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Abstract—In Autonomous Driving (AD) transparency and
safety are paramount, as mistakes are costly. However, neural
networks used in AD systems are generally considered black
boxes. As a countermeasure, we have methods of explainable AI
(XAI), such as feature relevance estimation and dimensionality
reduction. Coarse graining techniques can also help reduce
dimensionality and find interpretable global patterns. A spe-
cific coarse graining method is Renormalization Groups from
statistical physics. It has previously been applied to Restricted
Boltzmann Machines (RBMs) to interpret unsupervised learning.
We refine this technique by building a transparent backbone
model for convolutional variational autoencoders (VAE) that
allows mapping latent values to input features and has perfor-
mance comparable to trained black box VAEs. Moreover, we
propose a custom feature map visualization technique to analyze
the internal convolutional layers in the VAE to explain internal
causes of poor reconstruction that may lead to dangerous traffic
scenarios in AD applications. In a second key contribution, we
propose explanation and evaluation techniques for the internal
dynamics and feature relevance of prediction networks. We test a
long short-term memory (LSTM) network in the computer vision
domain to evaluate the predictability and in future applications
potentially safety of prediction models. We showcase our methods
by analyzing a VAE-LSTM world model that predicts pedestrian
perception in an urban traffic situation.

I. INTRODUCTION

Methods based on artificial intelligence (AI) have been

shown to have increasing successes when applied to a vast

variety of application fields (e.g., healthcare, farming, au-

tonomous vehicles, etc.). Many symbolic AI approaches (e.g.,

rule-based methods) can represent problems in an easily

interpretable and human-readable format. However, machine

learning (ML) techniques that have shown more promising

performance, such as artificial neural networks (ANNs), follow

the subsymbolic paradigm. These techniques are considered

‘black boxes’ that are difficult to interpret and explain.
When designing an ML system, its interpretability and

explainability are essential factors because they influence the

user’s trust and their ability to improve or re-adapt the system.

A system is interpretable when represented in a human-

understandable format and is considered explainable if humans
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can comprehend the decisions and predictions of the ML

system [1]. This led to the emergence of the Explainable

Artificial Intelligence (XAI) field, which aims to provide

means to help interpreting and explaining ML systems.

In the context of autonomous driving, which is the main

focus of this work, XAI is of particular interest due to the

continuous increase of automation levels and the necessity

to explain, at least retrospectively, the decisions made by

large ANNs in dangerous situations. Here, we present an XAI

approach that we showcase in an AD-specific application. We

use XAI to explain previously trained ANN models that predict

the behavior of vulnerable road users (VRUs; e.g., pedestrians,

bicycles) [2] in urban traffic, as their safety is of highest

concern. These prediction models can be used to develop

an advanced driver assistance system (DAS), for example,

as an early warning system that tries to anticipate dangerous

situations on second-timescale. The line of sight between a

human driver and pedestrians on the sidewalks can provide

information on whether a pedestrian is planning, for example,

to enter the road or perform any dangerous behavior [3].

Some prediction models exploit the same visual information of

observing close-by VRUs to anticipate dangerous situations.

We collected data from the pedestrian perspective at road

crossing scenarios in simulations to train ANN [4]. This work

is based on a synthetic environment using the CARLA traffic

simulator [5]. We trained variational autoencoders (VAE) and

long short-term memory (LSTM) networks that can be used

to predict the positions and trajectories of VRUs in the near

future (e.g., one second). With today’s technology, a system on

a vehicle equipped with a 360-degree camera could reconstruct

relevant features of the perspective of surrounding VRUs to

use them as input for prediction models. The feasibility and

efficiency of this approach are increased if multiple cars share

their perception (e.g., vehicle-to-X approaches [6]).

In this paper, we present four methods and tools to explain

both the VAE and LSTM networks of the prediction model

from [4] as shown in Figure 1. To explain the internal

functionality of the convolutional VAE, we develop a tool

based on activation visualization that visualizes the feature

maps and principal components of the convolutional filters.

This provides a visual understanding of the evolution of

features through the convolutional layers and filters, enabling

1040

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00187



the user of the tool to understand the internal functionality

of the ConvVAE layers and its generated features. Second,

we develop a visualization of the learned data manifold. We

visualize the range of features encoded by the latent vector in a

grid as done by [7] and utilized in an interactive tool by [8] to

explain the mapping between the image features and encoded

latent space values. As the challenge of fully explaining VAEs

is vast, we present an alternative approach based on Renor-

malization Groups (RG) [9] from statistical physics as a third

method. It transforms the model to an inherently transparent

and interpretable model. In a fourth approach, we explain

LSTMs by correlating the memory cells’ hidden states with

input features and implementing a custom feature relevance

technique to assign relevance scores for input features. In

an application-focused effort, we test how the LSTM reacts

to input frames with domain-specific varying features (e.g.,

increasing number of pedestrians). We empirically evaluate the

interpretability by comparing LSTM relevance heat maps to

human visual attention maps. Our analysis yields a mean Nor-

malized Scanpath Saliency (NSS) [10] of 0.53, comparing our

heat maps to ground truth human visual attention, and reveals

abnormal prediction behavior with potential implications for

traffic safety. Our explanation and evaluation methods offer

a basis for assessing the explainability and predictability of

pedestrian perception prediction models that can be applied

on different architectures.

II. RELATED WORK

To provide explainability for black box models, XAI tech-

niques rely on interpretations, a mapping from an abstract

domain into a human-understandable domain [11]. [12] pro-

vide a taxonomy of XAI methodologies based on the insights

they provide. Model Simplification techniques aim to compare

complex and simplified models to gain insights. Deep Network

Representation techniques aim to interpret the representation

of data in the model. Deep Network Processing techniques

provide insights on why certain inputs lead to their observed

outputs. In this paper, we cover all three of these techniques.

a) XAI in Autonomous Driving: Some advantages of

XAI, such as accessibility, confidence, or fairness [12], are

beneficial for almost all uses of artificial intelligence, but

certain application areas, such as autonomous driving (AD),

are under more scrutiny [13]–[16]. An error in an AD system

may cause high costs. AD system failure modes may be

difficult to comprehend for humans, which reduces trust. For

example, in a fatal accident [17], an autonomous car did not

recognize a pedestrian pushing a bicycle. To increase safety

and to alleviate trust issues, AD models require insights in

causality to build confidence in their mechanisms. Hence, we

focus on explaining a model used for AD. In the domain of

AD, vehicle-to-X (V2X) [6] allow cars to communicate with

traffic signs, other cars, or even pedestrians. Data obtained

this way enables new approaches, such as perceiving traffic

participants hidden from the car’s line of sight, but visible

by the camera of a traffic light. V2X approaches might also

pose different challenges for XAI, for example, in the domain

of machine behavior [18]. A relevant approach [4] uses action

and camera data from the perspective of a pedestrian to predict

what the pedestrian will see in future time steps.

b) Model-Specific XAI Approaches: Numerous ap-

proaches have focused on developing explainability techniques

designed for particular Deep Learning (DL) architectures.

Karpathy et al. [19] analyzed the functionality of LSTM

memory cells in language models, detecting functionalities,

such as maintaining the state of long-term dependencies, while

Bach et al. [20] proposed Layer-wise Relevance Propagation

to assign relevance scores to input features by propagating the

model’s outputs backwards using redistribution rules.

To interpret convolutional neural networks (CNNs), [21]

visualized a network’s learned features by optimizing random

images to maximize the activations of convolutional filters,

entire layers, or individual channels.

Selvaraju et al. [22] introduced GradCAM, a gradient-based

technique that generates a localization map highlighting the

relevant areas of an image that influence a classification.

Lie et al. [23] extend this gradient-based visualization from

classification networks to generative models like the VAE.

Muhammad and Yeasin [24] augmented CAM methods by

visualizing the principal components of feature maps. Cetin

et al. [25] introduce the Attri-VAE, a VAE based on the

β-VAE [26]. By introducing an attribute regularization term

to their loss function, the authors disentangle latent space

variables, compelling them to align with predefined image

attributes for enhanced interpretability.

c) DL Interpretation through Renormalization Groups:
In statistical physics, Renormalization Groups (RGs) are used

to transform complex systems with a high order of parameters

into simpler ones with a smaller set of parameters that can

describe the general behavior of the system [27]. Metha and

Schwab [28] experimentally demonstrated a mapping between

RG and Restricted Boltzmann Machines (RBMs). The authors

used this mapping to coarse-grain an Ising model, a 2D

grid representing the spins of a magnet. Koch et al. [29]

explored this connection further by comparing stacked RBMs

to a flow of RG operations, where each layer performs a

step of RG-like coarse graining. The authors also compared

downsampling by convolutional pooling layers to the reduction

in dimensionality performed by RG. Koch et al. [9] present an

RG-inspired interpretation of unsupervised learning of RBMs

and generative models. They compare between the weight

matrix of an RBM trained on Ising data and an RG using

Singular Value Decomposition (SVD) [30]. Koch et al. [9]

noted that the singular vectors with the highest singular values

of an SVD of image datasets have their support in low

frequencies, with little information encoded in high frequen-

cies. This phenomenon is similar to Momentum Space RG,

another type of RG that eliminates high momentum modes

represented as high frequencies. Koch et al. [9] introduced the

RG Machine (RGM) that uses singular vectors of a training set

to estimate weights and biases of an RBM. The RGM relies

on low frequency modes of singular vectors, produces images

similar to those of the RBM, and improves its performance
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within a few epochs. Hence, the authors interpret the RBM

learning process as a process similar to momentum space RG,

keeping relevant features represented by low frequency modes

of singular vectors.

III. METHODS

In this section, we present the interpretability methods that

we applied to the Convolutional VAE and the LSTM of

the pedestrian perception prediction approach in traffic situ-

ations [4]. Our goal is to create an explainable AI framework

that provides human-understandable explanations of the inter-

nal processing within the models and the mapping between

their inputs and outputs.

a) Feature Maps Visualization Tool: We developed a

tool that visually explains the internal functionality of the

ConvVAE model presented in [4]. The model encodes pedes-

trian perception into an abstract 50D latent vector z. This way,

the perception is compressed and can be used to predict the

next frame with an LSTM model, a type of recurrent neural

network for time series prediction [31]. The input frames are

represented in 24 channels corresponding to the 24 semantic

classes of a custom CARLA environment. The VAE consists

of four convolutional layers that sequentially extract lower-

dimensional features from the input image. We introduce a

Deep Network Representation [12] tool that interprets the

functionality of the convolutional filters and their role in

the feature extraction process in two phases. Our feature

visualization tool feeds an image to the first convolutional

layer and saves the output feature maps at each layer. We

apply Min-Max normalization [32] to the feature maps and

use them as weighted masks that act on the input image to

map the grey-scale features to the RGB features, producing

more legible feature maps. Next, the tool uses the feature

maps at each layer to compute the SVD [30] of the images.

This allows us to visualize the top singular vectors v of the

feature maps representing the principal components and gain

a visual description of the layer’s functionality, similar to

EigenCAM [24] but in a regression rather than classification

task. We conducted an experiment to evaluate the effectiveness

of our approach in producing interpretable visualizations and

generating insightful outputs at each layer. The experiment

utilized pedestrian perception frames from a traffic scenario

as input images for two different VAE networks. The first

network, VAE1, was trained on a dataset of approximately

805k frames extracted from a fixed pedestrian route in the

traffic scenario. The second network, VAE2, was an enhanced

version trained on a larger dataset of approximately 4m

frames, extracted from different pedestrian routes covering a

wider range of pedestrian perspectives. Our objective was to

determine if our tool could justify the improved performance

of VAE2. To evaluate the functionality of the two networks, we

used the correlation distance metric r(u, v) = 1− (u−ū)·(v−v̄)
||u||2 ||v||2

to group between filters u and v in the same layers similar

filters of VAE1 and VAE2 and identify differences in extracted

features between them. For each filter u in a convolutional

layer L ∈ {1, 2, 3, 4} in VAE2, we paired it with the filter

v in the same convolutional layer in VAE1 that minimized

r(u, v). This enables us to compare filters performing the same

functionality across both VAEs.

b) Latent Space Interpretation: Besides our convolu-

tional feature maps visualization tool that explains the internal

functionality of the convolutional VAE, here, we present

a complementary approach to explain the mapping between

image features and latent vector values (Deep Network Pro-

cessing [12]). Inspired by [8] and [7], we observe how sys-

tematic changes to latent values influence the visual features

of the decoded latent vectors. Such mapping between latent

vector changes and decoded visual features will later help us

to explain the LSTMs (see Section III-0d). To approach this,

we design an experiment where we systematically manipulate

the 50D latent vector values of 30 encoded traffic scenario

frames, extracted from the pedestrian scenario mentioned in

Section I. Our initial experiments indicate that manipulating

the values at one or a few positions of the latent vector results

in minute changes at the decoded frames. Therefore, we divide

each latent vector into five equally sized regions of size ten.

We arrived at this division through qualitatively experimenting

several division setting and choosing the most interpretable

one. We test the influence of iteratively interpolating the values

of a region by increments of {1, 2, 3}. After analyzing the

influence of one region, we restore the values of the original

vector, then we switch to the next region. This results in three

different analyses per region and 15 frame analyses in total.

Finally, the manipulated latent vectors are decoded back to

45 × 85 pixel images that are stored in a 3 × 5 grid that we

call the latent grid. We apply the latent grid visualization to

VAE1 introduced in Section III-0a.

c) RG-inspired Interpretable Autoencoder Architecture:
Most NNs are inherently non-transparent, meaning interpreting

their functionality requires external analysis [12]. So far, we

have presented two external analysis tools that visualize the

internal functionality of convolutional layers and examine the

mapping between latent encoding and image features. How-

ever, those techniques provide a limited interpretation of the

mapping between the latent and feature space of the ConvVAE,

a common issue in interpreting black-box models [33].

Here, we present a different approach, where instead of

explaining such a non-transparent network, we reconstruct

it into a model that is designed to be transparent and in-

terpretable by nature that we can use as a backbone for an

interpretable VAE architecture. First, we apply the SVD on a

sample of the training data to extract interpretable singular

vectors U that represent the most relevant features. Each

singular vector corresponds to a principal component with

the same dimensionality as the dataset frames. Consequently

they can be visualized. We use the 2D Fast Fourier Transform

(FFT) on the singular vectors U , filter out higher frequency

modes with a low pass filter, which is equivalent to applying

an RG transformation [9] to remove irrelevant information,

then apply the Inverse 2D Fourier transform to return to the

singular vector space. The resulting filtered singular vectors

matrix α is used to encode an input image into a latent
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Fig. 1: An overview of our XAI system and its components.

vector z by projecting it onto a lower dimensional vector

space with the basis of singular vectors [30]. The values of z
indicate the degree of similarity between the input image and

the singular vectors, where higher values indicate a stronger

presence of features represented by the singular vectors in

the input image. Similarly, z can be decoded back to an

image using the transpose of the singular vector matrix αT

via z = αTx, x̂ = αz.
The hyper-parameters of the pipeline are the number of

singular vectors used in the matrix α that ultimately determine

the size of the latent vector z–since the input image is

projected onto every single vector–and the cutoff frequency

of the low pass filter. Since each singular vector can be

visualized as a 45 × 85 frame, the features that z encodes

can now be mapped to a human understandable domain. We

test the pipeline using a subset of the training dataset of

VAE1 consisting of 16,500 pedestrian perception frames. We

use the Kullback-Leibler (KL) divergence [34] to evaluate the

pipeline’s performance at a range of hyperparameter settings

and to compare against the baseline VAE. We showcase the

pipeline’s interpretability by visualizing singular vectors of α
demonstrating abstract features encoded by z.

d) Interpreting LSTM Dynamics and Feature Relevance:
The LSTM architecture’s memory cell is a crucial component

that stores state information from previous prediction steps.

At each step, the memory cell decides whether to forget its

current state and replace it with new input or maintain the

current state [31]. Hidden state values hc of the memory cells

determine whether to affect the network’s output at each step.

The memory cell’s decisions are regulated by gates, which are

simple multiplicative units that pass through a tanh or sigmoid

activation function [31]. The LSTM’s design enables it to

store important information from prior states while protecting

them from irrelevant inputs or noise [31]. To explain both

the internal functionality and the feature relevance of the

pedestrian perception prediction model from [4], we present

two approaches for calculating the relevance of input features

and for interpreting the functionality of LSTM memory cells

in a street-crossing scenario, respectively. In the crossing

scenario, a pedestrian approaches a zebra crossing, uses it to

cross the street, and then continues on their way. The scenario

is executed in CARLA [5] and the pedestrian’s semantically

segmented vision and action commands are recorded. At each

time step, the LSTM uses a pedestrian action at and latent

vector zt to predict the next perception frame zt+1, which

is passed back to the LSTM in a feedback loop to predict

again. The first approach is based on an input of 400 frames

of the pedestrian’s vision and storing the hidden states of

the LSTM’s 512 memory cells at each frame prediction. We

use a sigmoid function to normalize the hidden state values

between zero and one, where values closer to one indicate

that the cell is triggered, that is, it passes its contents to the

output. To visualize the activity of a hidden state with respect

to the predicted frame, we plot the hidden state on the y-axis

and the index of the generated frame on the x-axis in a 2D

plot. We aim to identify cells with interpretable behavior (i.e.,

correlating the cells’ hidden values and the features of the

pedestrian perception) using two heuristic filters.

We qualitatively evaluate the interpretability of the top cells

identified by the two filters based on a human user’s ability

to correlate the cell’s hidden state behavior with the events

in the traffic scene and the actions of the ego-pedestrian.

Our investigations indicate that cells with noisy hidden state

behavior tend to be uninterpretable, while interpretable cells

tend to be active only at certain intervals.

We define the first filter κ that returns cells that minimize the

KL divergence between their hidden state values and a square

pulse activated at a particular range when a certain event
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occurs, such as when the pedestrian passes the crosswalk:

κ = argmin
c

(KL(hc||θ(t− r1)− θ(t− r2))) , (1)

where KL(·||·) is the KL divergence, r1 and r2 are the start

and end points of the interval I under investigation, c is

the index of a memory cell, hc is the hidden state values

of cell c, and θ is the Heaviside step function. The LSTM

takes in the ego-pedestrian actions a = [a0, a1, a2], where a0
indicates movement (0 for stopped, 1 for in motion), a1 is the

pedestrian’s body angle parallel to the ground, and a2 is the

head’s rotation parallel to the ground. We introduce the second

filter μ that identifies cells tracking action changes:

μ = argmin
c

(Sc(∇hc,∇a)) , (2)

where Sc is the cosine similarity,∇hc is the gradient of hidden

values hc, and ∇a is the gradient of the action a.

In our second approach, we propose an augmented Layer-

wise Relevance Propagation [20] technique to visualize the

relevance of the input latent features and map them to the

RGB space. After the LSTM model predicts the future latent

vector, we assign a relevance value of 1 for all values in zt+1.

Then we redistribute the relevance for lower layer neurons

through two propagation rules. The two rules handle weighted

connections and multiplicative connections such as in the cell

state (see [35] for the formulas of our chosen rules). Similar to

the latent space interpretation (see Section III-0b) experiment,

in order to map the relevance scores of the input latent space

to the RGB space, we perturb each latent value and assign

its relevance score to the most affected pixel regions in the

decoded image. We use the image relevance scores as a mask

to visualize the most relevant visual features of the input

image. To evaluate the LRP explanation and the differences

between the decision making process of the LSTM and other

human or machine models, we compare the resultant masks

to human driver attention maps generated by a pretrained

model proposed by [10] predicting the visual attention of

human drivers. As metrics we use the mean NSS and Pearson’s

Coeffecient [10] over the whole scenario. As input to the LRP

experiment we use the pedestrian crossing scenario shown

in Table I and the latent grids produced in Section III-0b.

We test the LSTM’s response to varying input features and

unforeseen scenarios that may lead to traffic hazards.

IV. RESULTS

We present the results of our adaptation of the convolutional

feature map visualization [21] and latent space visualiza-

tion [7], [8] to implement both Deep Network Representa-

tion and Deep Network Processing [12]. We also show our

novel explanation by simplification [12] method to produce

a transparent VAE, and our LSTM explainability framework

combining memory cell analysis with latent space visualiza-

tion.

a) Convolutional VAE Feature Visualization: We present

the visualizations of the feature map comparison discussed in

Section III-0a. Figure 2 shows that unlike VAE2, VAE1 was

unable to effectively reconstruct the input, since the decoded

image is noisy with missing features, such as the car and the

crosswalk. In the bottom of Figure 2, each column represents

the two pairs of feature maps belonging to filters in the same

layer in the two VAEs. In the first layer, VAE2 better captures

the skyline feature as indicated by its brighter color.

In the visualization of the second layer and third convolu-

tional layers, we observe similar trends, with VAE1 poorly

extracting the features of the crosswalk and skyline com-

pared to VAE2. These visualizations indicate that the filter of

VAE1 have not learned to properly extract the skyline and

crosswalk. We exclude the 2 × 2 fourth layer’s feature map

comparison and singular vectors, as their low dimensionality

lacks interpretability and hinders post-hoc interpretability in

networks with chained convolutional layers. The singular

vectors provide a method for users to see the effect of internal

data transformations at each convolutional layer, especially in

earlier layers with relatively larger filter dimensions. The first

layer singular vectors of VAE2 feature high activation values

(marked by brighter colors) in patches corresponding to the

crosswalk and skyline. Overall, the two-phase feature visual-

ization pipeline has qualitatively demonstrated its ability to

visualize internal data processes of the ConvVAE, visualizing

internal causes of poor reconstruction by the ConvVAE, which

could lead to dangerous traffic situations.

b) Latent Space Interpretation: We present here the 5×3
latent grids of VAE1 for one example of the 30 input latent

vectors we manipulate, shown in Figure 3. Each row in the

grid, corresponding to a different latent vector slice of size ten,

appears to control a set of semantic features of the decoded

images. For example, the fourth row z4 features the addition

of a pedestrian, while the first row in features the addition

of a car. By observing the different rows of the latent grid

for a given image, a user can visualize a mapping between

semantic features and their latent representation. The latent

grid tool will be crucial in analyzing responses of the LSTM,

since the latent vector is used by the LSTM to predict the next

pedestrian perception frame.

c) RG-inspired Interpretable Autoencoder Architecture:
For the SVD-based pipeline, we sample the data from the

pedestrian vision dataset by [4] to provide an input space of

semantically segmented images. We test two cutoff frequencies

set at 150 and 175 frequency modes. We compute the SVD

using Tensorflow 2.9.1 on three Nvidia A100 GPUs. We rely

on the implementation of [9] for the low pass filter, but

refactor it using Tensorflow. We compare the performance

of SVD architectures to the baseline VAE1 model using

the KL Divergence reconstruction error of the test dataset

of the VAE1 model trained by [4]. The VAE1 model, the

SVD autoencoder with cutoff of 175 and 150 have a mean

reconstruction error of 0.024, 0.179, and 0.521, respectively.

In terms of interpretability, we can visualize and interpret

features encoded by the latent vector as each latent value

represents the strength of a principal component (the singular

vector). For example, the top three singular vectors of the 175

frequency mode SVD in Figure 4 show different perspectives
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Fig. 2: Visualization of the RGB feature maps and top singular

vector v0 for layers 1-3 for VAE1 and VAE2. For each layer,

each column represents the VAEs’ most similar feature maps.

of the ego-pedestrian. The first three values of the latent vector

numerically correspond to each of these visualizable singular

vectors, forming a transparent model [33].

d) Interpreting LSTM Dynamics and Feature Relevance:
We do two LSTM memory cell tests. First we analyze the

LSTM memory cells as the VAE-LSTM model predicts the

perception of an ego-pedestrian crossing the street. Table I

shows the three actions of the pedestrian and a textual

description of the scene. We present a sample of memory

cells with interpretable hidden state behavior, detected using

filters κ and μ. Of the 512 cells, only 82 cells were found

to meet the qualitative interpretation standard described in

Section III-0d. Cell 134 (Figure 5-a) is active at range 80

to 159, corresponding to the interval where the ego-pedestrian

stops walking while changing the angle of the head towards

the street. Cell 134 was detected through the filter κ using a

Heaviside square pulse between 80 and 159. The interpretation

of this behavior is that cell 134 keeps track of the periods

in the sequence when the pedestrian performs the ‘stop and

scan’ behavior before crossing the street, effectively acting

as a movement detector. As for the filter μ that detects cells

Fig. 3: Latent grids for z (top). The rows represent regions of

size ten in the latent vector. Each entry is the decoded vector

taken after increasing the values of the region by {1, 2, 3}.

Fig. 4: Singular vectors of α with a cutoff frequency of

175 with the two highest singular values S visualized (top).

We show the frequency domains of the first (bottom left)

and twelfth singular vector (bottom right). α[0] shows high

support in only the lowest frequency, while α[11] has support

throughout the spectrum, in agreement with [9].

sensitive to the three action values, no interpretable cells were

found to react to differences in the first two action values,

corresponding to the flag of the ego-pedestrian movement and

the angle of the body of the ego-pedestrian. However, cell 100

(Figure 5-c) was found to react to changes in the third action

value that represents the angle of head of the ego-pedestrian.

Cell 100 has high hidden cell values coinciding with high

normalized values of the head angle, when the pedestrians

looks sideways toward the street and passing cars.

In our second LSTM approach, we visualize and evaluate

the input relevance heat maps using LRP augmented with

perturbation masking for the pedestrian scenario frames of Ta-

ble I and the latent grids as the example shown in Figure 3.

The empirical evaluation of the comparison between the LRP

heatmaps and driver attention maps resulted in a mean NSS

score of 0.53 and a Pearson Coeffecient of 0.46 for the

pedestrian scenario of Table I. Using the latent grid as input

to the prediction model, we were able to detect unpredictable

1045



Frames a0 a1 a2 Scene description

0-80 1 180 0 Walk(Sidewalk), LookTo(Sidewalk)
81-118 0 [180 - 270] [0 , -48.63] Turn(Right), LookTo(Street)

119-135 0 270 [-48.63,-0.66] Turn(Head,Right), LookTo(Crosswalk)
136-158 0 270 -0.66 LookTo(Crosswalk)
159-233 1 270 [-0.66 - 85.54] Walk(Crosswalk), LookTo(Street)
234-337 1 270 [85.54 - 0.24] Walk(Crosswalk), LookTo(Crosswalk)
338-377 0 [270-180] 0.24 Turn(Body,Left), LookTo(Sidewalk)
378-399 1 180 0.24 Walk(Sidewalk), LookTo(Sidewalk)

TABLE I: A pedestrian scenario description matching time frame ranges with pedestrian perception.
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Fig. 5: Cell 134 (Left) and Cell 100 (Right) show the hidden

state on the y-axis in blue relative to the pedestrian vision

frames. The pink signal is movement action a0, while the

cream signal is head angle action a2.

behavior of the LSTM. In the next frame prediction of z1 +2
and z1 + 3 in Figure 6, the LSTM changes the car in the

input frame to a cyclist in the output frame, which may

cause dangerous effects in a DAS relying on future pedestrian

perception. The LRP heatmaps for this scenario indicate that

the latent manipulation of that region triggered the response of

the LSTM even before the car becomes visible in frame z1+1.

Fig. 6: LSTM predictions in second for latent grid z1, with the

LRP heatmap and human attention map in the third and fourth

rows, respectively. The LSTM generates a cyclist instead of

car, with the LRP detecting the presence of the car’s region.

V. DISCUSSION

Our four methods apply several XAI techniques to

ConvVAEs and LSTMs. The use case we address is a vision

model that gives drivers recommendations based on pedestrian

perception. We can use our feature map visualization tool

to investigate internal deficiencies that cause poor model

performance. The latent grid maps between latent space and

feature space help to visualize the effect of changing different

input features on the LSTM prediction in Section IV-0d.

A drawback of our latent grid approach is its high granu-

larity, as it does not interpret each latent vector value. Our

prediction model explanation provides a baseline to examine

the internal functionality and safety of the LSTM predictions

prior to deployment in a DAS. Both the memory cell and LRP

analysis can be applied to other prediction architectures such

as Transformers [36] by analyzing the attention head activity

and designing propagation rules for the different Transformer

layers. By creating scenarios with rare or dangerous features,

we can analyze prediction models’ dynamics and the relevance

of critical features. However, a drawback of our evaluation

is the use of the driver attention model trained to simulate

drivers’ rather than pedestrians’ point of view. Finally, we

proposed a backbone for an interpretable VAE architecture.

Inspired by the RGM [9], the ultimate goal is to fine-tune the

SVD pipeline as an interpretable backbone of a VAE. The

singular vectors of the reconstruction matrix α can be used

without post-hoc explanation to provide a mapping between

feature and latent space. However, calculating the SVD for

large datasets seems computationally infeasible. Our use of

SVD to encode and decode images is a linear Principal

Component Analysis (PCA), which is sensitive to outliers and

corrupted data [30].

VI. CONCLUSION AND FUTURE WORK

We introduced an end-to-end XAI framework for explaining

the internal functionality and feature-output mapping of DL

models in a perception prediction network for autonomous

driving [4]. We uncovered the internal feature extraction pro-

cess of the Convolutional VAE with convolutional feature map

visualization and adopted a Feature Relevance explanation

approach relating the feature space with the latent space

through the latent grid analysis. Using the latent grids as

inputs helped us to detect significant prediction errors by the

LSTM that may affect the safety of VRUs, with our LRP

explanation providing explanations of the relevant features
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impacting predictions. We have detected a significant space of

interpretable LSTM memory cells and proposed methods to

infer their functionality, such as keeping track of pedestrian

movement, the presence of cars, and street crossing. Our

empirical comparison of the LRP and driver attention maps

presents an interpretation baseline for pedestrian prediction

models and can be improved by training a pedestrian attention

model to compare to the prediction model feature relevance.

Our XAI methods may be beneficial in evaluating the trans-

parency and trust-worthiness of state-of-the-art DL models in

AD, enabling their certification in the future. Our autoencoder

architecture with an inherently interpretable latent space is

based on the relationship between autoencoders, PCA, and

RG [9]. For future work, we plan to integrate the SVD pipeline

into a VAE and combine convolutional layers with the SVD to

create hybrid VAE models with a basis of interpretability. We

plan to use incremental and randomized SVD [30] to increase

dataset size and Robust PCA [30] to enhance generalization

and noise handling.

REFERENCES

[1] A. Erasmus, T. D. P. Brunet, and E. Fisher, “What is interpretability?”
Philosophy & Technology, vol. 34, no. 4, pp. 833–862, Dec 2021.

[2] G. Yannis, D. Nikolaou, A. Laiou, Y. A. Stürmer, I. Buttler, and
D. Jankowska-Karpa, “Vulnerable road users: Cross-cultural perspec-
tives on performance and attitudes,” IATSS research, vol. 44, no. 3, pp.
220–229, 2020.
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