
On Efficient Object-Detection NAS for ADAS on
Edge devices

Diksha Gupta
IBM Research

Singapore

diksha.g@ibm.com

Rhui Dih Lee
IBM Research

Singapore

rhui.dih.lee@ibm.com

Laura Wynter
IBM Research

Singapore

lwynter@sg.ibm.com

Abstract—Object detection is a crucial building block for
Advanced Driving Assistance Systems (ADAS). These systems
require real-time accurate detection on resource-constrained
edge devices. Deep learning models are emerging as popular
techniques over traditional methods with superior performance.
A hurdle in deploying these models is the inference time and
computational cost of these models, in addition to training
challenges for specialized tasks.We address this using supernet
training-based neural architecture search (NAS) to obtain a
variety of object detection models at a scale specific to the ADAS
application. To this end, we consider a convolutional neural
network-based object detection model. We produce a palette
of CNN models using the CityScapes, and BDD10K datasets,
catering to diverse parameters and accuracy tradeoffs. Our
resulting models range between 1.8M to 2.6M parameters with
an mAP score within in 29.7% to 33.60% on the CityScapes
dataset, and 20.08% to 23.35% on BDD10K. Inspired by the
popularity of Large Vision Models, we further develop cost-
effective transformer-based ADAS Object Detection models. We
obtain a palette of transformer models ranging from 69.1M to
113M parameters with mAP score within 28.58% and 32.43%
on CityScapes and between 24.31% to 26.51% on the BDD10K
dataset.

Index Terms—Object Detection, Supernet Training, Weight-
Sharing NAS, ADAS

I. INTRODUCTION

Object detection is one of the fundamental tasks in computer

vision, forming the basis for numerous downstream tasks such

as instance segmentation, image captioning, object tracking,

and many more. It is a two-fold process that creates a

bounding box around objects and then assigns labels to them.

It finds applications in several diverse domains, such as video

surveillance, autonomous driving, and healthcare monitoring.

Object detection is foundational to Advanced Driving As-

sistance Systems (ADAS). It improves transportation sys-

tem safety through human-machine interfacing, encompassing

pedestrian detection, parking assist, driver drowsiness detec-

tion, lane detection, and many other tasks that assist drivers

with safety-critical functionality.

With the recent advances in deep learning, convolutional

neural networks (CNN) models have emerged as achieving

unprecedented improvement in accuracy for object detection

tasks over traditional handcrafted approaches [1]–[3]. Specif-

ically, multiple research works have studied the problem of

object detection using CNNs for different ADAS tasks [4]–

[6].

In conjunction with the transformer-based architectures re-

defining the field of NLP, Vision Transformers have emerged

as a competitive replacement to state-of-the-art (SOTA) CNN

models on image classification tasks [7]. Motivated by this,

recent works have attempted transformer-based models for

ADAS object detection [8], [9].

Despite such enhancements in the capabilities of deep

learning models for object detection, there is a lack of rampant

adoption of these techniques in the real world. The major

contributing factors to this are:

1) Due to the time-critical nature of ADAS tasks, these sys-

tems require deployment locally on resource-constrained

edge devices. Such devices lack expensive inference

hardware and have limited memory to store the mod-

els. Existing solutions fail to meet these performance

requirements. Therefore, developing models that cater

to diverse deployment scenarios is a critical problem.

2) Determining the best architecture for a given set of de-

ployment constraints is challenging as well as computa-

tionally expensive. Supernet-based Neural Architectural

Search (NAS) is an efficient technique addressing this

issue in the image classification domain [10], [11]. A

large amount of training data is required for the supernet

training. This may not always be available for different

ADAS tasks. Hence, NAS in the presence of limited

training data for ADAS-specific applications is an open

problem.

3) Training transformer-based object detection models is

computationally expensive. For instance, the training of

a single ViTDet on the COCO dataset requires at least 50

epochs using 64 A100 GPUs [12]. This cost compounds

as we move to supernet training. Hence, there is a need

for less resource-intensive training strategies.

In this work, we solve the problem of efficient training

of object detection model for the ADAS task deployable on

diverse edge devices. To this end, we make the following

contributions:

1) We propose supernet-based NAS techniques for ADAS

CNN-based as well as transformer-based Object Detec-

tion to obtain a palette of models catering to diverse de-

ployment scenarios. We demonstrate its performance on

1013

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00183

a CNN-based object detection model and a transformer-

based object detection model. We produce a palette of

models for class of architectures meeting diverse device

constraints: a) CNN-based in the range of 1.8M to 2.6M

parameters, and b) Transformer-based in the range of

69.1M to 113M parameters, without severe performance

drop.

2) To overcome the problem of limited task-specific train-

ing data, we propose first pre-training the supernet on a

large generic object-detection dataset, followed by train-

ing on ADAS-specific data. We empirically illustrate the

efficacy of our strategy on two small ADAS datasets

consisting of at most 10,000 samples each, namely: the

CityScapes and BDD10K datasets.

3) We propose an efficient transformer supernet-training

strategy, even with limited training data. Instead of

supernet pretraining on a large object detection dataset,

we load pretrained weights of the static model to the

supernet’s largest subnet (maxnet). This significantly re-

duces computational requirements from 64 A100 GPUs

to a single V100 GPU for our training strategy. How-

ever, this approach leads to suboptimal performance in

smaller subnets. To mitigate this performance degra-

dation, we incorporate in-place knowledge distillation

from the maxnet to the remaining subnets during the

transformer supernet training, yielding better-performing

smaller subnets but falling short of the desired level. To

further boost the performance of these smaller subnets,

we explore various knowledge distillation loss functions

and empirically determine that the Pearson Correlation

Coefficient-based Knowledge Distillation (PKD) method

from [13] is the most effective.

We organize the rest of the paper as follows: In Section II,

we provide the related work on the state of object detection in

ADAS, and supernet-based NAS techniques. Then, we discuss

our methodology in Section III, followed by the experimental

setup and results in Section IV, and Conclusion & Discussion

in Section V.

II. RELATED WORK

In this section, we review the existing literature on object

detection for ADAS, supernet training-based Neural Archi-

tectural Search, and object detection transformers. Several

other works propose different techniques for inference on edge

devices such as pruning [14], [15], quantization [16], image

partitioning [17]. These techniques independently result in

optimised models catering to specific deployment constraints,

which require additional computational effort per set of con-

straints. On the other hand, our approach only requires a

one-time training computational cost and produces a palette

of models for diverse deployment constraints. Despite these

shortcomings, the aforementioned techniques can further en-

hance the performance of our output models by incorporating

them on top of our proposed technique.

A. Object Detection in Advanced Driving Assistance Systems

Object detection serves as a fundamental building block in

ADAS, critical to the automobile industry. Several works

propose CNN-based object detection solutions, but their appli-

cation to ADAS is limited. For instance, object scale variation

and occlusion are challenges faced by existing ADAS solu-

tions. [4] addresses these issues; however, the resulting models

depend on GPU for inference. Given the time-critical nature

of the ADAS tasks and the limited computational capacity of

edge devices, there is a need to eliminate GPU dependence

for inference. [18] proposes EdgeYOLO, a modified YOLOv4

model that eliminates the redundancies in the network back-

bone and the feature extraction stage. Despite these optimiza-

tions to fit on edge devices, the resulting model still requires a

GPU for inference. Generalizing to diverse resource constraint

devices is identified as future work. [19] presents a generic

strategy for the YOLOv5 model, utilizing the RepNAS strategy

from [20] to determine an efficient architecture. The NAS

strategy requires retraining for every distinct device constraint,

which is orthogonal to our training approach. We propose

a one-time training strategy to accommodate diverse device

constraints.

B. Supernet-based Neural Architectural Search

Current one-shot supernet-training-based algorithms for neural

architectural search primarily concentrate on CNN models

intended for image classification [21], [22]. As an extension

of this, Chen et al. introduce DetNAS in [23] to enhance

the design of CNN backbones for object detection. They

first pretrain the backbone supernet on the ImageNet dataset,

followed by supernet training incorporating the detector neck

and head on the detection COCO dataset. However, this

method is computationally demanding and performs poorly

when fine-tuning for detection on smaller datasets. Another

approach, SPNAS [24], proposes model backbone supernet

training, requiring multiple stages of training on both the

Imagenet dataset and object detection dataset, resulting in

computational inefficiency. It is important to note that while

these techniques work well on large object detection datasets,

they are less suitable for ADAS application. In our work, we

aim to overcome this challenge.

C. Transformer-based Object Detection

Motivated by the SOTA performance of ViT in image classi-

fication tasks [7], [25] et al. propose replacing the classifier

head with a detection head on the ViT backbone for COCO

object detection. Building upon this idea, Li et al. [12] further

enhance the approach by integrating a simple feature pyramid

with the ViT backbone. These models exhibit competitiveness

with SOTA CNN models but rely on large target datasets.

Moreover, their non-edge-friendly nature, relying on GPUs

for inference, poses limitations. To address these shortcom-

ings for ADAS application, we extend the work by [12] to

obtain a palette of models. In another line of research, a

pure transformer-based object detection model, the DEtection

TRansformer (DETR), is explored [26]. However, we focus

1014

on plain ViT backbone architecture to develop efficient NAS

for ADAS object detection, which is orthogonal to DETR.

III. METHODOLOGY

Our aim is to design an efficient NAS strategy for object

detection backbones, resulting in tailored subnets suitable for

deployment on diverse devices. A major constraint in our quest

is the limited ADAS-specific training data, which leads to the

supernet rapidly overfitting, thereby producing subnets that

under-perform. Hence, we propose an alternative approach.

A. Supernet Training Strategy

We define our supernet as a set of dynamic layers with

elastic dimensions, using the weight entanglement strategy

similar to [10]. The basic idea is to share weights among

different layers for overlapping parts in each layer. The elastic

dimensions define our neural architectural search space A,

where the supernet is the largest network defined by it.

Additionally, for a given architecture α ∈ A, we denote a

subnet by Sα, consisting of a subset of layers, each containing

blocks as specified by α. Note that weights w are shared

among the various subnets and updated once during each

training iteration.

We present our pseudo-code in Algorithm 1. In a given

iteration, for each mini-batch of data from the dataset D, we

employ the sandwich rule from [27] for the subnet sampling in

our NAS space A. This includes uniformly sampling a subnet

from A along with the smallest and largest configurations.

We refer to the latter two as the minnet and the maxnet,

respectively. This enables pushing the performance of both the

smaller as well as the larger subnets together in each iteration.

For each of these subnets, we compute and update the weights

w using aggregate gradient on the loss function L as:

L = Lmaxnet + Luniform + Lminnet (1)

where Lmaxnet is the loss value for the maxnet, Luniform is

the loss value for the uniformly sampled subnet in the current

iteration, and Lminnet is the loss value for the minnet.

B. CNN-Supernet Training

As mentioned earlier, we have limited training data for

ADAS applications. Thus, we first perform supernet training

on the large COCO dataset, followed by supernet training

on the ADAS dataset (Refer to Step (2) & (3) of Part II of

Algorithm 1). We use the CE loss function, LCE for training

our supernet. For the ith mini-batch of data consisting of C
classes, suppose ŷi is the logits of subnet s and yi be the one

hot vector encoding of the ground truth label, then:

Ls
CE (ŷsi , yi) = H (softmax (ŷsi) , yi)

where H(x, z) = −∑C
c=1 xc log zc is the cross entropy.

Substituting this in Eq.1 for Step 8, we get our aggregated

loss function.

Algorithm 1 Object Detection NAS for ADAS

Variables
S : Supernet with elastic dimensions.

A : Neural Architectural Search space

D : Training dataset

L : Loss function

I. Supernet Training Strategy (S,A,D,L)
1: for e = 1, ...,epoch do
2: for i = 1, ..., diter do
3: xi, yi ← datai,labelsi

4: S← sandwich_sample(A)

5: for each subnet s in S do:

6: ŷsi ← Ss(xi;w)
7: end for
8: Compute gradient of loss using L
9: Update weights w of the supernet S(·;w).

10: end for
11: end for
12: return S(·;w)

II. ADAS CNN-Supernet Training Strategy

1: ∀s ∈ {maxnet, uniform,minnet},Ls ← Ls
CE

2: L ← Lmaxnet + Luniform + Lminnet

3: S(·;wP) ← Train the supernet S on pretrain dataset DP

using Supernet Training Strategy (S,DP,L).
4: S(·;w)← Train the supernet S(·;wP) on ADAS dataset

DADAS using Supernet Training Strategy (S,DADAS,L).
III. ADAS Transformer-Supernet Training Strategy

1: Lmaxnet ← Lmaxnet
CE ,

2: ∀s ∈ {uniform,minnet},Ls ← (1− λ)Ls
CE + λLs

IPD

3: L ← Lmaxnet + Luniform + Lminnet

4: S(·;wP)← Initialize the supernet S with maxnet pre-train

weights wP

5: S(·;w)← Train the supernet S(·;wP) on ADAS dataset

DADAS using Supernet Training Strategy (S,DADAS,L).

C. Enhanced Strategy for Transformers

Supernet training on the large corpus for transformer-based

models is computationally expensive. For instance, training

the plain VitDet from [12] on the COCO dataset requires

64 A100 GPUs for at least 50 epochs, processing 1 image

per GPU. Supernet training on such a model would require

greater computational resources. Hence, we replace Step 2

from CNN Supernet training with using pre-trained maxnet

weights from a larger object detection dataset such as COCO

for a warm start. This reduces the computational require-

ment to a single V100 GPU in our experiments for ADAS

datasets (See Section IV). Using warm start in isolation does

not result in well-performing subnets. We found that the

minnets trained using Strategy III from Algorithm 1 with

L =
∑

s∈{maxnet,uniform,minnet} Ls
CE considerably under-

1015

Fig. 1. Elasticity of Object Detection Models. We introduce elasticity into the backbones of our models: (a) For the CNN-based architecture, we introduce
elasticity in the CSPNet backbone through the number of dynamic CSP blocks, each equipped with elastic number of channels and depth. (b) For the
transformer-based architecture, we introduce the elasticity into the ViT backbone focusing only the ViT transformer blocks with dynamic number of layers,
hidden dimension and intermediate dimension, and leave the simple feature pyramid untouched. For details of our elastic dimensions, refer to Tables I and II.

perform (See Section IV-C).

To combat the issue of under-performing subnets, we use

Inplace Knowledge Distillation proposed by Yu et al. in [27].

It jointly trains all the subnets using supervised training,

along with distilling logits from some subnets onto others.

We use the following in our strategy: Train the maxnet in

a supervised manner and distill its weighted soft logits to

both the uniform subnet and the minnet. This corresponds

to Step 1 and 2 of Strategy III of Algorithm 1. Suppose

LIPD denotes the in-place distillation loss, then using notation

from Section III-B for the ith minibatch of data, and for

s ∈ {uniform,minnet}, t = maxnet:

Ls
IPD(ŷsi ,ŷ

t
i)=τ2DKL(softmax(ŷsi s/τ),softmax(ŷti/τ)) (2)

where DKL is the Kullback-Leibler(KL) divergence, and τ
is the temperature hyperparameter used to soften the logits

from the output of the teacher [28]. However, we found in

our experiments that utilizing KL divergence between the

classification head outputs of the maxnet and the subnets for

object detection task leads to limited performance gains of the

subnets (see Section IV-C).

A recent work by Cao et al. [13] presents a novel knowledge

distillation approach for object detection tasks focusing on the

Feature Pyramid Network (FPN). They propose normalizing

teacher and student features, followed by minimizing the MSE

between normalized features, and call this Knowledge Distil-

lation via Pearson Correlation Coefficient (PKD). Formally,

for the ith mini-batch consisting of diter data samples and

for feature map of size h × w, let m = diter × h × w be

the effective mini-batch size, and LFPN denote the FPN loss

function using PKD, defined as:

Ls
FPN=1−

∑m
j=1(ŷsi,j−μsi)(ŷti,j−μti)√∑m

j=1(ŷsi,j−μs
i)
2∑m

j=1(ŷti,j−μt
i)
2

(3)

where, for subnet k ∈ {maxnet, uniform,minnet}, ŷki,j
is the soft logits of subnet k for the jth effective mini-

batch of mini-batch i and μk
i is the mean over the soft logits

of subnet k for mini-batch i. This function focuses on the

linear correlation between teacher and student features, while

relaxing constraints on their magnitude.

To the best of our knowledge, we are the first to apply this

loss for in-place knowledge distillation, and to a transformer

backbone for object detection. Using Eq. 3, we modify Step

2 in Strategy III of Algorithm 1 as:

Ls ← (1− λ)Ls
CE + λLs

FPN

where λ is a hyperparameter for controlling the training

and the distillation loss influence on the supernet training.

This function bridges the gap between the maxnet and the

other subnet activation patterns, resulting in better performing

subnets.

We use Evolutionary Search to obtain optimal subnets in

our NAS space from the supernet.

IV. EXPERIMENTS

In this section, we first discuss our implementation details

and performance of the supernet training, and ablation study

on the transformer supernet training strategy.

A. Implementation Details

Datasets. We consider two datasets relevant to the ADAS

object detection task, namely: CityScapes with 5,000 samples;

and BDD10K with 10,000 samples. Both these datasets con-

sists of data from 8 classes, namely: person, rider, car, truck,

bus, train, motorcycle, and bicycle. Additionally, we use the

COCO dataset for CNN supernet pretraining, which consists

of 200,000 images and 80 classes of data.

CNN Supernet Training. We perform Supernet training on

a CNN-based architecture inspired from [29] with a dynamic

CSPNet backbone. The neck and head of our model are static,

and we only search for the optimal backbone as illustrated

in Figure III-B(a). Table I describes the elasticity of our

NAS space. We introduce a dynamic number of channels and

depth at Stage II, III, and IV of the CSPNet backbone. We

first pretrain the model on COCO Dataset, then replace the

detection head and train on the ADAS dataset using Algorithm

1. We perform a one-time supernet pretraining for 250 epochs.

1016

Fig. 2. Results for Object Detection NAS on ADAS datasets. Plots (a) and (b) report the performance of CNN subnets obtained using our supernet training
strategy, and plots (c) and (d) report the performance of our transformer maxnet and minnet. Note that the dashed line in (a) and (b) correspond to the
finetuned maxnet on the ADAS dataset, whereas for (c) and (d) they are the best performing CNN subnets we obtained from our CNN supernets.

Then, we replace the detection head for each ADAS dataset

and train for 50 epochs on an NVIDIA V100 GPU. During

training, we use batch size of 8, cosine learning rate scheduler

with learning rate of 0.01 and 3 warm up epochs. Additionally,

we employ a weight decay of 0.00001 for all model weights

except bias, batch norm terms for detector head, and standard

stochastic gradient descent (SGD) as optimizer.

Transformer Supernet Training. We perform Supernet train-

ing on the ViTDet-Base from [12] for the ADAS task. We

illustrate the elasticity of the object detection backbone for our

dynamic ViTDet in Figure III-B, where we focus on the ViT

transformer blocks, while keeping the simple feature pyramid

static. Table II details the elastic dimensions of the transformer

backbone for our NAS space. Unlike the CNN model, we load

the static pre-train weights for the ViTDet-Base on the maxnet,

and only perform supernet training on the ADAS datasets. For

a given dataset, we train the supernet for 30 epochs using batch

TABLE I
NAS SPACE OF CNN-BASED CSPNET BACKBONE

Stage Number of Channels Depth
I {32} {1}
II {31,48,64} {1,2}
III {64,80,96,128} {1,2}
IV {128, 144, 160, 192, 224, 256} {1}

TABLE II
NAS SPACE OF TRANSFORMER-BASED VIT BACKBONE

Dimension Elasticity
Number of Layers {10,11,12}
Hidden Dimension {512,768}
Intermediate Dimension {2560,3072}
Attention Heads {12}

size of 1 on an NVIDIA A100 GPU. We use a linear learning

rate scheduler with lr of 0.0001 and 250 warmup iterations,

weight decay of 0.1 and AdamW optimizer with epsilon 1e-8.

B. Results

Figure 2(a) and 2(b) presents our results for the CNN

supernet training on BDD10K and Cityscapes datasets. Note

that we demonstrate our approach on a small NAS space as

proof of concept, with resulting subnets in parameter range

of [1.8M, 2.6M] parameters. Additionally, we compare the

performance of our subnets against a finetuned CNN network.

This was obtained by first training our CNN maxnet on the

COCO dataset, followed by finetuning on the ADAS dataset.

We report a palette of models that serve as a baseline for

our transformer-supernet based approach. We observe that our

smallest model is with 4.55 mAP score of the baseline with

only half the number of parameters.

Next, we discuss our results for the transformer supernet-

training strategy from Algorithm 1 using the PKD loss func-

tion from Equation 3 as LIPD. Figure 2(c) and 2(d) reports

our final maxnet and minnet performance. We observe that our

minnet is within 3.58 mAP score of the maxnet at 61% of the

parameters.

Finally, we observe that our transformer model outperforms

it’s CNN counterparts with an improvement of 3.157 mAP

points for the BDD10K dataset. However, our supernet does

not perform as well for the Cityscapes dataset, as can been

seen in Figure 2(d). We attribute this to the sizable difference

in size of the two ADAS datasets, and leave it as a direction

for future work.

1017

C. Ablation Study
We compare the performance of transformer subnets ob-

tained using the PKD loss function from Section III-C to

basic supernet training loss function, CE loss, and distillation

loss function, KL Divergence. Additionally, we study the

impact of λ = {0.1, 0.5, 0.9, 0.95, 1.0} from Eq.2 for both KL

Divergence and PKD loss functions when employed using in-

place knowledge distillation. For each of the loss functions,

we load pretrain weights for the maxnet and then train the

supernet only on the ADAS dataset. We run the ablation study

on the Cityscapes dataset, and focus on the minnet and maxnet

performance.
Table III presents the results of our ablation experiments. We

observe that simply using CE loss for our supernet training on

the Cityscapes dataset produces a under-performing networks

at mAP 21.23 for the minnet, and mAP 25.95 for the maxnet.

To improve the performance, we next experimented with in-

place knowledge distillation using the the KL-divergence loss

function from Eq.2. This improves the performance of our

maxnet to become competitive with the CNN counterparts

as well as the baseline, but the minnet still underperforms

in comparison. Finally, to improve the performance of the

minnet, we use the PKD loss function from Eq.3, which pushes

the performance of both our maxnet as well as the minnet.

TABLE III
ABLATION RESULTS FOR TRANSFORMER-BASED

SUPERNET TRAINING LOSS FUNCTION ON CITYSCAPES DATASET

Loss Function IPD λ mAPminnet mAPmaxnet

CE Loss × 0 21.23 25.95
KL Divergence � 0.10 24.96 30.81

� 0.50 26.08 32.17
� 0.90 23.33 31.68

� 0.95 21.09 30.82
� 1.00 6.113 31.39

PKD Loss � 0.10 28.58 32.43
� 0.50 27.87 32.10

� 0.90 27.22 31.33

� 0.95 27.23 33.00

� 1.00 23.80 32.37

REFERENCES

[1] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep
learning: A review,” IEEE transactions on neural networks and learning
systems, vol. 30, no. 11, pp. 3212–3232, 2019.

[2] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and
B. Lee, “A survey of modern deep learning based object detection
models,” Digital Signal Processing, vol. 126, p. 103514, 2022.

[3] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20
years: A survey,” Proceedings of the IEEE, 2023.

[4] J. Wei, J. He, Y. Zhou, K. Chen, Z. Tang, and Z. Xiong, “Enhanced
object detection with deep convolutional neural networks for advanced
driving assistance,” IEEE transactions on intelligent transportation
systems, vol. 21, no. 4, pp. 1572–1583, 2019.

[5] J. Cao, Y. Pang, J. Xie, F. S. Khan, and L. Shao, “From handcrafted to
deep features for pedestrian detection: A survey,” IEEE transactions on
pattern analysis and machine intelligence, vol. 44, no. 9, pp. 4913–4934,
2021.

[6] J. S. Murthy, G. Siddesh, W.-C. Lai, B. Parameshachari, S. N. Patil, and
K. Hemalatha, “Objectdetect: A real-time object detection framework
for advanced driver assistant systems using yolov5,” Wireless Commu-
nications and Mobile Computing, vol. 2022, 2022.

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[8] K. Peng, A. Roitberg, K. Yang, J. Zhang, and R. Stiefelhagen, “Trans-
darc: Transformer-based driver activity recognition with latent space
feature calibration,” in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 278–285, IEEE, 2022.

[9] A. Balasubramaniam and S. Pasricha, “Object detection in autonomous
vehicles: Status and open challenges,” arXiv preprint arXiv:2201.07706,
2022.

[10] M. Chen, H. Peng, J. Fu, and H. Ling, “Autoformer: Searching
transformers for visual recognition,” in Proceedings of the IEEE/CVF
international conference on computer vision, pp. 12270–12280, 2021.

[11] K. T. Chitty-Venkata and A. K. Somani, “Neural architecture search
survey: A hardware perspective,” ACM Computing Surveys, vol. 55,
no. 4, pp. 1–36, 2022.

[12] Y. Li, H. Mao, R. Girshick, and K. He, “Exploring plain vision
transformer backbones for object detection,” in European Conference
on Computer Vision, pp. 280–296, Springer, 2022.

[13] W. Cao, Y. Zhang, J. Gao, A. Cheng, K. Cheng, and J. Cheng,
“Pkd: General distillation framework for object detectors via pearson
correlation coefficient,” Advances in Neural Information Processing
Systems, vol. 35, pp. 15394–15406, 2022.

[14] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
international conference on computer vision, pp. 5058–5066, 2017.

[15] Y. Chen, R. Li, and R. Li, “Hrcp: High-ratio channel pruning for real-
time object detection on resource-limited platform,” Neurocomputing,
vol. 463, pp. 155–167, 2021.

[16] P. Chen, J. Liu, B. Zhuang, M. Tan, and C. Shen, “Aqd: Towards accurate
quantized object detection,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 104–113, 2021.

[17] S. Jiang, Z. Lin, Y. Li, Y. Shu, and Y. Liu, “Flexible high-resolution
object detection on edge devices with tunable latency,” in Proceedings
of the 27th Annual International Conference on Mobile Computing and
Networking, pp. 559–572, 2021.

[18] S. Liang, H. Wu, L. Zhen, Q. Hua, S. Garg, G. Kaddoum, M. M.
Hassan, and K. Yu, “Edge yolo: Real-time intelligent object detection
system based on edge-cloud cooperation in autonomous vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 12,
pp. 25345–25360, 2022.

[19] X. Jia, Y. Tong, H. Qiao, M. Li, J. Tong, and B. Liang, “Fast and
accurate object detector for autonomous driving based on improved
yolov5,” Scientific reports, vol. 13, no. 1, pp. 1–13, 2023.

[20] M. Zhang, X. Yu, J. Rong, and L. Ou, “Repnas: Searching for efficient
re-parameterizing blocks,” in 2023 IEEE International Conference on
Multimedia and Expo (ICME), pp. 270–275, IEEE, 2023.

[21] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” arXiv preprint
arXiv:1908.09791, 2019.

[22] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” arXiv preprint arXiv:1812.00332,
2018.

[23] Y. Chen, T. Yang, X. Zhang, G. Meng, X. Xiao, and J. Sun, “Detnas:
Backbone search for object detection,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[24] C. Jiang, H. Xu, W. Zhang, X. Liang, and Z. Li, “Sp-nas: Serial-
to-parallel backbone search for object detection,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pp. 11863–11872, 2020.

[25] J. Beal, E. Kim, E. Tzeng, D. H. Park, A. Zhai, and D. Kislyuk, “Toward
transformer-based object detection,” arXiv preprint arXiv:2012.09958,
2020.

[26] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision, pp. 213–229, Springer, 2020.

[27] J. Yu and T. S. Huang, “Universally slimmable networks and improved
training techniques,” in Proceedings of the IEEE/CVF international
conference on computer vision, pp. 1803–1811, 2019.

[28] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[29] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics yolov8,” 2023.

1018

