prone due to frequent human misconceptions and
semantic ambiguities, even for domain experts.

B. Proposed Solution and Comparison with State of the Art
Therefore, in this work, we present our NL2IBE Tool,

which focusses on the very first step in the described
workflow, see the red-dashed circle in Fig. 1.

Fig. 1. The overall process and automation engineering workflow along

with the existing tools and their respective functionalities and inputs/outputs.
The red circle to the left shows the focus of this work, the transformation of

natural language into formalized engineering intention artefacts.

1005

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00182

The NL2IBE Tool supports the engineer in the activity of
entering engineering intentions into our system. Without
actually requiring him/her to bother about formal and
structural correctness of inputs, our tool converts uncontrolled
text inputs into structured and SemFIL-consistent ontological
representations. NL2IBE therefore makes use of modern
Natural Language Processing (NLP) methods. However, it not
only translates/formalizes natural language intentions, but
also, based on and controlled by the underlying SemFIL
ontology, it allows to obtain deterministic transformations of
natural language intentions into structured and SemFIL-
consistent engineering intention artefacts, see Fig. 2.

Fig. 2. Our NL2IBE Tool is dedicated to converting natural language

engineering intentions into formalized ontological intention representations.

The initial idea was to use standard transformer NNs-
based, pre-trained language models, i.e., Large Language
Models (LLMs), for the processing and translation of the
natural language engineering intentions [8]. Large,
instruction-tuned models reportedly can be fine-tuned on I/O
schema, so that they adapt, e.g., particularly to a certain
domain such as engineering, or to generate output according
to a certain schema like JSON or OWL format [9].

Being trained on vast amounts of diverse text data, LLMs
can ‘understand’ complex natural language (e.g., engineering
intentions), along with syntax, semantics and context [10]. To
achieve this, besides the deep encoder-decoder architecture
with several hidden layers, text embeddings are the core
feature of the transformer NN architecture, representing words
or sentences as numerical n-dimensional vectors, which in an
abstract way capture their encoded meaning. Hence, formally,
natural language input text is transformed by a function into
n-dimensional embedding vector representations in the latent
embedding space :

 .� ����

During training and/or fine-tuning, the goal is, among
others, to find a function such that semantically similar text
is metrically close in (e.g., with respect to the cosine
similarity metric). Essentially, embeddings thus enable the
model to learn abstract relationships between words/sentences
and contextualize information [8].

Nevertheless, while LLMs are thus able to understand
content and to generate remarkably coherent and contextually
relevant responses, they also come with several severe
challenges and problems. Among others, these include
potential biases in the training data, inaccurate or hallucinated
content generation, as well as non-deterministic and non-
reproducible resulting output, which is mainly due to the
stochastic nature of the underlying NN architecture [11].

Given the fact that LLMs can grasp the abstract
relationships between words and sentences, it seems obvious
that this abstract understanding of relationships and context
should possibly be exploited and be usable also in the context
of ontological information modeling and knowledge
representation. Several research groups have accordingly
investigated on or demonstrated different beneficial aspects of
this synergy [12]: Proposed as a roadmap, [13] categorizes
three main ways in which LLMs come to interact with
ontologies or knowledge graphs (KGs). First, KG-enhanced
LLMs, which incorporate KGs during the pre-training and
inference phases of LLMs. Second, LLM-augmented KGs,
that leverage LLMs for different KG tasks such as embedding,
completion, construction, and question answering. And third,
mutually synergized and enhanced LLMs and KGs, e.g., for
bidirectional reasoning driven by both data and knowledge.
The authors in [14] present an NLP-supported method for the
structured extension of existing ontologies. The proposed
workflow derives classes and relations from text and has a
domain expert revise the resulting extended ontology.
Similarly, [15] investigates on LLMs’ capacities of translating
natural language questions into formal database queries and
retrieving information from graph databases or KGs. Lastly,
while the semantic embedding of KGs has been widely
studied and meanwhile been used for statistical analysis tasks
across various domains [16], less attention has been paid to
developing methods for embedding entire OWL ontologies.
Here, OWL2Vec* [17] particularly stands out, as it allows to
encode by means of embedding vectors the semantics of
single concepts of an OWL ontology by considering its graph
structure, lexical information, and logical constructors.

Given this state of the art, and looking at the original
problem of transforming natural language engineering
intentions into their formalized ontological intention
representation counterparts, to the best of the authors’
knowledge, to date, no approach has been presented which
maps in a controlled and deterministic way natural language
to ontological concepts, triples, or even triple combinations
from an existing engineering ontology.

In other words, and more generally, pure LLMs-based
solutions cannot (yet) reliably, transparently, and controllably
generate formalized output, which is guaranteed to be
consistent with a specific ontology or domain information
model representation [11]. This, however, is a requirement for
many critical systems applications, particularly in process and
automation engineering, where fuzzy ‘black box’ ML model
behavior is not accepted by customers.

II. CORE IDEA OF OUR SOLUTION

To cope with the above requirements, our idea was, to add
a further ‘modality under our control’, namely ontological
representations (i.e., concepts, concept-relation-concept
triples, and triple combinations), into the same embedding
space . See Fig. 3, for a high-level visualization of the core
idea and workflow of our solution: Using an LLM, we
transform, i.e., encode, not only an uncontrolled natural
language input sentence (an arbitrary engineering intention),
but also all consistently permitted ontological formulations ,
i.e., concepts and combinations (triples) of concepts and
relations, into the same joint embedding space. Thereon-
based, for the respectively embedded natural language
engineering intention vector , we then select the closest
ontological representation embedding vector from the set
of all ontology-derived embedding vectors .

1006

Fig. 3. The core idea underlying our NL2IBE Tool: Adding a further modality under our control (ontological representations) to the joint embedding space,

so that new embedding representations of natural language engineering intentions can be analyzed on their proximity and similarity to the well-defined,

controlled, and structured set of consistent process and automation engineering formulations.

Figuratively, one could say, we thus facilitate and enable
‘into-ontological-embedding Zero-Shot Classification’.

The above process is repeated for the entire set of natural
language engineering intention sentences, which, e.g., in the
end constitute altogether the description of a new to-be-
engineered process plant.

In mathematical terms, what happens is that we artificially
sparsify the continuous (joint embedding) solution space

in equation (1) into a discretized space by accepting as
final consistent solution of the enhanced transformation
only the deterministic embedding representations of the
ontology-derived concepts, triples, and triple combinations:

 ,� ����

where is equivalent to with the standard
transformation from (1) followed by identification of the

closest ontological concept or triple in .

The original transformation (with A the space
of arbitrary words and sentences) here is combined with the

function , which finds for every embedding
vector in the respectively closest ontological

concept/triple in , such that

 (3)

and

 . (4)�

With this setup, we achieve formalization of uncontrolled
and unstructured natural language inputs, by transforming
inputs into embedding representations in a joint embedding
space with controlled and structured ontological formulations
(concept & triple combinations), followed by finding among
these the closest fits.

In the next section, we will describe the inner workings
and implementation of our solution in more detail.

III. OUR SOLUTION: THE NL2IBE TOOL

Having motivated and described the high-level core idea
of our solution in the above section, we here want to have a
closer look at the approach and its implementation.

Therefore, first, we look at the underlying SemFIL and
P&AE ontology [7], which we aim our algorithm to produce
consistent outputs for, and which hence determines the target
output representation. Second, we describe the major steps in
our NL2IBE algorithm, followed by a detailed description of
its implementation and architecture.

A. SemFIL and the P&AE Ontology
The overall goal of this work is to obtain from natural

language engineering intentions suitable input for the IBE
Tool (“Intention-based Engineering”) [4], and from there
further to Pipeline Generation [5] and Orchestration Designer
[6], see again Fig. 1. Alongside entering the overall P&AE
Tool Chain we also want to become consistent with SemFIL
[7] and with the underlying SemFIL ontology, our controlled
& structured P&AE domain representation.

SemFIL was already described in an earlier publication
[7], and we will dig deeper in a further future dedicated
publication. Here, we only want to give a minimalistic
overview on its most important concept groups and relations.

Fig. 4. SemFIL P&AE Ontology (Protégé Screenshot).

1007

To consistently govern the entire P&AE domain and tool
chain, it can represent ‘abstract data’ (which can stand for
materials, signals, or energy), and ‘data manipulation
processes’ (e.g., mixing, pyrolysis, or steam reforming).
Moreover, it also knows and describes the world of ‘modules’
and ‘services’ in the MA context, along with its structures,
inputs/outputs, parameters, and KPIs, as well as ‘module
chains’, ‘processes’, and ‘procedures’. Finally, it also formally
describes engineering knowledge, as well as the interrelations
and dependencies, restrictions and axioms which govern the
P&AE domain. See Fig. 4, for a screenshot of our SemFIL
P&AE Ontology, taken in the Protégé ontology editor.

This is important since we motivated above, that we aim
to transform uncontrolled natural language engineering
intentions into their structured ontological formulation
equivalents. In order to become consistent with this SemFIL
Ontology, we extract from it all concepts and consistently
permitted triples (i.e., concepts and instances along with their
ontological interrelations), so that we can then find, using
NLP, the respectively best suitable ontological representation
for a given natural language engineering intention. In the next
subsection, we describe this process and its algorithmic
implementation.

B. Our NL2IBE Solution
Here, we describe the main steps in our NL2IBE

algorithm, followed by a detailed description of its
implementation and architecture. We refer again to Fig. 3, for
a visualization of the core idea of the NL2IBE solution.

The Main Steps of the NL2IBE Tool:

0) Make available for usage a pre-trained LLM to obtain
joint embedding representations of both the controlled
ontological formulations (i.e., concepts, instances,
and triples, and triple combinations) and of the
arbitrary uncontrolled natural language engineering
intentions input.

1) Use the LLM to obtain the embedding representations
of the controlled ontological formulations. Thanks to
the underlying ontology, it is known what the
ontological formulations mean (semantically) and
how they are (inter)-related.

2) Use the same LLM to process (new) natural language
engineering intentions input, and accordingly obtain
their embedding representations, too.

3) For every such new natural language engineering
intention (keyword/formulation) embedding, find the
top N () nearest (i.e., most metrically similar)
known ontological concept(s)/triple(s) embedding(s),
along with its/their semantic meaning(s) and
interrelations. Above we figuratively described this as
into-ontological-embedding Zero-Shot Classification.

4) Rank the top N closest formal ontological
representations according to a selected metric (e.g.,
cosine similarity) or with respect to uncertainties.

5) Allow for similarity- and uncertainty quantification-
based human expert assessment and further fine-
tuning of the respective transformation results
through human expert interaction.

With these main steps being listed, we have implemented
our NL2IBE Tool as a Web App. It consists of an HTML- and

JavaScript-based frontend part for receiving user inputs and
showing processing results, and a Python/Flask-based
backend part for performing the ontology-controlled
transformation of natural language inputs into ontological
engineering intentions.

The Frontend functionalities are straightforward; see also
Fig. 9 for a screenshot of the frontend of the NL2IBE Tool:

1. The user enters an engineering intention text string
into the text input field and clicks ‘Submit’ to request
for NL2IBE-Processing. (See below for what then
happens in the NL2IBE Backend).

2. Being returned from NL2IBE-Processing Backend,
the user can check out the top 3 best suitable
ontological formulations and inspect a visualization
which shows in a 2D projection the entered
engineering intention and the top 3 nearest
ontological representations (based on a Principal
Component Analysis-derived projection).

3. The user can select the respectively best fit or raise an
ontology extension request (if none of the proposed
representations satisfy the actual intention).

4. Upon selection and acceptance of the respectively
best fitting ontological representation (i.e.,
concept/triple/combination), it is sent to the ‘History
DB’ for accumulation, until all intentions are entered.

5. To enter further intentions, repeat steps 1-5 until done.

6. Upon finalization of the engineering intention
processing, the user clicks the ‘Finalize’ button, to
have all ontological representations (i.e., concepts,
triples, or triples combinations) being combined into
an ontologically consistent Knowledge Graph with
the respective instantiations. Thus, an individual
domain-ontology-consistent representation of the
given set of engineering intentions is obtained.

The Backend provides the actual core functionalities,
building mainly upon owlready2 library (for ontology-
oriented programming) [18] and transformers library (for
LLM integration & NLP functionalities) [19, 20]:

On Startup of the NL2IBE App, as part of a preparatory
step, the LLM is initialized and the ontological embeddings
are precomputed once only and made available for subsequent
comparison to later entered engineering intentions, see Fig. 5.

Fig. 5. Pseudo code of the preparatory steps on startup of the NL2IBE Tool.

1008

Fig. 6. Visualization of process for the stepwise extraction of the content of P&AE ontology, executed as part of the extract_ontology_content() method.

The method extract_ontology_content() is to extract all
concepts, instances, triples (i.e., concepts and instances, along
with interrelations and properties), and consistent triple
combinations from the P&AE ontology file, see Fig. 6.

Having extracted, using owlready2, from the ontology all
concepts and triples, they are further processed, using standard
RegEx regular expressions, into human-readable ontological
sentence equivalents. Thus, for example, a triple
‘CompressorModule hasChemReaction_whichTakesAsInput
GreenHydrogen’ will be translated into a more-natural
language sentence ‘Compressor module has chemical
reaction which takes as input green hydrogen’. Only then, this
more natural sentence will allow for reasonable subsequent
NLP-based processing into embedding representations.

After this once-only-on-startup effort of computing all
ontological representation embeddings, the actual NL2IBE
core script is called, see Fig. 7. Here, we first artificially de-
intentionalize the natural language input, i.e., remove the
intention formulation wrapper (e.g., “I intend to achieve …”)
from the input. This part of the input sentence, and how it
affects formal requirements engineering, will be dealt with in
a future dedicated work. The actual engineering intention
content will then be encoded using the LLM, so we obtain its
embedding vector, which can then be compared to all pre-
computed ontological formulation embedding vectors, e.g.,
with respect to the standard cosine similarity metric.

Fig. 7. Pseudo code of the NL2IBE core.

The resulting similarity values now allow for sorting the
ontological formulation embeddings according to their
highest/best suitability. We return the top 3 (or N) closest
ontological formulation embeddings along with their
similarity values as a measure for confidence and suitability
in order to then allow the user to select the best suitable option
in the UI/frontend.

Additionally, as a convenience feature, we also provide the
user with a 2D-projected visualization of the embedding space
and the embedding vectors (of both current engineering
intention input and ontological representations), which is
obtained by means of running a Principal Component
Analysis on the embedding vectors and thereon-based
dimensionality reduction. Like this, we can even visualize the
proximity of the respective best ontological representations to
the given natural language engineering intention input, and
thus enable the user to hover around also over other possible
representations; see also Fig. 9.

As a remark, if the confidence measure is below a certain
threshold, then the tool informs the user that no suitable
ontological representation was found, so that – if wanted – a
request for appropriate extension of the P&AE ontology can
be raised to an ontology engineer.

Summarizing and putting this into context, in this section,
we have described how, using our NL2IBE Tool, we are able
to transform unstructured/uncontrolled natural language
engineering intention inputs into structured/controlled
ontological engineering artefacts, which are consistent with
the underlying P&AE ontology, and hence suitable for further
processing using the tool chain described in Fig. 1. We
motivated how one can therefore make intelligent use of NLP
methods in combination with knowledge representation and
ontologies, which control the final outputs.

Following the engineering intentions processing through
our NL2IBE Tool, the collection of ontological triples (or
triple combinations) and its combination into an ontologically
consistent knowledge graph (with respective instantiations),
can be fed into the IBE Tool [4], which in turn is followed by
the Pipeline Generation [5] and the Orchestration Designer
[6]. This way, once processed through the NL2IBE Tool, we
allow for deterministic further processing using the traditional
research and product portfolio of ABB’s P&AE businesses.

IV. EVALUATION

To illustrate the potential, applicability, and effectiveness
of the proposed NL2IBE Tool, we here exemplarily look at a
use case scenario from the energy industries, dealing with
Hydrogen Generation combined with Carbon Capture Storage
and Utilization (CCSU) [21]. An exemplary user wants to
build a hydrogen generation and processing plant, see Fig. 8
for the most relevant material transformation processes.

1009

Fig. 8. High-level schema of the material transformation processes for

hydrogen generation and CCSU, adapted from [21].

As shown in Fig. 8, processes like electrolysis, steam
reforming, or pyrolysis facilitate hydrogen generation
(blue/green/grey), depending on the available educts (water or
methane), and depending on the type of energy used, as well
as further processing, utilization, or storage. Besides the actual
processes, along with their input educts and output products,
in order for setting up the requirements and process definitions
of a future process plant, the user will also want to define the
respectively needed plant components or modules, and KPIs
or parameters to measure and calibrate the process plant.

Hence, to demonstrate the applicability of the NL2IBE
Tool, we assumed and showed that the user can enter all these
wanted engineering intentions in natural language and thereon
based obtain suitable, consistent ontological representations
for further processing in the above-mentioned tool chain. For
a screenshot of the UI of the NL2IBE Tool, see Fig. 9.

In the exemplary use case, we investigated and analyzed
that the user was able to enter miscellaneous variations of
natural language engineering intentions (which describe the
above hydrogen generation process) into the given text field,
see Fig. 9, and the NL2IBE-Tool would be able to transform
these into reasonable and suitable corresponding ontological
representations. A top 3 selection of these formalized
ontological engineering intention representations is then
presented to the user, so that the user can select amongst them
the best suitable one, or, in case no representation is satisfying,
either try to reformulate the engineering intention in different
wording or raise a request to the ontology engineer for
appropriate ontology extension, see Fig. 9. Once accepted, the
respectively processed transformations are one-after-the-other
collected and listed in the session history table, see Fig. 9. This
way, we make sure that the thus accumulating ontological
formulation equivalents to the human-entered engineering
intentions are all well-aligned with the actual intentions, and
in their entirety correspond to the overall intended process
description. Once done with entering all engineering
intentions, the user clicks on ‘finalize’ and the collection of
ontological representations will be transferred into an
ontology-consistent instantiated knowledge graph for further
processing using the IBE Tool. See Fig. 10, for a screenshot
of a such instantiated ontology-based knowledge graph. With
this, we have achieved our goal, of providing an easier entry
point to the overall P&AE tool chain as shown in Fig. 1.

We remark again that the underlying assumption hereby is
that the SemFIL P&AE ontology is capable of representing
the intended engineering artefacts: This means, that the
respective engineering domain is appropriately represented by
means of concepts and interrelations/properties in the
ontology beforehand, so that the NL2IBE-based
transformation and mapping can be executed against it.

Fig. 9. Screenshot of the Frontend/UI of the NL2IBE Tool Prototype.

Of course, we have analyzed and tested our tool also with
other relevant use cases, e.g., with a 3-phase oil/gas/water
separator, which was thoroughly investigated upon in the
context of research on Intent-based Engineering [4,22] and
hence as part of the IBE Tool, which is first in the chain of
subsequently utilized tools.

Besides our own internally used ontologies, SemFIL
P&AE ontology [7] and IBE ontologies [4], we also tested our
NL2IBE Tool against the open OntoCAPE ontology [23].

Fig. 10. Screenshot of an exemplary result of the NL2IBE Tool: An

instantiated ontology-based KG.

1010

Our tool was well able to translate natural language inputs
that resemble the content and domain of OntoCAPE ontology
into OntoCAPE-consistent and -contained ontological
representations (i.e., concepts, relations, and triples). We thus
see that our tool also here shows suitable understanding and
formalization capabilities, however, we have figured out that
in this case it is not suitable for our purposes in the context of
formalization of engineering intentions. This, however, is not
a problem our NL2IBE Tool, but a matter of suitability of the
underlying ontology. In our case, OntoCAPE is too abstract
and too far off the actual content which we aim to represent in
this early stage of the P&AE tool chain.

Beyond the above qualitative exemplary considerations,
which were investigated upon to prove the subjective
suitability of the chosen approach for the given problem, we
also quantitatively analyzed our solution method:

On the one hand, a reasonable indication of the adequacy
and appropriateness of the proposed method can be obtained
by looking at the cosine similarity metric of the respectively
obtained top N ontological representations with respect to a
respectively entered natural language engineering intention.
Here, across all natural language engineering intentions that
were entered as part of our evaluation, we obtained an average
cosine similarity value of 95.43 for the identified Top 1
results, and of 89.23 for the identified Top 1-3 results, which
shows to be a reasonably good and trustworthy result for
further processing using the traditional tools mentioned above.

On the other hand, the UI/Frontend of the NL2IBE-Tool
allows for a statistical assessment of the average satisfaction
of a human expert with the results provided from the tool vs.
what the expert had previously entered: As indicated above,
upon entering a natural language engineering intention, the
NL2IBE-Tool will yield and show the Top 3 most-suitable
corresponding formalized ontological representations, so that
the user can select among these the respectively best suitable
one (or in case no representation is satisfying, either try to
reformulate the engineering intention in different wording or
raise a request to the ontology engineer for appropriate
ontology extension). Our analysis of the human expert
satisfaction is shown in Fig. 11.

Fig. 11. Assessment of the human expert satisfaction with the results from

our NL2IBE Tool across the evaluated intention transformations.

Having evaluated the transformation results from n=100
entered engineering intentions and their corresponding
formalized ontological representations, the human expert was
best satisfied in 67 cases with the Top-1 proposed ontological
representation, and in 83 cases best satisfied with one of the
Top-{1,2,3} proposed ontological representations. Opposed
to this, according to the human assessor, in only 17 cases there
would have been a better-suitable non-Top-{1,2,3}
representation available in the ontology, which was not
properly identified by the NL2IBE Tool. Overall, this
indicates that this tool can simplify the process of entering

engineering intentions in roughly 83% of all cases, where the
human expert upon entering an engineering intention is
directly provided by the tool with a suitable formalized
ontological representation, without having to manually
construct it by searching and selecting in a tedious process the
appropriate concepts, relations, or instances from an ontology
or knowledge graph.

We remark that in the evaluation we were not counting the
number of requests for ontology extensions, since these would
rather allow for a statement towards the suitability and
comprehensiveness of the underlying ontology, as opposed to
giving insights for the evaluation of the NL2IBE Tool itself.

V. SUMMARY, DISCUSSION & OUTLOOK

A. Summary & Discussion
Summarizing, in this work, the authors present the

NL2IBE Tool. The purpose of this tool is to support and to
substantially simplify the very early engineering phase of
entering engineering intentions into a set of existing
engineering tools, see again Fig. 1. To date, these intentions
either needed to be entered in an already structured and
controlled formal expert language, or they required a human
expert’s subsequent manual efforts to translate unstructured
and uncontrolled natural language into formalized (controlled
and structured) representations. Only upon formalization they
could then be used for consistent and deterministic further
processing using the traditional engineering tools.

So far, the established process, which includes having a
human expert’s efforts to help with the translation and
formalization, is very time-consuming, fuzzy, and also error-
prone due to frequent human misconceptions and semantic
ambiguities. On the contrary, with the proposed NL2IBE
Tool, we strongly support and simplify this process in roughly
83% of all cases, leaving only roughly 17% of cases for
manual formalization efforts as before. Without requiring the
user to bother about formal and structural correctness of
inputs, our tool proposes and converts uncontrolled text inputs
into structured ontological representations, which are
inherently consistent with an underlying ontology. Our
NL2IBE Tool therefore makes use of modern NLP methods
combined with the intelligent extraction of ontological
structures in information models and domain knowledge
representations.

Particularly, we achieve formalization of uncontrolled
inputs by transforming them into their abstract/latent
embedding representations in a joint embedding space with
controlled and structured ontological formulations (i.e.,
concepts, relations, and triples, as well as triple combinations
from the P&AE ontology), followed by subsequent finding of
respectively closest ontological representation equivalents.

With this setup, we enhanced the previously purely
transformers-based solution, which itself is not directly
controllable, not transparent, not guaranteed to be reliable, and
not guaranteed to be consistent with underlying ontological
information models either, by means of a combination with an
ontology-based controllable, consistent, reliable & transparent
mapping from transformed engineering intention
representations to their respective ontological representation
equivalents.

NL2IBE thus not only translates and formalizes natural
language intentions, but also, based on and controlled by the
underlying P&AE ontology, takes out the variation and

1011

randomness of natural language, by mapping uncontrolled
inputs to a finite set of structured and controlled ontology-
consistent engineering intention artefacts as outputs. We
consider this robust-making and de-randomization crucial,
particularly for critical processes, systems, and critical
infrastructure, where purely-transformers-based probabilistic
‘black box’ solutions are not acceptable, neither by customers
nor by the regulation institutions.

With the structured and ontology-consistent output
generated by the NL2IBE Tool, we have achieved the goal, of
providing an easy, flexible, and robust entry point to the
overall P&AE tool chain as shown in Fig. 1. Once processed
through the NL2IBE Tool, we allow for deterministic further
processing using the traditional research and product portfolio
of ABB P&AE.

B. Outlook & Future Work
As part of future work, we envision several points of

improvement, extension, and generalization:

Firstly, we plan to have an ontology-based and ontology-
driven extension of the NL2IBE Tool, which helps and pushes
the engineer to further extract more engineering intention
details and to further augment or complete the so-far-entered
formalized ontological engineering intention representations.
This means that, when an engineering intention was entered in
the above described way using our tool, the system will check
and propose to the human engineer what ontologically related
features may subsequently still need to be entered and defined
next. It may thus trigger missing pieces of information, ask to
give more details in incomplete ontological representations,
and even propose entirely augmented setups, by comparing
the current state of representation in a current situation with
historical similar situations.

Second, we have in mind several UI and UX
improvements for easier and more intuitive usability, and we
will want to further analyze these also based on user tests.

Third, we shall make use of the expert feedback which is
provided to us through the UI of the NL2IBE Tool, when the
user selects among the top 3 ontological representations the
respectively best suitable one. This information can be fed
back to the transformer-NN-based part of the NL2IBE
algorithm and have an impact on the weights and biases for
the embedding computation.

Last but not least, we are working on the generalization of
the NL2IBE core idea towards applying it not only to
engineering intentions (and their formalization), but to
transferring the core functionality for utilization also with
other input/output types and schema, e.g., P&AE control
narratives and other unstructured input data, and as output not
only ontological representations, but also other structured
formats, such as RDF, XML, AML, JSON, etc.

REFERENCES

[1] M. Hoernicke, T. Knohl, J. Bernshausen, H. Bloch, A. Hahn, S. Hensel,
A. Haller, A. Fay, L. Urbas: „Steuerungsengineering für
Prozessmodule – Standardkonforme Modulbeschreibungen
automatisch erstellen“. atp edition 59(3): 18-29, 2017.

[2] M. Hoernicke, K. Stark, T. Knohl, J. Bernshausen, H. Bloch, A. Fay,
A. Menschner, S. Hensel, L. Urbas, A. Haller, G. Lustig:
“Orchestration of Modular Plants“. Achema 2018, Frankfurt, 2018.

[3] M. Hoernicke, K. Stark, N. Schoch, R. Jeske, A. Markaj, A. Fay:
“Modular Engineering of Conventional Plants - Using MTP for
World-Scale Industry Plants”. atp edition 64(4):31-47, 2022.

[4] A. Markaj, N. Schoch, K. Stark M. Hoernicke, A. Fay: “Intention-
based engineering for process plants”. IEEE SysCon 2022.

[5] N. Schoch, M. Hoernicke, K. Stark: “Semantic function module
pipeline generation”. Journal of at - Automatisierungstechnik, 2021.

[6] M. Hoernicke, C. Messinger, E. Arroyo, A. Fay: “Topology Models in
AutomationML – Object-oriented basis for the automation of
automation”. atp edition 58(5): 28-41, 2016.

[7] N. Schoch, M. Hoernicke, K. Stark: “Semantic Facilitation and
Integration Layer for Process and Automation Engineering”. IEEE
ETFA 2023.

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J.D. Kaplan, et al.:
"Language Models are Few-Shot Learners". NeurIPS-33, 2020.

[9] W.X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, et al.: "A Survey of
Large Language Models". ArXiv:2303.18223, 2023.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, et al.:
"Attention is All you Need". NeurIPS-30, 2017.

[11] J. Kaddour, J. Harris, M. Mozes, H. Bradley, R. Raileanu, R. McHardy:
"Challenges and Applications of Large Language Models".
ArXiv:2307.10169, 2023.

[12] P. Schneider, T. Schopf, J. Vladika, M. Galkin, E. Simperl, F. Matthes:
“A Decade of Knowledge Graphs in Natural Language Processing:
A Survey”, ArXiv:2210.00105, 2022.

[13] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, X. Wu: "Unifying Large
Language Models and Knowledge Graphs: A Roadmap",
ArXiv:2306.08302, 2023.

[14] A.S. Behr, M. Völkenrath, N. Kockmann: “Ontology extension with
NLP-based concept extraction for domain experts in catalytic
sciences”. J. Knowledge & Information Systems, 2023.

[15] J. Sequeda, D. Allemang, B. Jacob: "A Benchmark to Understand
the Role of Knowledge Graphs on Large Language Model's
Accuracy for Question Answering on Enterprise SQL Databases".
ArXiv:2311.07509, 2023.

[16] Q. Wang, Z. Mao, B. Wang, L. Guo: “Knowledge graph embedding:
A survey of approaches and applications”. IEEE Transactions on
Knowledge and Data Engineering 29(12), 2017.

[17] J. Chen, P. Hu, E. Jimenez-Ruiz, O.M. Holter, D. Antonyrajah, I.
Horrocks: “OWL2Vec - Embedding of OWL Ontologies”.
ArXiv2009.14654v2 2021.

[18] J.B. Lamy: “Owlready - Ontology-oriented programming in Python
with automatic classification and high level constructs for
biomedical ontologies”. Artificial Intelligence In Medicine, 80:11-28,
2017.

[19] N. Reimers, I. Gurevych: “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks”. Conf. on Empirical Methods in
NLP, 2019.

[20] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, et al.:
“HuggingFace’s Transformers: State-of-the-art NLP”.
Arxiv:1910.03771, 2019.

[21] BDEW: “Hydrogen – Wasserstoff – Small molecule with huge
potential“. www.bd.ew.de (BDEW), 2021.

[22] A. Markaj, A. Fay, N. Schoch, K. Stark, M. Hoernicke: “Intention-
based engineering for the early design phases and the automation
of modular process plants”. ETFA, 2022.

[23] W. Marquardt, J. Morbach, A. Wiesner, A. Yang: "OntoCAPE - A Re-
Usable Ontology for Chemical Process Engineering". RWTHedition
(Book), 2012.

1012

