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Abstract—Looking at Process and Automation Engineering 
(P&AE) today, for the technically adept engineer, there are 
many different tools available to support the engineering work 
from translation of engineering intentions into module and plant 
descriptions, to definition and parametrization of entire process 
plant setups, for export to a control system. However, still today, 
in the very early engineering phases, engineering intentions 
either need to be entered already in a structured and controlled 
expert language or require a human expert’s manual efforts for 
translation from unstructured language into formalized 
representations, in order for thereon-based consistent further 
processing in the existing tools. This process is time-consuming, 
fuzzy, and error-prone due to potential misconceptions and 
ambiguities, even for domain experts. In this work, we therefore 
present our NL2IBE Tool, which makes use of modern Natural 
Language Processing in combination with Ontology Mining, 
and which, based on and controlled by an underlying ontology, 
allows for the deterministic transformation of natural language 
intentions into structured and consistent engineering artefacts. 
We describe the overall tool architecture as well as crucial 
functionalities and implementation features, followed by an 
evaluation by the example of a hydrogen generation and CCSU 
use case. We conclude with a discussion of the proposed tool and 
give an outlook on future research. (Abstract) 

Keywords—process & automation engineering, intend-based 
engineering, natural language processing, NLP, generative AI, 
ontological domain representation. 

I. INTRODUCTION & MOTIVATION 

A. Engineering Context and Problem Description 
Modular Automation (MA) Engineering has recently been 

a trending topic in the industry [1]. Over the last years, there 
have also been several pilot applications presented, e.g., by 
ABB, Bayer, Merck and Evonik [2], and modularization is 
considered an auspicious approach to handle the challenges of 
changing production environments. At ABB research, a 
concept for MA has been developed based on so-called 
Function Modules (FMs) [3], which bring the benefits of MA 
without requiring a dedicated controller for each module. 

In the context of several partly ongoing research activities, 
different tools have been developed to implement the FM 
concept and its facilitation along the entire engineering 
workflow, from early process engineering via automation 
engineering to control code export onto target control systems 
(such as ABB’s System 800xA). See Fig. 1, for a visualization 
of the overall process and automation engineering (P&AE) 
workflow and the respectively most relevant engineering 
functionalities and engineering artefacts. In the early phases, 
research mainly focused on "Intention-based Engineering" 

(IBE) [4] to support the modeling and formalization of 
engineering intentions into abstract service and module 
representations, and on "Module Pipeline Generation" 
(PipeGen) [5] to facilitate the automated generation of 
module-to-module pipelines based on the semantic 
description of modules coming from the IBE Tool and of the 
intended to-be-processed materials. These two tools, as shown 
in Fig. 1, are followed by the ‘Orchestration Designer’ Tool, 
which facilitates module engineering and plant orchestration 
[6]. Accompanying, the Semantic Facilitation & Integration 
Layer (SemFIL) [7] guarantees and facilitates the seamless 
and consistent integration of the above tools into the overall 
workflow. The underlying SemFIL ontology and associated 
knowledge graph therefore store the semantic knowledge and 
data in a machine-readable way and represents the overall 
domain knowledge in a controlled vocabulary. In total, these 
applications thus provide solutions for the process and 
automation engineering stages in the overall P&AE workflow, 
see again Fig. 1. 

However, still today, in the early engineering phases, 
engineering intentions either need to be entered into the 
existing engineering tools already in a structured and 
controlled formal expert language or require a human expert’s 
manual support for ‘translation’ from unstructured and 
uncontrolled natural language into formalized (controlled and 
structured) representations (for thereon-based consistent 
further processing using the existing above-mentioned tools). 

This process however is very time-consuming, fuzzy, and 
error-prone due to frequent human misconceptions and 
semantic ambiguities, even for domain experts. 

B. Proposed Solution and Comparison with State of the Art 
Therefore, in this work, we present our NL2IBE Tool, 

which focusses on the very first step in the described 
workflow, see the red-dashed circle in Fig. 1. 

 

 

 

 

 

 

Fig. 1. The overall process and automation engineering workflow along 

with the existing tools and their respective functionalities and inputs/outputs. 
The red circle to the left shows the focus of this work, the transformation of 

natural language into formalized engineering intention artefacts. 
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The NL2IBE Tool supports the engineer in the activity of 
entering engineering intentions into our system. Without 
actually requiring him/her to bother about formal and 
structural correctness of inputs, our tool converts uncontrolled 
text inputs into structured and SemFIL-consistent ontological 
representations. NL2IBE therefore makes use of modern 
Natural Language Processing (NLP) methods. However, it not 
only translates/formalizes natural language intentions, but 
also, based on and controlled by the underlying SemFIL 
ontology, it allows to obtain deterministic transformations of 
natural language intentions into structured and SemFIL-
consistent engineering intention artefacts, see Fig. 2. 

 

 

 

 

 

 

 

 

Fig. 2. Our NL2IBE Tool is dedicated to converting natural language 

engineering intentions into formalized ontological intention representations. 

The initial idea was to use standard transformer NNs-
based, pre-trained language models, i.e., Large Language 
Models (LLMs), for the processing and translation of the 
natural language engineering intentions [8]. Large, 
instruction-tuned models reportedly can be fine-tuned on I/O 
schema, so that they adapt, e.g., particularly to a certain 
domain such as engineering, or to generate output according 
to a certain schema like JSON or OWL format [9]. 

Being trained on vast amounts of diverse text data, LLMs 
can ‘understand’ complex natural language (e.g., engineering 
intentions), along with syntax, semantics and context [10]. To 
achieve this, besides the deep encoder-decoder architecture 
with several hidden layers, text embeddings are the core 
feature of the transformer NN architecture, representing words 
or sentences as numerical n-dimensional vectors, which in an 
abstract way capture their encoded meaning. Hence, formally, 
natural language input text is transformed by a function  into 
n-dimensional embedding vector representations in the latent 
embedding space : 

 .� ����

During training and/or fine-tuning, the goal is, among 
others, to find a function  such that semantically similar text 
is metrically close in  (e.g., with respect to the cosine 
similarity metric). Essentially, embeddings thus enable the 
model to learn abstract relationships between words/sentences 
and contextualize information [8]. 

Nevertheless, while LLMs are thus able to understand 
content and to generate remarkably coherent and contextually 
relevant responses, they also come with several severe 
challenges and problems. Among others, these include 
potential biases in the training data, inaccurate or hallucinated 
content generation, as well as non-deterministic and non-
reproducible resulting output, which is mainly due to the 
stochastic nature of the underlying NN architecture [11]. 

Given the fact that LLMs can grasp the abstract 
relationships between words and sentences, it seems obvious 
that this abstract understanding of relationships and context 
should possibly be exploited and be usable also in the context 
of ontological information modeling and knowledge 
representation. Several research groups have accordingly 
investigated on or demonstrated different beneficial aspects of 
this synergy [12]: Proposed as a roadmap, [13] categorizes 
three main ways in which LLMs come to interact with 
ontologies or knowledge graphs (KGs). First, KG-enhanced 
LLMs, which incorporate KGs during the pre-training and 
inference phases of LLMs. Second, LLM-augmented KGs, 
that leverage LLMs for different KG tasks such as embedding, 
completion, construction, and question answering. And third, 
mutually synergized and enhanced LLMs and KGs, e.g., for 
bidirectional reasoning driven by both data and knowledge. 
The authors in [14] present an NLP-supported method for the 
structured extension of existing ontologies. The proposed 
workflow derives classes and relations from text and has a 
domain expert revise the resulting extended ontology. 
Similarly, [15] investigates on LLMs’ capacities of translating 
natural language questions into formal database queries and 
retrieving information from graph databases or KGs. Lastly, 
while the semantic embedding of KGs has been widely 
studied and meanwhile been used for statistical analysis tasks 
across various domains [16], less attention has been paid to 
developing methods for embedding entire OWL ontologies. 
Here, OWL2Vec* [17] particularly stands out, as it allows to 
encode by means of embedding vectors the semantics of 
single concepts of an OWL ontology by considering its graph 
structure, lexical information, and logical constructors. 

Given this state of the art, and looking at the original 
problem of transforming natural language engineering 
intentions into their formalized ontological intention 
representation counterparts, to the best of the authors’ 
knowledge, to date, no approach has been presented which 
maps in a controlled and deterministic way natural language 
to ontological concepts, triples, or even triple combinations 
from an existing engineering ontology. 

In other words, and more generally, pure LLMs-based 
solutions cannot (yet) reliably, transparently, and controllably 
generate formalized output, which is guaranteed to be 
consistent with a specific ontology or domain information 
model representation [11]. This, however, is a requirement for 
many critical systems applications, particularly in process and 
automation engineering, where fuzzy ‘black box’ ML model 
behavior is not accepted by customers. 

II. CORE IDEA OF OUR SOLUTION 

To cope with the above requirements, our idea was, to add 
a further ‘modality under our control’, namely ontological 
representations (i.e., concepts, concept-relation-concept 
triples, and triple combinations), into the same embedding 
space . See Fig. 3, for a high-level visualization of the core 
idea and workflow of our solution: Using an LLM, we 
transform, i.e., encode, not only an uncontrolled natural 
language input sentence  (an arbitrary engineering intention), 
but also all consistently permitted ontological formulations , 
i.e., concepts and combinations (triples) of concepts and 
relations, into the same joint embedding space. Thereon-
based, for the respectively embedded natural language 
engineering intention vector , we then select the closest 
ontological representation embedding vector  from the set 
of all ontology-derived embedding vectors .  
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Fig. 3. The core idea underlying our NL2IBE Tool: Adding a further modality under our control (ontological representations) to the joint embedding space, 

so that new embedding representations of natural language engineering intentions can be analyzed on their proximity and similarity to the well-defined, 

controlled, and structured set of consistent process and automation engineering formulations. 

Figuratively, one could say, we thus facilitate and enable 
‘into-ontological-embedding Zero-Shot Classification’. 

The above process is repeated for the entire set of natural 
language engineering intention sentences, which, e.g., in the 
end constitute altogether the description of a new to-be-
engineered process plant. 

In mathematical terms, what happens is that we artificially 
sparsify the continuous (joint embedding) solution space  

in equation (1) into a discretized space  by accepting as 
final consistent solution of the enhanced transformation  
only the deterministic embedding representations  of the 
ontology-derived concepts, triples, and triple combinations: 

 ,� ����

where  is equivalent to  with the standard 
transformation  from (1) followed by identification  of the 

closest ontological concept or triple  in . 

The original transformation  (with A the space 
of arbitrary words and sentences ) here is combined with the 

function , which finds for every embedding 
vector  in  the respectively closest ontological 

concept/triple  in , such that  

  (3) 

and 

 . (4)�

With this setup, we achieve formalization of uncontrolled 
and unstructured natural language inputs, by transforming 
inputs into embedding representations in a joint embedding 
space with controlled and structured ontological formulations 
(concept & triple combinations), followed by finding among 
these the closest fits. 

In the next section, we will describe the inner workings 
and implementation of our solution in more detail. 

III. OUR SOLUTION: THE NL2IBE TOOL 

Having motivated and described the high-level core idea 
of our solution in the above section, we here want to have a 
closer look at the approach and its implementation. 

Therefore, first, we look at the underlying SemFIL and 
P&AE ontology [7], which we aim our algorithm to produce 
consistent outputs for, and which hence determines the target 
output representation. Second, we describe the major steps in 
our NL2IBE algorithm, followed by a detailed description of 
its implementation and architecture. 

A. SemFIL and the P&AE Ontology 
The overall goal of this work is to obtain from natural 

language engineering intentions suitable input for the IBE 
Tool (“Intention-based Engineering”) [4], and from there 
further to Pipeline Generation [5] and Orchestration Designer 
[6], see again Fig. 1. Alongside entering the overall P&AE 
Tool Chain we also want to become consistent with SemFIL 
[7] and with the underlying SemFIL ontology, our controlled 
& structured P&AE domain representation. 

SemFIL was already described in an earlier publication 
[7], and we will dig deeper in a further future dedicated 
publication. Here, we only want to give a minimalistic 
overview on its most important concept groups and relations. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. SemFIL P&AE Ontology (Protégé Screenshot). 
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To consistently govern the entire P&AE domain and tool 
chain, it can represent ‘abstract data’ (which can stand for 
materials, signals, or energy), and ‘data manipulation 
processes’ (e.g., mixing, pyrolysis, or steam reforming). 
Moreover, it also knows and describes the world of ‘modules’ 
and ‘services’ in the MA context, along with its structures, 
inputs/outputs, parameters, and KPIs, as well as ‘module 
chains’, ‘processes’, and ‘procedures’. Finally, it also formally 
describes engineering knowledge, as well as the interrelations 
and dependencies, restrictions and axioms which govern the 
P&AE domain. See Fig. 4, for a screenshot of our SemFIL 
P&AE Ontology, taken in the Protégé ontology editor. 

This is important since we motivated above, that we aim 
to transform uncontrolled natural language engineering 
intentions into their structured ontological formulation 
equivalents. In order to become consistent with this SemFIL 
Ontology, we extract from it all concepts and consistently 
permitted triples (i.e., concepts and instances along with their 
ontological interrelations), so that we can then find, using 
NLP, the respectively best suitable ontological representation 
for a given natural language engineering intention. In the next 
subsection, we describe this process and its algorithmic 
implementation. 

B. Our NL2IBE Solution 
Here, we describe the main steps in our NL2IBE 

algorithm, followed by a detailed description of its 
implementation and architecture. We refer again to Fig. 3, for 
a visualization of the core idea of the NL2IBE solution. 

The Main Steps of the NL2IBE Tool: 

0) Make available for usage a pre-trained LLM to obtain 
joint embedding representations of both the controlled 
ontological formulations (i.e., concepts, instances, 
and triples, and triple combinations) and of the 
arbitrary uncontrolled natural language engineering 
intentions input. 

1) Use the LLM to obtain the embedding representations 
of the controlled ontological formulations. Thanks to 
the underlying ontology, it is known what the 
ontological formulations mean (semantically) and 
how they are (inter)-related. 

2) Use the same LLM to process (new) natural language 
engineering intentions input, and accordingly obtain 
their embedding representations, too. 

3) For every such new natural language engineering 
intention (keyword/formulation) embedding, find the 
top N ( ) nearest (i.e., most metrically similar) 
known ontological concept(s)/triple(s) embedding(s), 
along with its/their semantic meaning(s) and 
interrelations. Above we figuratively described this as 
into-ontological-embedding Zero-Shot Classification. 

4) Rank the top N closest formal ontological 
representations according to a selected metric (e.g., 
cosine similarity) or with respect to uncertainties. 

5) Allow for similarity- and uncertainty quantification-
based human expert assessment and further fine-
tuning of the respective transformation results 
through human expert interaction. 

With these main steps being listed, we have implemented 
our NL2IBE Tool as a Web App. It consists of an HTML- and 

JavaScript-based frontend part for receiving user inputs and 
showing processing results, and a Python/Flask-based 
backend part for performing the ontology-controlled 
transformation of natural language inputs into ontological 
engineering intentions. 

The Frontend functionalities are straightforward; see also 
Fig. 9 for a screenshot of the frontend of the NL2IBE Tool: 

1. The user enters an engineering intention text string 
into the text input field and clicks ‘Submit’ to request 
for NL2IBE-Processing. (See below for what then 
happens in the NL2IBE Backend). 

2. Being returned from NL2IBE-Processing Backend, 
the user can check out the top 3 best suitable 
ontological formulations and inspect a visualization 
which shows in a 2D projection the entered 
engineering intention and the top 3 nearest 
ontological representations (based on a Principal 
Component Analysis-derived projection). 

3. The user can select the respectively best fit or raise an 
ontology extension request (if none of the proposed 
representations satisfy the actual intention). 

4. Upon selection and acceptance of the respectively 
best fitting ontological representation (i.e., 
concept/triple/combination), it is sent to the ‘History 
DB’ for accumulation, until all intentions are entered. 

5. To enter further intentions, repeat steps 1-5 until done. 

6. Upon finalization of the engineering intention 
processing, the user clicks the ‘Finalize’ button, to 
have all ontological representations (i.e., concepts, 
triples, or triples combinations) being combined into 
an ontologically consistent Knowledge Graph with 
the respective instantiations. Thus, an individual 
domain-ontology-consistent representation of the 
given set of engineering intentions is obtained. 

The Backend provides the actual core functionalities, 
building mainly upon owlready2 library (for ontology-
oriented programming) [18] and transformers library (for 
LLM integration & NLP functionalities) [19, 20]: 

On Startup of the NL2IBE App, as part of a preparatory 
step, the LLM is initialized and the ontological embeddings 
are precomputed once only and made available for subsequent 
comparison to later entered engineering intentions, see Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Pseudo code of the preparatory steps on startup of the NL2IBE Tool. 
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Fig. 6. Visualization of process for the stepwise extraction of the content of P&AE ontology, executed as part of the extract_ontology_content() method. 

The method extract_ontology_content() is to extract all 
concepts, instances, triples (i.e., concepts and instances, along 
with interrelations and properties), and consistent triple 
combinations from the P&AE ontology file, see Fig. 6. 

Having extracted, using owlready2, from the ontology all 
concepts and triples, they are further processed, using standard 
RegEx regular expressions, into human-readable ontological 
sentence equivalents. Thus, for example, a triple 
‘CompressorModule hasChemReaction_whichTakesAsInput 
GreenHydrogen’ will be translated into a more-natural 
language sentence ‘Compressor module has chemical 
reaction which takes as input green hydrogen’. Only then, this 
more natural sentence will allow for reasonable subsequent 
NLP-based processing into embedding representations. 

After this once-only-on-startup effort of computing all 
ontological representation embeddings, the actual NL2IBE 
core script is called, see Fig. 7. Here, we first artificially de-
intentionalize the natural language input, i.e., remove the 
intention formulation wrapper (e.g., “I intend to achieve …”) 
from the input. This part of the input sentence, and how it 
affects formal requirements engineering, will be dealt with in 
a future dedicated work. The actual engineering intention 
content will then be encoded using the LLM, so we obtain its 
embedding vector, which can then be compared to all pre-
computed ontological formulation embedding vectors, e.g., 
with respect to the standard cosine similarity metric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Pseudo code of the NL2IBE core. 

The resulting similarity values now allow for sorting the 
ontological formulation embeddings according to their 
highest/best suitability. We return the top 3 (or N) closest 
ontological formulation embeddings along with their 
similarity values as a measure for confidence and suitability 
in order to then allow the user to select the best suitable option 
in the UI/frontend. 

Additionally, as a convenience feature, we also provide the 
user with a 2D-projected visualization of the embedding space 
and the embedding vectors (of both current engineering 
intention input and ontological representations), which is 
obtained by means of running a Principal Component 
Analysis on the embedding vectors and thereon-based 
dimensionality reduction. Like this, we can even visualize the 
proximity of the respective best ontological representations to 
the given natural language engineering intention input, and 
thus enable the user to hover around also over other possible 
representations; see also Fig. 9. 

As a remark, if the confidence measure is below a certain 
threshold, then the tool informs the user that no suitable 
ontological representation was found, so that – if wanted – a 
request for appropriate extension of the P&AE ontology can 
be raised to an ontology engineer. 

Summarizing and putting this into context, in this section, 
we have described how, using our NL2IBE Tool, we are able 
to transform unstructured/uncontrolled natural language 
engineering intention inputs into structured/controlled 
ontological engineering artefacts, which are consistent with 
the underlying P&AE ontology, and hence suitable for further 
processing using the tool chain described in Fig. 1. We 
motivated how one can therefore make intelligent use of NLP 
methods in combination with knowledge representation and 
ontologies, which control the final outputs. 

Following the engineering intentions processing through 
our NL2IBE Tool, the collection of ontological triples (or 
triple combinations) and its combination into an ontologically 
consistent knowledge graph (with respective instantiations), 
can be fed into the IBE Tool [4], which in turn is followed by 
the Pipeline Generation [5] and the Orchestration Designer 
[6]. This way, once processed through the NL2IBE Tool, we 
allow for deterministic further processing using the traditional 
research and product portfolio of ABB’s P&AE businesses. 

IV. EVALUATION 

To illustrate the potential, applicability, and effectiveness 
of the proposed NL2IBE Tool, we here exemplarily look at a 
use case scenario from the energy industries, dealing with 
Hydrogen Generation combined with Carbon Capture Storage 
and Utilization (CCSU) [21]. An exemplary user wants to 
build a hydrogen generation and processing plant, see Fig. 8 
for the most relevant material transformation processes. 
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Fig. 8. High-level schema of the material transformation processes for 

hydrogen generation and CCSU, adapted from [21]. 

As shown in Fig. 8, processes like electrolysis, steam 
reforming, or pyrolysis facilitate hydrogen generation 
(blue/green/grey), depending on the available educts (water or 
methane), and depending on the type of energy used, as well 
as further processing, utilization, or storage. Besides the actual 
processes, along with their input educts and output products, 
in order for setting up the requirements and process definitions 
of a future process plant, the user will also want to define the 
respectively needed plant components or modules, and KPIs 
or parameters to measure and calibrate the process plant. 

Hence, to demonstrate the applicability of the NL2IBE 
Tool, we assumed and showed that the user can enter all these 
wanted engineering intentions in natural language and thereon 
based obtain suitable, consistent ontological representations 
for further processing in the above-mentioned tool chain. For 
a screenshot of the UI of the NL2IBE Tool, see Fig. 9. 

In the exemplary use case, we investigated and analyzed 
that the user was able to enter miscellaneous variations of 
natural language engineering intentions (which describe the 
above hydrogen generation process) into the given text field, 
see Fig. 9, and the NL2IBE-Tool would be able to transform 
these into reasonable and suitable corresponding ontological 
representations. A top 3 selection of these formalized 
ontological engineering intention representations is then 
presented to the user, so that the user can select amongst them 
the best suitable one, or, in case no representation is satisfying, 
either try to reformulate the engineering intention in different 
wording or raise a request to the ontology engineer for 
appropriate ontology extension, see Fig. 9. Once accepted, the 
respectively processed transformations are one-after-the-other 
collected and listed in the session history table, see Fig. 9. This 
way, we make sure that the thus accumulating ontological 
formulation equivalents to the human-entered engineering 
intentions are all well-aligned with the actual intentions, and 
in their entirety correspond to the overall intended process 
description. Once done with entering all engineering 
intentions, the user clicks on ‘finalize’ and the collection of 
ontological representations will be transferred into an 
ontology-consistent instantiated knowledge graph for further 
processing using the IBE Tool. See Fig. 10, for a screenshot 
of a such instantiated ontology-based knowledge graph. With 
this, we have achieved our goal, of providing an easier entry 
point to the overall P&AE tool chain as shown in Fig. 1. 

We remark again that the underlying assumption hereby is 
that the SemFIL P&AE ontology is capable of representing 
the intended engineering artefacts: This means, that the 
respective engineering domain is appropriately represented by 
means of concepts and interrelations/properties in the 
ontology beforehand, so that the NL2IBE-based 
transformation and mapping can be executed against it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Screenshot of the Frontend/UI of the NL2IBE Tool Prototype. 

Of course, we have analyzed and tested our tool also with 
other relevant use cases, e.g., with a 3-phase oil/gas/water 
separator, which was thoroughly investigated upon in the 
context of research on Intent-based Engineering [4,22] and 
hence as part of the IBE Tool, which is first in the chain of 
subsequently utilized tools. 

Besides our own internally used ontologies, SemFIL 
P&AE ontology [7] and IBE ontologies [4], we also tested our 
NL2IBE Tool against the open OntoCAPE ontology [23]. 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Screenshot of an exemplary result of the NL2IBE Tool: An 

instantiated ontology-based KG. 
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Our tool was well able to translate natural language inputs 
that resemble the content and domain of OntoCAPE ontology 
into OntoCAPE-consistent and -contained ontological 
representations (i.e., concepts, relations, and triples). We thus 
see that our tool also here shows suitable understanding and 
formalization capabilities, however, we have figured out that 
in this case it is not suitable for our purposes in the context of 
formalization of engineering intentions. This, however, is not 
a problem our NL2IBE Tool, but a matter of suitability of the 
underlying ontology. In our case, OntoCAPE is too abstract 
and too far off the actual content which we aim to represent in 
this early stage of the P&AE tool chain. 

Beyond the above qualitative exemplary considerations, 
which were investigated upon to prove the subjective 
suitability of the chosen approach for the given problem, we 
also quantitatively analyzed our solution method: 

On the one hand, a reasonable indication of the adequacy 
and appropriateness of the proposed method can be obtained 
by looking at the cosine similarity metric of the respectively 
obtained top N ontological representations with respect to a 
respectively entered natural language engineering intention. 
Here, across all natural language engineering intentions that 
were entered as part of our evaluation, we obtained an average 
cosine similarity value of 95.43 for the identified Top 1 
results, and of 89.23 for the identified Top 1-3 results, which 
shows to be a reasonably good and trustworthy result for 
further processing using the traditional tools mentioned above. 

On the other hand, the UI/Frontend of the NL2IBE-Tool 
allows for a statistical assessment of the average satisfaction 
of a human expert with the results provided from the tool vs. 
what the expert had previously entered: As indicated above, 
upon entering a natural language engineering intention, the 
NL2IBE-Tool will yield and show the Top 3 most-suitable 
corresponding formalized ontological representations, so that 
the user can select among these the respectively best suitable 
one (or in case no representation is satisfying, either try to 
reformulate the engineering intention in different wording or 
raise a request to the ontology engineer for appropriate 
ontology extension). Our analysis of the human expert 
satisfaction is shown in Fig. 11. 

 

 

 

 

 

 

Fig. 11. Assessment of the human expert satisfaction with the results from 

our NL2IBE Tool across the evaluated intention transformations. 

Having evaluated the transformation results from n=100 
entered engineering intentions and their corresponding 
formalized ontological representations, the human expert was 
best satisfied in 67 cases with the Top-1 proposed ontological 
representation, and in 83 cases best satisfied with one of the 
Top-{1,2,3} proposed ontological representations. Opposed 
to this, according to the human assessor, in only 17 cases there 
would have been a better-suitable non-Top-{1,2,3} 
representation available in the ontology, which was not 
properly identified by the NL2IBE Tool. Overall, this 
indicates that this tool can simplify the process of entering 

engineering intentions in roughly 83% of all cases, where the 
human expert upon entering an engineering intention is 
directly provided by the tool with a suitable formalized 
ontological representation, without having to manually 
construct it by searching and selecting in a tedious process the 
appropriate concepts, relations, or instances from an ontology 
or knowledge graph. 

We remark that in the evaluation we were not counting the 
number of requests for ontology extensions, since these would 
rather allow for a statement towards the suitability and 
comprehensiveness of the underlying ontology, as opposed to 
giving insights for the evaluation of the NL2IBE Tool itself. 

V. SUMMARY, DISCUSSION & OUTLOOK 

A. Summary & Discussion 
Summarizing, in this work, the authors present the 

NL2IBE Tool. The purpose of this tool is to support and to 
substantially simplify the very early engineering phase of 
entering engineering intentions into a set of existing 
engineering tools, see again Fig. 1. To date, these intentions 
either needed to be entered in an already structured and 
controlled formal expert language, or they required a human 
expert’s subsequent manual efforts to translate unstructured 
and uncontrolled natural language into formalized (controlled 
and structured) representations. Only upon formalization they 
could then be used for consistent and deterministic further 
processing using the traditional engineering tools. 

So far, the established process, which includes having a 
human expert’s efforts to help with the translation and 
formalization, is very time-consuming, fuzzy, and also error-
prone due to frequent human misconceptions and semantic 
ambiguities. On the contrary, with the proposed NL2IBE 
Tool, we strongly support and simplify this process in roughly 
83% of all cases, leaving only roughly 17% of cases for 
manual formalization efforts as before. Without requiring the 
user to bother about formal and structural correctness of 
inputs, our tool proposes and converts uncontrolled text inputs 
into structured ontological representations, which are 
inherently consistent with an underlying ontology. Our 
NL2IBE Tool therefore makes use of modern NLP methods 
combined with the intelligent extraction of ontological 
structures in information models and domain knowledge 
representations. 

Particularly, we achieve formalization of uncontrolled 
inputs by transforming them into their abstract/latent 
embedding representations in a joint embedding space with 
controlled and structured ontological formulations (i.e., 
concepts, relations, and triples, as well as triple combinations 
from the P&AE ontology), followed by subsequent finding of 
respectively closest ontological representation equivalents. 

With this setup, we enhanced the previously purely 
transformers-based solution, which itself is not directly 
controllable, not transparent, not guaranteed to be reliable, and 
not guaranteed to be consistent with underlying ontological 
information models either, by means of a combination with an 
ontology-based controllable, consistent, reliable & transparent 
mapping from transformed engineering intention 
representations to their respective ontological representation 
equivalents. 

NL2IBE thus not only translates and formalizes natural 
language intentions, but also, based on and controlled by the 
underlying P&AE ontology, takes out the variation and 
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randomness of natural language, by mapping uncontrolled 
inputs to a finite set of structured and controlled ontology-
consistent engineering intention artefacts as outputs. We 
consider this robust-making and de-randomization crucial, 
particularly for critical processes, systems, and critical 
infrastructure, where purely-transformers-based probabilistic 
‘black box’ solutions are not acceptable, neither by customers 
nor by the regulation institutions. 

With the structured and ontology-consistent output 
generated by the NL2IBE Tool, we have achieved the goal, of 
providing an easy, flexible, and robust entry point to the 
overall P&AE tool chain as shown in Fig. 1. Once processed 
through the NL2IBE Tool, we allow for deterministic further 
processing using the traditional research and product portfolio 
of ABB P&AE. 

B. Outlook & Future Work 
As part of future work, we envision several points of 

improvement, extension, and generalization: 

Firstly, we plan to have an ontology-based and ontology-
driven extension of the NL2IBE Tool, which helps and pushes 
the engineer to further extract more engineering intention 
details and to further augment or complete the so-far-entered 
formalized ontological engineering intention representations. 
This means that, when an engineering intention was entered in 
the above described way using our tool, the system will check 
and propose to the human engineer what ontologically related 
features may subsequently still need to be entered and defined 
next. It may thus trigger missing pieces of information, ask to 
give more details in incomplete ontological representations, 
and even propose entirely augmented setups, by comparing 
the current state of representation in a current situation with 
historical similar situations. 

Second, we have in mind several UI and UX 
improvements for easier and more intuitive usability, and we 
will want to further analyze these also based on user tests. 

Third, we shall make use of the expert feedback which is 
provided to us through the UI of the NL2IBE Tool, when the 
user selects among the top 3 ontological representations the 
respectively best suitable one. This information can be fed 
back to the transformer-NN-based part of the NL2IBE 
algorithm and have an impact on the weights and biases for 
the embedding computation. 

Last but not least, we are working on the generalization of 
the NL2IBE core idea towards applying it not only to 
engineering intentions (and their formalization), but to 
transferring the core functionality for utilization also with 
other input/output types and schema, e.g., P&AE control 
narratives and other unstructured input data, and as output not 
only ontological representations, but also other structured 
formats, such as RDF, XML, AML, JSON, etc. 
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