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Abstract—While clustering-driven Pseudo-Labels (PLs) are com-
monly employed to optimize Speaker Embedding (SE) networks
and facilitate training of self-supervised Speaker Verification
(SV) systems, the efficacy of PL-based self-supervised training
hinges on the accuracy of these generated labels. In this paper,
we perform a large-scale comparative study of a wide range of
recent metric learning loss functions for better generalization of
self-supervised SV systems. In particular, we investigate the effect
of these losses on the robustness of the self-supervised SV task
against label noise using various real-life clustering-based PLs. We
present an extensive comparative evaluation of the performance
of these loss functions using different numbers of clusters and
show that our proposed selection of loss functions is effective
against label noise and leads to considerable improvements in SV
performance. Moreover, using our selected losses combined with
the adopted CAMSAT clustering algorithm-based PLs to train
our SE system allows us to achieve state-of-the-art self-supervised
SV performance. Code of our experiments will be made publicly
available.

Index Terms—Speaker verification, clustering, pseudo-labels,
label noise, loss functions

I. INTRODUCTION

Automatic speaker verification (ASV) consists of using the

voiceprint of a speaker to verify their identity. ASV is one of

the most convenient means of biometric recognition [1]. Based

on a speaker’s known utterances, the speaker verification (SV)

task consists of confirming that the identity of a speaker is

who they purport to be.

Fixed-dimensional embeddings are typically extracted at the

utterance level from both enrollment and test speech samples.

These embeddings are then fed into a scoring algorithm, such

as cosine distance, to measure their similarity and determine

the likelihood that they originate from the same speaker.

Classically, the i-vector paradigm has been one of the most

prominent approaches for speaker embedding [2], [3], owing

to its capacity to capture the distributive patterns of the

speech in an unsupervised fashion, even with a relatively

small amount of training data. This framework generates fixed-

sized compact vectors (i-vectors) that encapsulate the speaker’s

identity in a speech utterance, regardless of its duration.

Moreover, in recent years, a plethora of deep learning-based

* Independent Researcher

architectures and techniques have been proposed to extract

embeddings [4]–[6]. These approaches have demonstrated

remarkable performance when a large amount of training data

from a sufficient number of speakers is available [7]. A widely

adopted architecture for this purpose is ECAPA-TDNN [8],

renowned for achieving state-of-the-art (SOTA) performance

in text-independent speaker recognition. The ECAPA-TDNN

incorporates squeeze-and-excitation (SE), utilizes channel- and

context-dependent statistics pooling, multi-layer aggregation,

and employs self-attention pooling to obtain an utterance-level

embedding.

Indeed, the majority of deep embedding models are trained

under full supervision, necessitating large speaker-labeled

datasets for effective training. However, creating well-annotated

datasets can be a costly and time-intensive endeavor, prompting

the research community to explore more affordable self-

supervised learning (SSL) techniques utilizing extensive unla-

beled datasets. A typical approach to address this issue for SV

systems is to employ clustering schemes [5], [6], [9] to generate

Pseudo-Labels (PLs) or other self-supervised objectives such

as SimCLR or MoCo [10] to produce PLs used later in

discriminative training [11], [12]. Although these PL-based

Self-Supervised SV schemes exhibit striking performance, the

efficacy of clustering continues to impede all aforementioned

approaches [12], [13], primarily because downstream perfor-

mance heavily relies on precise PLs. However, these PLs are

generally noisy and inaccurate due to the mismatch between the

clustering objective and the final SV task. Additionally, despite

the advantages of iterative clustering-classification frameworks,

the persistence of erroneous information from incorrect PLs

degrades the final downstream task performance [12], [14].

Indeed, recent studies have demonstrated that label noise can

significantly affect downstream performance [6]. Thus, the

need for better-performing SV approaches that can withstand

label noise to mitigate its negative effect on generalization.

In this paper, we investigate a variety of metric learning loss

functions, including maximum margin-based softmax losses,

symmetric losses, normalized losses, mining-based softmax

variants (e.g. CurricularFace, Focal loss), sample-to-sample

based losses, and noise-robust losses for the task of SV under

label noise. To this aim, we explore various recent clustering-
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based clustering algorithms (classical and deep models) to

study the generalization and behavior of self-supervised SV

systems under various types of real-world label noise. We

propose a curated selection of loss objectives (see Table II)

that we experimentally found to be effective against label noise

and enhance the generalization of self-supervised SV systems

to out-of-set samples, beyond discrepancies in the PLs. The

contributions of this paper are as follows:
• We propose the first large-scale investigative and compara-

tive study of various recent state-of-the-art loss objectives

for the task of speaker verification, using various clustering

algorithms. Several of these losses we apply for the first

time in the domain of speaker verification.

• We show that maximum-margin -based softmax losses are

beneficial to mitigate the memorization effects of label

noise during training.

• We demonstrate that several recent maximum-margin

softmax variants provide a great advantage in terms of

generalization and noise-robustness over some widely-

used losses in the domain of SV, such as the angular

additive margin softmax (AAMSoftmax) [15] loss.

• Using CAMSAT-based PLs [16], our proposed selection

of loss objectives allowed us to achieve SOTA SV

performance, outperforming various benchmarks.

II. BACKGROUND AND RELATED WORK

A. Noise-robust loss functions

We can broadly categorize methods for learning from noisy

data into two groups: one focuses on developing noise-robust

algorithms to learn directly from noisy labels [17]–[22], while

the other aims at label-cleansing, which involves removing or

correcting mislabeled data [23]–[25]. In recent years, various

robust loss-based methods were proposed to learn with noisy

labels. [26] proved theoretically that symmetric loss functions,

such as Mean Absolute Error (MAE), are robust to label noise,

while other losses like commonly used Cross Entropy (CE)

are not. Besides, [27] introduced Generalized Cross Entropy

(GCE), a generalized mixture of CE and MAE. [28] proposed

Symmetric Cross Entropy (SCE) which is a combination of

CE and scaled MAE. Reverse Cross Entropy (RCE) was also

suggested to learn more distinguished feature representations

for detecting adversarial examples. Additionally, [29] suggested

a state-of-the-art Active Passive Loss (APL) to create fully

robust loss functions. It showed that any loss function can

be made robust to noisy labels by a simple normalization

operation that makes loss functions symmetric. On the other

hand, recently [30] found that APL still struggles with MAE

and suffers from a problem of underfitting. For this reason,

they suggested a new class of passive loss functions that are

different from MAE, called Negative Loss Functions (NLFs),

and proposed a new class of theoretically robust passive loss

functions, called Normalized Negative Loss Functions (NNLFs).

By replacing the MAE in APL with NNLF, they proposed

an additional Active Negative Loss (ANL), a robust loss

function framework with stronger fitting ability. In this paper,

we investigate several robust loss functions created by the APL

framework and NLFs, including the proposed normalization

operation.

Moreover, in the domain of SV, [6] found that regularization

through Mixup is effective against label noise memorization

[31], and induces better generalization of self-supervised

speaker verification systems since Mixup can dilute the label

noise and create synthetic samples around the borders that lead

to smoothing the data manifold and better class separation. In

the same line of work, [32] also proposed an effective noise-

robust self-supervised Multi-task learning framework based on

various mixup variants to leverage the diverse complementary

information that can be obtained by integrating various tasks,

thereby enhancing the performance and robustness of speaker

verification systems.

B. Maximum margin-based softmax loss objectives

The goal of Metric Learning is to learn representation

functions that map objects into an embedded space. The aim is

to simplify the comparison function of speaker utterances all

the way down to the most simple distance function (e.g. cosine

distance) by delegating the hard task of generating speaker

representations to the trained embedding network which should

ensure intra-class compactness and inter-class separability.

To improve performance on previously unseen data and

generalize to out-of-domain speech samples, various maximum

margin-based softmax variants based on different objectives

have been proposed. Indeed, softmax suffers from several

drawbacks such as that (1) its computation of inter-class margin

is intractable [33] and (2) the learned projections are not

guaranteed equi-spaced. Indeed, the projection vectors for ma-

jority classes occupy more angular space compared to minority

classes [34]. To solve these problems, several alternatives to

softmax have been proposed [15], [35]–[38]. For instance,

AMSoftmax [35] loss applies an additive margin constraint in

the angular space to the softmax loss for maximizing inter-

class variance and minimizing intra-class variance. To provide a

clear geometric interpretation of data samples and enhance the

discriminative power of deep models, AAMSoftmax (angular

additive margin softmax) [15] objective introduces an additive

angular margin to the target angle (between the given features

and the target center). Due to the exact correspondence between

the angle and arc in the normalized hypersphere, AAMSoftmax

can directly optimize the geodesic distance margin, thus its

other name ArcFace.

Additionally, CosFace (large margin cosine loss) [38] refor-

mulates the softmax loss as a cosine loss by L2 normalizing

both features and weight vectors to remove radial variations,

based on which a cosine margin term is introduced to further

maximize the decision margin in the angular space. On the other

hand, OCSoftmax [36] uses one-class learning instead of multi-

class classification and does not assume the same distribution

for all classes/speakers. More recently, AdaFace [37] loss has

been proposed, emphasizing misclassified samples according to

the quality of speaker embeddings (via feature norms). As an

improvement, SMAFace was also introduced for low-quality

face recognition images by incorporating sample mining into
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TABLE I: A study of a wide variety of metric learning loss functions. Results are presented in terms of the EER (%) downstream

SV evaluation performance. We used the CAMSAT algorithm to generate PLs using different predefined numbers of clustering.

Loss function No. of clusters Loss function No. of clusters

5,000 5,994 10,000 5,000 5,994 10,000
OCSoftmax 2.964 3.134 2.969 Focal loss 13.001 13.340 12.561

Subcenter-ArcFace 2.969 3.059 2.943 Agent Center loss 13.34 13.393 12.508

SMAFace 3.028 3.192 3.033 Generalized Cross Entropy 13.351 13.277 13.966

AMSoftmax 3.054 3.224 2.959 Reverse Cross Entropy 14.252 14.687 14.555

AdaFace 3.059 3.112 3.059 Softmax 14.486 14.507 15.085

AAMSoftmax 3.065 3.309 3.134 AExp loss 14.565 14.973 14.756

ArcFace-VPL 2.996 3.059 2.996 AGCE loss 14.464 14.390 14.608

CosFace-VPL 3.075 3.022 2.948 AUE loss 14.666 14.947 14.772

CosFace 3.096 3.043 2.863 Normalized Cross Entropy 18.664 19.692 20.594

Unified Cross Entropy (UniFace) loss 3.15 3.208 3.16 Normalized Focal loss 18.754 19.565 20.700

Normalized BCE loss 3.213 3.181 3.192 Normalized Cross Entropy 18.664 19.692 20.594

Normalized Softmax loss 3.134 3.118 3.028 Hard Gumbel-Softmax 23.096 47.397 22.778

CurricularFace 3.229 3.256 3.192 Normalized Negative Cross Entropy 23.261 26.156 27.45

Cross Entropy 5.477 5.827 5.546 Normalized Negative Focal loss 22.969 24.146 25.779

AS-Softmax 5.748 6.272 6.607 Soft Gumbel-Softmax 25.774 43.871 22.683

MagFace 8.499 8.409 3.139 Center loss 27.126 29.173 27.625

DropMax 7.137 7.264 8.006
Unified Threshold Integrated

Sample-to-Sample (UniTSFace) loss
36.49 36.437 36.972

Symmetric Cross Entropy 12.773 13.266 13.091 Sparsemax 42.179 42.54 46.124

conventional margin-based methods. At its core, SMAFace

focuses on prioritizing information-dense samples, namely

hard samples or easy samples, which present more distinctive

features. To this aim, it employs a probability-driven mining

strategy, enabling the model to adeptly navigate hard samples,

thereby bolstering its robustness and adaptability. Besides, as

softmax has no unified threshold to separate positive sample-

to-class pairs from negative sample-to-class pairs, a Unified

Cross Entropy (UniFace) [39] loss for face recognition model

training was designed on the vital constraint that all the positive

sample-to-class similarities shall be larger than the negative

ones. Additionally, as sample-to-class loss-based models cannot

explore the full relationships between samples across large

datasets, UniTSFace [40] proposed a unified threshold inte-

grated sample-to-sample based loss (USS), which introduces an

explicit unified threshold for distinguishing positive pairs from

negatives. Furthermore, to incorporate additional sample-to-

sample comparisons during training, [41] proposed Variational

Prototype Learning (VPL), which represents every class as a

distribution instead of a point in the latent space. Identifying

the slow feature drift phenomenon, authors directly injected

memorized features into prototypes to approximate variational

prototype sampling. Finally, as above methods are susceptible

to label noise, Subcenter-ArcFace [42] relaxes the intra-class

constraint of ArcFace by designing K sub-centers for each

class to improve the robustness to label noise. In this case, the

training sample only needs to be close to any of the K positive

sub-centers instead of the only one positive center.

III. EXPERIMENTAL SETUP

For all our clustering algorithms, we use 400-dimensional

i-vectors as condensed input. They serve as unsupervised

representations of speakers and enable more efficient clustering

by mitigating the high dimensionality associated with MFCC

acoustic features.

We assess the performance of our examined loss functions

and the resulting pseudo-labels (PLs) for self-supervised

speaker verification through a series of experiments conducted

on the VoxCeleb2 dataset [43]. We train the embedding

networks on the development subset of VoxCeleb2, comprising

1.092 million utterances from 5,994 distinct speakers. Eval-

uation follows the VoxCeleb1 trials list [44], encompassing

37,720 trials with 4,874 utterances from 40 speakers. For our

speaker verification (SV) system, we employ 40-dimensional

Mel-frequency cepstral coefficients (MFCCs) as input features

to our ECAPA-TDNN model. MFCCs are computed every 10

ms with a 25 ms Hamming window, using the Kaldi toolkit

[45].

Moreover, to follow other SV works in training the ECAPA-

TDNN-based systems, we have applied data augmentation at

the waveform level, such as additive noise and room impulse

response (RIR) simulation, as described in [7]. Furthermore,

we extended augmentation to the extracted MFCCs features,

following a similar approach to the specaugment scheme [46].

All speaker verification experiments were run over 7 days

on a single RTX2080Ti GPU, utilizing a batch size of 200

MFCC samples. All margin-based losses are run with a scale

factor (s) set to 30 and the angular margin (m) to 0.2. Cosine

similarity serves as the backend for scoring verification between

embeddings of enrollment and test speech samples.

A. Our clustering-based self-supervised speaker embedding
framework

Figure 1 depicts a schematic diagram of our general

clustering-based self-supervised speaker verification process

that we follow throughout the paper. During our work, we

explore various loss functions and clustering algorithms and

conduct different analyses on their impact on the robustness of

speaker verification performance. We employ ECAPA-TDNN

as our speaker embedding network and use our adopted loss
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TABLE II: A study of various margin-based softmax losses for better generalization of our ECAPA-TDNN -based SV system,

using different pseudo-labels. Results are presented in terms of the EER (%) downstream SV evaluation performance.

Pseudo-labels No. of clusters AAMSoftmax [15] AMSoftmax [35] OCSoftmax [36] AdaFace [37] CosFace [38] Subcenter-ArcFace [42] UniFace [39] SMAFace Cross Entropy

True labels 5,994 1.437 1.522 1.416 1.326 1.463 1.400 1.421 1.373 3.489

GMM 5,000 5.429 4.851 4.682 5.095 4.862 4.639 5.016 4.857 8.425

AHC 5,000 3.621 3.664 3.584 3.526 3.6 3.669 3.590 3.499 6.479

IMSAT
5,000 4.507 4.141 3.881 3.807 4.083 3.886 4.290 4.120 7.206

5,994 4.146 3.961 3.892 4.008 3.696 3.828 4.099 3.971 7.333

10,000 4.438 4.024 4.003 4.046 4.072 4.035 4.077 4.019 7.370

LIMSAT + LSupCon

5,000 4.623 4.401 4.396 4.576 4.48 4.226 4.687 4.337 7.179

5,994 4.475 4.502 4.491 4.443 4.427 4.369 4.687 4.518 7.179

10,000 4.348 4.221 4.189 4.343 4.173 3.993 4.305 4.173 7.174

LIMSAT + LMixup + LSupCon

5,000 4.231 4.046 3.924 4.056 4.332 3.860 4.433 4.067 7.391

5,994 4.321 4.146 4.024 4.125 4.199 3.971 4.067 4.024 7.28

10,000 4.252 4.03 4.146 4.21 4.093 3.993 4.051 3.945 7.259

LIMSAT + LMixup + LSupCon + Laug
5,994 3.298 2.974 3.049 2.985 3.155 2.932 3.478 3.139 6.272

10,000 3.377 3.287 3.293 3.399 3.298 3.309 3.383 3.118 5.695

LIMSAT + LMixup + LSupCon + Laug + LInfoNCE
5,994 3.245 2.985 2.943 3.017 3.176 2.816 3.176 3.112 6.098

10,000 3.362 3.001 3.006 3.043 3.181 3.086 3.150 3.038 5.801

CAMSAT
5,000 3.065 3.054 2.964 3.059 3.096 2.969 3.150 3.028 5.477

5,994 3.309 3.224 3.134 3.112 3.043 3.059 3.208 3.192 5.827

10,000 3.134 2.959 2.969 3.059 2.863 2.943 3.160 3.033 5.546

Fig. 1: General training scheme of our clustering generated

pseudo-label-based self-supervised speaker embedding net-

works.

objectives to train this system using pseudo-labels generated

by the different clustering algorithms.

B. Clustering-based pseudo-label generation

We have utilized the Kaldi toolkit [45] to extract i-vector

embeddings [2], [3] for clustering purposes. These i-vectors

represent statistical unsupervised fixed-dimensional representa-

tions extracted from each training utterance. Subsequently,

clustering was performed on these embeddings. Once the

clustering algorithms were trained, we assigned each utterance

to the corresponding cluster and used the cluster-id as a PL.

These clustering-based PLs enabled us to train the speaker

embedding network using our metric learning loss objectives,

mimicking supervised learning.

For a thorough comparison, we have set the number of

clusters to be in {5000, 5994, 10000} to study the influence

of the predefined number of clusters on our studied losses and

on the downstream speaker verification performance (5994 is

the ground truth number of speakers).

C. Clustering performance of our pseudo-labels

Table III shows the clustering performance of our employed

clustering-based pseudo-labels using different clustering algo-

rithms or self-supervised learning-based objectives to generate

these pseudo-labels. From the relatively low accuracy and

mutual information scores, we can see that our obtained

cluster assignments are often noisy and impure, leading to

discrepancies between the PLs and the true speaker identities.

As a result, in several cases, our SV performance was degraded

from overfitting this label noise.

TABLE III: The clustering performance of our employed

clustering-based pseudo-labels using different clustering algo-

rithms or combining self-supervised learning-based objectives.

Pseudo-labels No. of clusters ACC NMI

GMM 5,000 0.45 0.747

AHC 5,000 0.602 0.838

IMSAT
5,000 0.578 0.822

5,994 0.6 0.833

10,000 0.621 0.844

LIMSAT + LSupCon

5,000 0.497 0.784

5,994 0.514 0.793

10,000 0.548 0.813

LIMSAT + LMixup + LSupCon

5,000 0.602 0.836

5,994 0.619 0.846

10,000 0.639 0.86

LIMSAT + LMixup + LSupCon + Laug
5,994 0.69 0.884

10,000 0.714 0.894

LIMSAT + LMixup + LSupCon + Laug + LInfoNCE
5,994 0.702 0.889

10,000 0.725 0.9

CAMSAT
5,000 0.655 0.874

5,994 0.669 0.878

10,000 0.709 0.889

D. Clustering Evaluation Metrics

Following the commonly used evaluation metrics for clus-

tering, we evaluate our studied clustering models by assessing

the quality of their generated pseudo-labels using the following

two supervised clustering metrics:

• Unsupervised Clustering Accuracy (ACC): Based on the

Hungarian algorithm [47] to efficiently find the optimal

mapping between labels and the generated PLs, ACC

evaluates the agreement between the true labels and the

PLs. ACC = max
m

∑N
i=1 1{yi=m(ci)}

N where yi is the true

label, ci is the generated PL assignment, and m is a

mapping function that ranges over all possible one-to-one

mappings between true labels and assignments.
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• Normalized Mutual Information (NMI) [48]:

NMI(Y,C) = I(Y,C)
1
2 [H(Y )+H(C)]

where Y and C denote

the ground-truth labels and the clustering assignments,

respectively. H is the entropy function and I denotes the

MI metric.

E. Details of our adopted clustering algorithms

For clustering, we adopt the same CAMSAT clustering

approach used in [16] to generate pseudo-labels. CAMSAT is

founded on mixing augmentations and self-augmented training.

The goal is to impose invariance to data augmentation on the

output predictions of deep models in an end-to-end manner.

Simultaneously, the approach aims to maximize the information-

theoretic dependency between samples and their predicted

cluster assignments (discrete representations). It provided both

state-of-the-art speaker clustering and speaker verification

performance. In this paper, we try to investigate several

metric learning loss functions to enhance the generalization

performance of self-supervised speaker embedding systems and

to mitigate the negative effect of heavy noise in the generated

pseudo-labels (PLs) used to train these systems. For comparison,

we also include 2 classical clustering models, namely Gaus-

sian mixture model (GMM) and Agglomerative Hierarchical

Clustering (AHC) [49] which have also demonstrated great

performance. Please refer to [16] for further details about the

clustering model architecture and training details. The following

list provides a brief description of the self-supervised learning-

based objectives used for clustering in our experiments:

• Mixup Loss (Virtual Mixup Training [50]): Lmixup =
1
N

∑N
i=1 KL(αipi + (1−αi)pri ||f(αixi + (1−αi)xri).

ri ∈ {1, .., N} is a random index, and αi ∈ [0, 1] is the

interpolation coefficient. KL(.||.) operator denotes the

Kullback-Leibler divergence and N is the mini-batch size.

pi = f(xi) ∈ R
1xC , pri = f(xri) correspond to the

predictions of original clean data samples xi and xri . C
is the predefined number of clusters.

• Information Maximizing Self-Augmented Training
(IMSAT) Loss: IMSAT loss LIMSAT [51] maximizes

mutual information (MI) in an end-to-end fashion between

data and their clustering assignments by encouraging

the prediction of the neural network to remain invariant

under data perturbation/augmentation, while maximizing

the information-theoretic dependency between data and

their predicted discrete representations. It minimizes the

following objective:

LIMSAT = RSAT (θ, TV AT ) + λ(H(Y |X)− μH(Y ))
RSAT is a loss term that encourages the representations

of augmented samples to approach those of the original

samples. Additionally, it helps to regulate the complexity

of the network against local perturbations through Virtual

Adversarial Training (VAT) [52]. TV AT (x) = x + r is

the augmentation function using local perturbations to

enforce invariance where r = argmax
r′

{RSAT (θ̂;x, x +

r′); ‖r′‖2 ≤ ε} is an adversarial direction. H(.) and H(.|.)
denote the marginal and conditional entropy, respectively.

Their difference represents the MI between input X and

label Y, which we aim to maximize. θ̂ are the current

parameters of the model’s network. Hyper-parameters

λ, μ ∈ R control the trade-offs between the complexity

regularization of the model (via RSAT ) and the MI maxi-

mization, and between the two entropy terms, respectively.

• Data augmentation loss Laug: Laug constrains the

predicted representations of augmented samples to closely

resemble those of the original data points by minimizing

the KL-divergence between both predictions, as follows:

Laug =
1

N

N∑

i=1

KL(p
augri
i ||pi) (1)

with J = {aug1, ..., aug|J|} is the ensemble of available

augmentations and ri ∈ {1, .., |J |} denotes a random

augmentation from J . KL(.||.) denotes the Kullback-

Leibler divergence operator, and N is the mini-batch size.

pi = f(xi) ∈ R
1xC , and p

augj
i = f(x

augj
i ) correspond

to the predictions of data sample xi and its augmented

version x
augj
i , respectively.

• Contrastive Self-Supervised Learning (InfoNCE): In-

foNCE [53], where NCE stands for Noise-Contrastive

Estimation, is a type of contrastive loss function used for

self-supervised learning in SimCLR [54], also known as

the NT-Xent loss (Normalized Temperature-scaled Cross

Entropy). The goal is to maximize the similarity between

the representations of two augmented versions of the

same input, i.e., Zi and Zj while minimizing it to all

other examples in the batch.

In short, the InfoNCE loss compares the similarity of Zi

and Zj to the similarity of Zi to any other representation

in the batch by performing a softmax over the similarity

values. The InfoNCE loss li,j for pair (i,j) can be written

as follows:

li,j = −log exp sim(Zi,Zj)/τ∑2N
k=1 1k �=i exp sim(Zi,Zk)/τ

.

1k �=i ∈ {0, 1} is an indicator function evaluating to 1

iff k �= i, and τ = 1 denotes the temperature parameter.

The final LInfoNCE loss is computed across all positive

pairs, both (i, j) and (j, i), in a mini-batch (a sample and

its augmented version). Cosine similarity is used as a

similarity metric, defined as: sim(Zi, Zj) =
Zi

T .Zj

‖Zi‖‖Zj‖ .

• Supervised Contrastive Loss (SupCon):
LSupCon from [55] extends the self-supervised batch

contrastive approach of the NT-Xent loss (Normalized

Temperature-scaled Cross Entropy) [54] to the fully-

supervised setting, allowing us to effectively leverage label

information. For that, clusters of points belonging to the

same class are pulled together in normalized embedding

space, while simultaneously pushing apart clusters of

samples from different classes. The SupCon extension

allows for multiple positives per anchor instead of a

single sample in addition to many negatives, and draws

from samples of the same class as the anchor, rather

than being data augmentations of the anchor, as done

in previous works. It showed benefits for robustness to
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natural corruptions and is more stable to hyperparameter

settings such as optimizers and data augmentations.

Since the SupCon loss requires labels, we use online

generated labels as input labels to the SupCon loss

function, which allows us to use it in a completely

unsupervised fashion without the need for ground-truth

labels. We use the implementation from https://github.

com/wangz10/contrastive_loss/blob/master/losses.py with

temperature=1 and base_temperature=1.

IV. RESULTS AND DISCUSSION

In Table I, we performed a large-scale study of 37 metric

learning loss functions including all the above-mentioned

families of loss objectives and other widely used losses using

CAMSAT-based pseudo-labels.

Besides, to further validate the noise robustness and gen-

eralization of these losses, in Table II we summarize our

results using various other clustering-based pseudo-labels (with

different predefined numbers of clusters) employed to train

our SV model using the selection of our best-performing loss

functions in Table I.

Throughout our experiments, we can observe that incorpo-

rating a margin can easily enhance the performance of our

metric learning loss functions. Results show clearly that our

selection of maximum-margin softmax variants in Table II are

very effective in improving the generalization of our speaker

verification systems across all types of label noise contained in

the PLs. In particular, unlike the widely used AAMSoftmax loss

in speaker verification, to our knowledge, our results indicate for

the first time that variants such as OCSoftmax using one-class

learning instead of multi-class classification and not assuming

the same distribution for all speakers (which is more realistic

in our case), or the recent AdaFace and SMAFace losses,

perform consistently better across all pseudo-labels and the

ground truth labels. Indeed, AAMSoftmax is susceptible to

massive label noise [15]. This is because if a training sample

is noisy (misclassified), it does not belong to the intended

positive class. In AAMSoftmax, such a noisy sample produces

a significant erroneous loss value, which negatively impedes the

model training. This partially explains the underperformance

of AAMSoftmax compared to other variants when using PLs

for training. Interestingly, thanks to its design to be robust

to label noise, we can also observe the good performance of

Subcenter-ArcFace, which often outperforms all other losses

across our various studied PLs.

Besides, in our experiments on the VoxCeleb1-O test set,

sample-to-sample loss functions and other losses such as

MagFace, DropMax, Center loss, Softmax, Gumbel-Softmax

and Sparsemax performed poorly and seem to suffer from

serious problems of convergence, numerical instability, or

sensitivity to hyperparameters. On the other hand, we can

observe that the normalization operation to make our losses

symmetric helped us to improve performance in the case of

Softmax and Binary CE (BCE). Finally, we found, as shown

in Table I, that recently proposed NLFs and NNLFs losses

both performed poorly in our case compared to our suggested

maximum-margin softmax-based variants.

Moreover, using different predefined numbers of clusters

including the ground truth number of clusters, we can see that

the final downstream SV evaluation performance depends more

on the quality of the PLs, and that the consideration of the

predefined number of clusters is less important.

TABLE IV: A comparison of several SOTA Self-Supervised SV

approaches to our simple SV system trained with CAMSAT-

based PLs and Subcenter-ArcFace loss. All approaches employ

the same ECAPA-TDNN underlying model. Results are pre-

sented on the original VoxCeleb1 test set (Voxceleb1_O).

SSL Objective EER (%)

MoBY [10] 8.2
InfoNCE [12] 7.36

MoCo [56] 7.3
ProtoNCE [10] 7.21

PCL [10] 7.11
CA-DINO [57] 3.585

i-mix [58] 3.478
l-mix [58] 3.377

Iterative clustering [12] 3.09
CAMSAT [16] 3.065

Our approach (using Subcenter-ArcFace) 2.816

Finally, Table IV shows a comparison of our approach

for Self-Supervised SV training using CAMSAT-based PLs

and our best-performing Subcenter-ArcFace loss, compared

to recent SOTA self-supervised SV approaches employing

diverse SSL objectives employing the same underlying ECAPA-

TDNN model encoder. The results demonstrate clearly that our

approach provides very competitive performance close to the

supervised baseline while being simple and fast. Besides, our

approach outperforms all the baselines, which suggests that the

consideration of loss functions is still crucial and that simply

refining the loss objectives of existing self-supervised speaker

recognition systems can still provide further enhancements.

A. Behaviour of metric learning losses over epochs

In Figure 2, we study the evolution of the downstream

evaluation EER (%) performance and the training loss of our

system trained with our selection of maximum-margin-based

loss functions. In particular, we perform the same experiments

using the original ground-truth labels to suppress the effect

of label noise and study its impact on the generalization

and training of SV systems. First of all, despite the good

generalization of our SV systems, we can observe that these

losses still suffer from overfitting and from the phenomenon

of label noise memorization [31] when training with noisy

pseudo-labels (training with noisier GMM-based PLs performs

worse than with the more accurate CAMSAT-based PLs and

leads to more degradation of the validation performance).

Indeed, due to memorization effects [31], deep networks,

especially overparameterized models, initially learn simple

(clean) patterns in the PLs. Over time, they progressively overfit

more challenging and complex (noisy) patterns. This induces

the model to overfit the noise/corruption present in the training
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(c) (d)

(e)

Fig. 2: Training loss and validation performance over time of our speaker verification (SV) systems trained under various

loss functions using (a) ground-truth labels (b) GMM-based pseudo-labels (c) CAMSAT-based pseudo-labels (5k clusters) (d)

CAMSAT-based pseudo-labels (5994 clusters) and (e) CAMSAT-based pseudo-labels (10k clusters).

PLs, which ultimately causes a gradual decline in the validation

curve. This highlights the importance of having highly accurate

PLs for good generalization of self-supervised SV systems. Very

interestingly, on the contrary to other losses where validation

performance starts to degrade after only the first few epochs,

we can find experimentally that Subcenter-ArcFace is more

robust to label noise and does suffer the least from overfitting

compared to other losses. It is worth mentioning, however, that

Subcenter-ArcFace remains much slower than other losses due

to its use of a much bigger matrix of subcenters.

Finally, our visualizations in Figure 2 with different metric

learning loss functions and our large-scale study also demon-

strate that producing compact cluster assignments (compact

probabilities) with more discriminative ability does not really

help to mitigate memorization of label-noise. Despite inducing

better generalization to out-of-set samples, maximum-margin

softmax losses do not seem to reduce sufficiently the model’s

ability to accommodate random noise during training.

V. CONCLUSION

In this work, we performed a large-scale comparative study

of a wide range of recent metric learning loss functions for

better generalization of Self-Supervised Speaker Verification

(SSSV) systems. In particular, we investigated the effect of

these losses on the robustness of the SSSV task against label

noise using various real-life clustering-based pseudo-labels,

and proposed a selection of loss functions against label noise

that lead to considerable improvements in self-supervised SV

performance.
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