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Abstract—Federated Learning (FL) allows multiple privacy-
sensitive applications to leverage their dataset for a global model
construction without any disclosure of the information. One of
those domains is healthcare, where groups of silos collaborate
in order to generate a global predictor with improved accuracy
and generalization. However, the inherent challenge lies in the
high heterogeneity of medical data, necessitating sophisticated
techniques for assessment and compensation. This paper presents
a comprehensive exploration of the mathematical formalization
and taxonomy of heterogeneity within FL environments, focusing
on the intricacies of medical data. In particular, we address the
evaluation and comparison of the most popular FL algorithms
with respect to their ability to cope with quantity-based, feature
and label distribution-based heterogeneity. The goal is to provide
a quantitative evaluation of the impact of data heterogeneity in
FL systems for healthcare networks as well as a guideline on
FL algorithm selection. Our research extends beyond existing
studies by benchmarking seven of the most common FL algo-
rithms against the unique challenges posed by medical data use-
cases. The paper targets the prediction of the risk of stroke
recurrence through a set of tabular clinical reports collected by
different federated hospital silos: data heterogeneity frequently
encountered in this scenario and its impact on FL performance
are discussed.

Index Terms—Federated learning, healthcare networks, stroke
prediction, distributed machine learning, heterogeneity

I. INTRODUCTION

Machine Learning (ML) research has found its niche in

various domains, including industry and healthcare systems

[1]. Stroke, ranking second globally as a cause of death

and third as a cause of death and disability combined, has

drawn attention to ML applications, particularly in stroke

recurrence prediction [2], [3]. Under this domain, ML models

are typically trained on the data collected from multiple hos-

pitals. However, sharing data across multiple hospitals, though

effective, faces challenges due to strict privacy regulations.

To overcome data-exchange issues, Federated Learning (FL)

[4] allows sharing model weights while keeping data locally

[5]. Despite FL’s privacy preservation, challenges arise from

heterogeneity and non-identically Distributed (non-IID) data,

impacting model convergence and performance across partic-

ipants.

In healthcare-focused FL [6], addressing data heterogeneity

is crucial, as datasets collected from various hospitals may ex-
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hibit differences in patient demographics, medical equipment,

and clinical practices. These disparities result in non-IID data

distributions, where the data from different sources do not

follow the same statistical patterns.

Considering tabular datasets, i.e., to represent patient out-

comes, the main components that introduce heterogeneity are

the number of samples, the distribution of the labels and

the distribution of the features, that is, the datasets may

significantly vary in size, distribution of the targets and/or

features. Based on this, the most recent state-of-the-art FL

algorithms make their assumptions to try to compensate for the

non-IID data on devices to optimize the process of federation.

State-of-the-art algorithms can be partitioned into

algorithm-driven methods and data-driven methods [7].

While algorithm-driven methods mainly focus on designing

loss functions, parameter aggregation strategies and other

techniques to correct client drift in its local updates, data-

driven methods aim to convert the data to IID data using

augmentation techniques. Although many papers show that

data-driven methods can improve the final performance of

the model, like in [8], they pose privacy leakage risks in

practical FL applications. Therefore, this study emphasizes

algorithm-driven methods. Algorithms like FedAvg [4],

FedAdp [9] and FedDkw [10] introduce client coefficients

to weigh contributions to the global model. FedProx [11]

and FedDyn [12] penalize local losses to ensure consistent

updates across devices. In contrast to the previous algorithms,

FedNova [13] performs gradient normalization for fairness

during aggregation, while SCAFFOLD [14] introduces control

variates for updates correction.

First investigations on a subset of algorithms in works like

[15] and [16] focused on computer vision and time series

tasks. These studies presented a lack of extensive experimental

analysis in the healthcare domain for a proper understanding of

their pros and cons. It emerges thereby a necessity to evaluate

those algorithms under different non-IID scenarios specific to

healthcare applications.

Contributions. In this paper, we first discuss a taxonomy

of the main heterogeneity types for medical tabular data. The

discussion includes methodologies used to simulate data het-

erogeneity in FL environments and, finally, a model to address

data heterogeneity in real-world FL application settings. The

paper also describes the design of a real-time FL networking

system based on MQTT protocol and integrates seven state-
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Fig. 1: General steps of a Federated Learning process.

of-the-art FL algorithms. Benchmarking of the algorithms was

carried out for varying heterogeneity setups that are proposed

to verify the sensitivity against quantity, label and feature skew.

The study focuses on stroke prediction using a public dataset,

aiming to offer insights for algorithm selection in various

heterogeneity scenarios for tabular medical datasets.

The paper is organized as follows. Sect. II discusses the

FL optimization. Sect. III describes the data heterogeneity

in medical applications. Sect. IV discusses the adopted FL

approach and algorithms. Sect. V analyzes the considered case

study and performance assessment in various heterogeneous

setups. Conclusions and final remarks are in Sect. VI.

II. DISTRIBUTED OPTIMIZATION MODELLING

Let us consider a dataset D of size |D| distributed disjointly

over the K clients such that
⋃K

i=1 Di = D. The local datasets,

denoted as Di with size |Di|, is comprised of samples Di =
{(xi, yi)}, where xi, yi represent feature columns and labels

of client i respectively. While the goal of the classic centralized

approach is the minimization of the loss function w.r.t. the

model parameters w over all the data samples, FL involves

the minimization of an average of the loss functions, each

computed over data locally collected by individual medical

sites w.r.t. w. The problem is defined as follows:

min
w∈Rd

L(w) = min
w∈Rd

K∑

i=1

piLi(w), (1)

where Li(w) = 1
|Di|
∑

(xi,yi)∈Di
l(w, (xi, yi)) and with the

weights assigned according to the size of a local dataset as

pi = |Di|∑K
i=1 |Di| . This problem can be solved using Gradient

Descent (GD) [4], which involves iteratively computing

w
(t+1)
i = w

(t)
i − ηt∇Li(w

(t)) (2)

for t = 0, 1, 2, ..., T , where ηt is the learning rate. Given

the Eq. (1) with number of participants S(t) ≤ K for

round t, the update rule becomes w(t+1) = w(t) −
ηt

1
|S(t)|
∑

i∈S(t) pi∇Li(w
(t)). Considering large datasets,

Stochastic Gradient Decent (SGD) is applied in practice.

Besides initialization and client selection, as described in Fig.

Fig. 2: An example of IID medical tabular datasets.

1, the FL process consists of a local training stage, performed

by clients according to Eq. 2, followed by an aggregation

stage, implemented by a Parameter Server (PS). During the

aggregation, the PS produces a global model w by solving the

problem (Eq. 1) and using the model parameters wt
i obtained

from the clients. Aggregation and local training form a FL

round and are repeated until convergence or a termination

criterion is met.

III. HETEROGENEITIES IN MEDICAL APPLICATIONS

A common FL architecture in healthcare is horizontal

federation [5]. Each FL node collects data, namely clinical

outcomes or reports from a subset of patients, while the reports

consist of a common set of features or clinical variables.

Numerous works, including [17], explore challenges arising

from the unrealistic Independent and Identically Distributed

(IID) assumption in FL. For a tabular medical dataset, illus-

trated in Fig. 2, green labels represent stroke patients (positive

class), and red labels denote healthy patients (negative class).

The histograms assume roughly equal sample numbers and

consistent label distribution for IID data, but this assumption

is often impractical. Despite efforts in works like [11] and
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[14] to address heterogeneity, this remains a critical and open

problem, particularly in healthcare data scenarios.

Heterogeneity in medical data can arise for various reasons,

including variations in data collection methods across institu-

tions, missing data, and a significant source—patient diversity,

encompassing demographic factors and clinical characteristics

variability. Electronic health records from different institu-

tions exhibit disparities in data formats and coding standards,

complicating diagnosis comparison. Medical imaging data,

including MRI scans and X-rays, vary in resolution and quality

due to differences in equipment and protocols. Patient-reported

outcomes introduce subjectivity, as individual interpretations

and survey instruments vary. Addressing these heterogeneous

data sources is vital for accurate analysis and informed

decision-making in healthcare research and practice. For non-

IID data we have that for client i and j the probabilities of

drawing a data sample are P (xi, yi) �= P (xj , yj). Let the joint

probability be rewritten as

P (xi, yi) = P (yi|xi)P (xi) = P (xi|yi)P (yi), (3)

heterogeneity might impact either the conditional distributions

P (xi|yi) P (yi|xi), or the marginal ones P (xi) and P (yi),
giving rise to different data imbalance situations.

In the following, we consider tabular datasets representing

typical clinical reports in medical applications. We classify the

primary types of heterogeneity into three groups: label dis-
tribution skew, quantity/sample distribution skew, and feature
distribution skew.

A. Label distribution skew

For label distribution skew, patient numbers vary consis-

tently across parties, while the class ratio in local datasets may

differ significantly. This affects the marginals P (yi), so that

P (yi) �= P (yj), while P (xi|yi) = P (xj |yj) ∀i, j. In Fig. 3a,

the right histogram shows nodes 1 and 2 dominated by the

positive class, and node 3 primarily composed of the negative

class. This scenario might occur if a specific hospital provides

superior treatment, resulting in better patient outcomes.

B. Quantity skew

Regarding quantity skew, the setup involves nodes with the

same class proportions per node, but the number of samples

per node differs arbitrarily, i.e., P (xi, yi) = P (xj , yj), |Di| �=
|Dj | ∀i, j. Figure 3b illustrates an example where node 3 has

significantly more patients than nodes 1 and 2, allowing it to

perform more update steps during local training. For example,

population density variations across locations might result in

larger sample sizes for hospitals in denser areas compared to

others.

C. Feature distribution skew

The last heterogeneity type is feature distribution skew,

where marginal distributions may vary across clients, i.e.,

P (xi) �= P (xj), P (yi|xi) = P (yj |xj) ∀i, j (Fig. 3c

and 3d). In contrast to [18] and [15] which consider image

datasets, preserving P (yi|xi) in targeted tabular data is not

guaranteed and depends on feature-label correlation. Specific

features, whether numerical or categorical, have non-uniform

distributions, leading to sample imbalances on each node, as

highlighted in Fig. 3d, along with non-identical feature distri-

butions within nodes. The blue color in the figure indicates

a specific feature group, which results in limited variation

within a federated node. For instance, Age feature skew (Fig.

3c) corresponds to cases where hospital sites observe medical

records from a specific age group (young, middle-aged, or

elderly). Assuming age strongly correlates with the probability

of stroke, a hospital with more elderly patient reports likely

has more stroke cases than other federated nodes. In other

words, since elderly individuals are more likely to undergo

medical treatment, their proportion would be larger than other

age groups. However, features like Body Mass Index (BMI),

as depicted in Fig. 3d, may have low correlation with the

overall label distribution (considering all reports). While this

may be true, there could be situations where the feature within

its range/categories on a node is highly correlated with the

label distribution observed in local data. This implies that the

client will rely on the feature differently. Similar reasoning can

potentially apply to other numerical and categorical clinical

features.

IV. MQTT-BASED FL DESIGN

This section outlines a FL system utilizing the MQTT

protocol for model federation as proposed in [6], and selected

FL algorithms: on-device, on-PS, and hybrid algorithms. Ad-

ditionally, it discusses methodologies for simulating heteroge-

neous environments.

A. Communication Protocol
The MQTT protocol facilitates message exchange between

clients and the PS via a broker [6]. Utilizing the publish-

subscribe pattern, devices publish trained models on the PS’s

topic for aggregation, while the PS sends the global model on

C topics representing each client. Additionally, a topic is re-

served for individual client communication with the PS. Once

the PS selects FL round participants, it publishes messages

on each client’s topic. After completing local updates, devices

publish their models on the PS’s topic. Quality of Service

(QoS) is set to 2 for message receipt without repetitions, and

the retain flag is set to True for reliable message delivery in

FL operations.
Excluding the unmodified MQTT packet header, the client’s

message payload includes: 1) client identifier, 2) federated

round, 3) trainable parameters of the model (for each neural

network layer), 4) metrics on the validation dataset (accuracy

and loss), and 5) a boolean variable indicating local train-

ing completion. The PS payload shares a similar structure

and includes additional algorithm-related parameters (see Sec.

IV-B), such as control variates for SCAFFOLD, training data

distribution for FedDkw, etc.

B. Selected Algorithms
In a PS setup, aggregating algorithm-based methods can be

categorized by their primary location of intelligence: on-PS for
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(a) Label distribution skew. (b) Quantity skew. (c) Feature distribution skew
for a correlated feature.

(d) Feature distribution skew
for an uncorrelated feature.

Fig. 3: Heterogeneity in medical tabular datasets data: label (a), quantity (b) and feature (c,d) distribution skew examples

main steps during aggregation, on-client for local optimization,

and hybrid for both local training and aggregation.

Starting with on-PS algorithms, FedAvg [4] is a fundamental

FL algorithm that aggregates parameters in proportion to the

number of samples per client after optimization. FedAdp [9]

adjusts model weighting by estimating differences between

local and global model gradients, measured through the angle

between them. Another benchmarked algorithm, FedDkw [10],

employs Kullback–Leibler (KL) divergence [19] to compare

the distribution of each device’s training data to the global

data distribution. However, a drawback is that, even though

client data remains on clients, the data distribution is disclosed

during the federation process, potentially revealing patterns or

trends that could lead to the identification of individuals or

specific health conditions.

In the on-device category, FedProx [11] is chosen. This al-

gorithm employs Euclidean distance between local and global

models for regularization, penalizing divergence during local

training. This straightforward regularization is particularly

relevant for cross-device FL, as it avoids extra parameter

transmission and doesn’t introduce additional computational

or communication complexities compared to basic FedAvg.

For hybrid algorithms, we have chosen SCAFFOLD [14],

FedDyn [12], and FedNova [13]. SCAFFOLD, applicable in

the cross-silo setting, utilizes control variates stored with each

client to estimate the gradient of the loss with respect to

the client’s local data. The server maintains the average of

all client states as its control variate, shared with selected

clients in each round. FedDyn, similarly to FedProx, adjusts

the local objective function with a dynamically updated reg-

ularizer consisting of the same term as FedProx and the dot

product between local gradients and the global model. During

aggregation, the PS tracks parameters called server state,

influencing the model to debias it. While this regularization

doesn’t introduce extra communication like SCAFFOLD, it

requires clients to maintain states or memory across rounds.

In contrast, FedNova aims to eliminate inconsistency between

local updates by normalizing them with the number of local

steps. This method acts as a new weighting scheme, assigning

lower weights to clients with more local steps, potentially

preventing them from pushing the aggregated model towards

their local minima after the aggregation step.

C. Simulation of Heterogeneous Data

To synthesize a data distribution in a heterogeneous way we

used a Dirichlet distribution with Probability Density Function

(PDF) defined as follows:

Dir(p|α) =
1

B(α)

K∏

i=1

pαi−1
i , (4)

where p is the K × 1 vector of probabilities representing a

point, K is the number of variables, α is the K × 1 vector of

concentration parameters, while B(α) is the multivariate beta

function defined as B(α) =
∏K

i=1 Γ(αi)

Γ(
∑K

i=1 αi)
, with Γ(x) denoting

the gamma function, pi is the i-th element of p.

In particular, we use a symmetrical Dirichlet distribution
to simulate non-IID data by distributing the samples in each

class unequally between clients, in proportions sampled from

a symmetrical K-dimensional Dirichlet distribution with α =
α · 1, while 1 denotes the unitary vector K × 1, as in [20].

The α hyperparameter can be tuned to control how un-

equally the data classes are divided between clients. Large

values of α lead to a low variance in proportion, resulting in

more equal splits between clients (low heterogeneity), whereas

low α increases the variance of the proportions, leading to a

more non-IID data split (high heterogeneity).

For data partitioning, we implement the following hetero-

geneity scenarios:

• Quantity Skew: By applying the Dirichlet distribution

for each client we can vary the assigned number of

samples per device as |Di| = �pi|D|�, where |D| is

the total amount of data samples available, pi ∈ p is

the probability of device i having a sample. The label

distribution for each of the devices is identical.

• Label Distribution Skew: For every label j, given αi

for each client i, we sample qj ∼ Dir(p|α) of size

K ×1 and assign to a client the corresponding number of

samples of a specific class |Dj
i | = �qj

i |Dj |�, where |Dj
i |

- number of samples of class j is assigned to the client i.
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This procedure is repeated for every class to perform the

partitioning amongst the clients. The number of samples

per device is set to be the same.

• Feature Skew: In order to partition the dataset properly,

it was decided to select the most and the least correlated

features to the label. After that, we decided to discretize

the range of the feature in two different ways, either by

dividing it into K equal ranges, where K is the number

of clients, or by partitioning it such that the number of

samples per client is approximately the same.

V. IMPACT OF HETEROGENEITIES ON THE FEDERATION

This section benchmarks the current state-of-the-art FL

algorithms, evaluating their performance on real tabular data

from publicly available health records to identify stroke risk.

The objective is to gain insight into the algorithms’ ability to

handle heterogeneity and offer general guidelines for algorithm

selection in the proposed case study.

A. Dataset Description and Simulation Setup

The proposed case study utilizes the publicly available

Stroke Prediction dataset [21]. This dataset shares common

features with a real dataset and serves as a benchmark, for

example in [22]. It consists of 5110 clinical reports, 12 clinical

attributes and corresponding labels. Key attributes crucial for

monitoring stroke recurrence risk include ’Gender’, ’Age’,
’Hypertension’, ’Heart disease indicator’, ’Married status’,
’Work type’, ’Residence type’, ’Glucose level’, ’Body Mass
Index (BMI)’, and ’Smoking status’. The labels indicate the

risk of stroke for the patient, currently taking binary values

(future works will consider more complex cases).

Data preprocessing involved outlier removal using the

Interquartile Range (IQR) and filling missing values with

feature-specific mean values for each gender. Non-categorical

clinical variables were normalized by subtracting the mean and

dividing by the standard deviation, while categorical features

underwent one-hot encoding. To address class imbalance,

SMOTE [23] was utilized for oversampling the minority class.

The predictive model in the FL setting is a deep neural network

with three fully-connected layers, each followed by a dropout

layer. Simulations assume K = 6 clinical sites, with S(t) = 2
clients selected per round. Local training comprises m = 4
epochs, with b = 3 batches of size B = 50 samples. The

maximum samples per site are capped at 500.

Two reference scenarios are considered for FL performance

benchmarking:

1) No federation: clients independently use their datasets

to train local models without federation. Performance is

averaged over all clients;

Level Range of α
Extreme 0 < α < 0.1

High 0.1 ≤ α < 0.3
High/Medium 0.3 ≤ α < 0.5

Medium 0.5 ≤ α < 0.7
Low 0.7 ≤ α < 10

Homogeneous α ≥ 10

TABLE II: Heterogeneity levels for different concentration

parameters.

2) Distributed Learning: data is transferred to a data center,

which collects and manages the data for training.

It is important to highlight, that these two benchmarks show

the best and worst possible setups for comparison purposes

only. Therefore, for instance, in Table I, they will not be con-

sidered during the discussion of the algorithms’ performance.

In addition, we define 6 different levels of heterogeneity

by mapping the intervals of α shown in Table II. These

approximate ranges are based on the simulations performed

on MNIST dataset, similar to simulations done in [15], [24]

etc., and on the impact of the concentration parameter on the

KL divergence of the Dirichlet and the uniform distributions.

B. Performance Benchmarking: Label Distribution Skew

The main results, depicted in Figs. 4a-4b, illustrate accu-

racy (percentage of correct predictions) for various α values

representing label imbalance. In scenarios with significant

heterogeneity (α ≤ 0.3), all algorithms outperform the average

performance of the non-federated scenario. FedProx excels in

this context after a large number of rounds for medium/high

and high heterogeneities. SCAFFOLD initially outperforms

the other algorithms for α = 0.1 but maintains the same

accuracy over the rounds. For high/medium heterogeneity,

FedDkw shines due to the classification problem being binary

and a smaller level of heterogeneity, with KL divergence built

of only two bins. In high/medium heterogeneity, SCAFFOLD,

FedNova, and FedDyn enhance local gradients during aggre-

gation, significantly improving performance. In cases of major

dataset differences, simpler algorithms that penalize the local

objective function provide the best results.

C. Performance Benchmarking: Quantity skew

Figures 4c-4d display accuracy in the quantity skew setup

for various heterogeneity levels. Quantity skew is less pro-

nounced compared to label skew. For all heterogeneity levels,

SCAFFOLD and FedDyn outperform, achieving over 77%

accuracy. As α increases, other algorithms tend to perform

similarly, as the data maintains a fixed distribution on each

client, and the average samples per client increase. The results

highlight the ability of advanced hybrid algorithms to correct

updates with persistent states, while algorithms relying on

aggregation weights exhibit similar performance.

D. Performance Benchmarking: Feature Distribution Skew

Feature skew arises from variations in patient demograph-

ics across hospitals. These variations impact model training.

Based on an analysis of feature correlations with the target,
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(a) Label, α = 0.1 (b) Label, α = 0.3 (c) Quantity, α = 0.1 (d) Quantity, α = 0.3

(e) Feat., ev. samp., Age (f) Feat., ev. int., Age (g) Feat., ev. samp., BMI (h) Feat., ev. int., BMI

Fig. 4: FL algorithms evaluation on stroke dataset: a), b) - Label distribution skew; c), d) - Quantity skew, e), f) - Feature

distribution skew for feature Age; g), h) - Feature distribution skew for feature BMI.

Label Quantity Feature
Round Alg α = 0.1 α = 0.3 α = 0.1 α = 0.3 BMI, ev, samp. BMI, ev. int. Age, ev. samp. Age, ev, int.

30

FEDAVG 0.5216 0.5827 0.7254 0.7336 0.7566 0.7174 0.6403 0.6439
FEDADP 0.5447 0.6171 0.7012 0.7094 0.7431 0.6901 0.6544 0.6036

FEDPROX 0.5752 0.6056 0.7147 0.732 0.7406 0.7026 0.5633 0.5812
SCAFFOLD 0.6448 0.7126 0.7797 0.7881 0.8055 0.7816 0.7953 0.7828

FEDDYN 0.6266 0.657 0.7595 0.7626 0.7806 0.7418 0.7704 0.7793
FEDDKW 0.5413 0.6694 0.7295 0.7299 0.7325 0.6029 0.5579 0.5272
FEDNOVA 0.5938 0.5931 0.7129 0.7248 0.7294 0.7215 0.6144 0.6221
W.O. FED 0.5088 0.528 0.6502 0.6714 0.6767 0.5937 0.4941 0.5219

DISTR. LEARN. 0.7554 0.7175 0.7835 0.7965 0.795 0.8001 0.7911 0.7949

50

FEDAVG 0.6138 0.6306 0.7546 0.7741 0.785 0.6769 0.6936 0.5723
FEDADP 0.6128 0.6633 0.7472 0.7479 0.7798 0.7169 0.6654 0.6446

FEDPROX 0.6792 0.6952 0.7533 0.7745 0.7741 0.7654 0.6592 0.6541
SCAFFOLD 0.644 0.6443 0.785 0.7951 0.8094 0.795 0.8046 0.7908

FEDDYN 0.6534 0.6827 0.7931 0.7953 0.7946 0.7805 0.7977 0.7899
FEDDKW 0.6335 0.7025 0.7624 0.763 0.7816 0.7172 0.6158 0.5602
FEDNOVA 0.6298 0.6 0.7565 0.7598 0.7829 0.7324 0.6268 0.6281
W.O. FED 0.5088 0.5364 0.6735 0.7033 0.7312 0.6273 0.4928 0.522

DISTR. LEARN. 0.7678 0.7379 0.7943 0.8048 0.8115 0.8052 0.8068 0.8052

TABLE I: Accuracy of the algorithms in heterogeneous setups for stroke prediction dataset

we chose to partition data based on the feature corresponding

to the minimum (BMI) or maximum (Age) Pearson correlation

values. Two types of splits were performed: maintaining even
intervals within the feature range (split the feature range

into equal non-overlapping windows) and even samples (split

the feature range into non-uniform non-overlapping windows

with the same number of samples per window) to retain

consistent sample counts per client. In the first approach,

perspectives are limited to narrow feature subsets, potentially

missing important patterns in other regions. This is crucial as

nuances or trends may be concentrated in specific regions of

the feature space. On the other hand, the second approach,

maintaining even samples, is important to ensure that each

client contributes an equal amount of information to the

analysis. This prevents biases that may arise if certain clients

are overrepresented or underrepresented in the dataset.

Figures. 4e and 4g show the accuracy for the parti-

tioning into bins with even samples of features Age and

BMIrespectively. For this case, except for FedDyn and SCAF-

FOLD, performances are similar for the less correlated feature.

However, the Age feature has a more pronounced impact on

performance. This happens because when there is a skewed

distribution of features, it indirectly leads to various other

types of differences due to correlations. For instance, since

stroke correlation with BMI is low, even samples partitioning

equates to approximately IID data across clients, while for Age
even samples partitioning leads to label distribution skew.

The results for partitioning features Age and BMI into

even intervals are highlighted in Figs. 4f and 4h respectively.

Partitioning on Age has a significantly noticeable impact on

most of the algorithms. As before, SCAFFOLD and FedDyn

consistently perform better than the remaining ones. Even in-
tervals partitioning for the least correlated feature is equivalent

to sample imbalance with a small α value. In the case of
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partitioning the most correlated feature is equivalent to the

combination of quantity and label skews.

For both types of partitioning of the most correlated numer-

ical feature, the most outperforming algorithms are the hybrid

algorithms SCAFFOLD and FedDyn, outperforming others

by over 70%. However, in the case of the least correlated

feature, these algorithms provide a relatively small advantage

compared to the other benchmarked algorithms.

E. Guidelines for algorithm selection

Table I provides the accuracy of the algorithms in diverse

heterogeneous setups for a tabular stroke prediction dataset.

Of the setups covered in the paper, the most impacting type

of heterogeneity is label distribution skew. SCAFFOLD and

FedDyn seemed promising, specifically for feature imbalance,

with SCAFFOLD outperforming FedDyn, though demanding

twice the parameters transmission, while FedDyn needed more

computations. FedProx, FedNova, or FedAvg could be used

when the devices have constraints on bandwidth or computa-

tional power. One of the main differences when comparing

the algorithms with the computer vision tasks is the low

dimensionality of the problem for the tabular data, which

might be crucial for benchmarking. Overall, a-priori informa-

tion on estimated heterogeneity levels is needed, prompting

consideration of a common metric for its estimation. If no

constraints exist, SCAFFOLD performs generally well for

most of the cases, and if throughput is a concern, FedDyn is a

promising alternative, unless there are limitations on keeping

the state in memory or computations.

VI. CONCLUSIONS

The paper explores the challenges of applying Federated

Learning (FL) to heterogeneous medical tabular data, particu-

larly in the context of stroke risk prediction. It identifies and

categorizes various types of heterogeneity in healthcare data,

such as variations in formats, tabular structures, and sources, as

well as it provides a mathematical formalization for each of the

proposed data imbalance scenario. The study then conducts a

thorough benchmarking of seven state-of-the-art FL algorithms

using publicly available stroke records.

Notably, the paper provides insights into the performance,

communication resource usage, and learning round efficiency

of the FL algorithms, offering a comprehensive evaluation

tailored to the specific healthcare domain. The choice of a

MQTT-based platform-as-a-service tool is also highlighted as a

novel solution for managing communication and collaboration

among distributed healthcare data sources.

Future work is outlined to compare neural networks with

classification and regression tree models, such as random

forests and XGBoost, in FL environments. Additionally, the

exploration of the possibility of optimizing the ensemble

of FL models will be done to enhance both performance

and efficiency. Moreover, we acknowledge that the primary

limitation lies in the dataset utilized. Our plan includes the

acquisition of more realistic data to facilitate more practical

simulations.
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