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Abstract—Conventional classification models in machine learn-
ing are imposed with strict constraints, limiting their implemen-
tation in real-world scenarios. Datasets encountered in the wild
naturally contain instances belonging to both classes seen in
the training data, and unseen novel classes. Further, test data
are frequently drawn from a different distribution compared to
the training data. In this paper, with the aim of developing a
more universal classifier, we explore the challenging but practical
setting where we allow for both the open-world nature and a
shift in distribution between training and test data. At the core,
we build upon the vanilla open-world semi-supervised model by
introducing a novel weighted variance minimization term for the
unlabeled data. This regularization term improves generalization
by encouraging the model to be cautiously confident, i.e. to output
more confident predictions for instances of known classes, but not
for those of unknown classes. We demonstrate the effectiveness of
our method, especially for seen classes, on benchmark datasets.
Our simple approach can be easily integrated in other existing
open-world frameworks, and even beyond semi-supervised learn-
ing. Most importantly, our work advocates for more research that
improves open-world models by looking into the rich literature
of domain adaptation, thereby developing reliable open-world
learning systems that are resilient to distributional shifts.

Index Terms—open-world, semi-supervised learning, domain
adaptation

I. INTRODUCTION

Remarkable performance has been achieved in deep learning

through the use of large quantities of labeled data in a

multitude of tasks, but the vast majority of data available is

unlabeled. The cost of manually labelling is prohibitive poten-

tially due to privacy issues or the need for expert knowledge.

In semi-supervised learning (SSL), both labeled and unlabeled

data are incorporated into the training procedure, with the goal

of surpassing the performance when trained in either a purely

supervised or purely unsupervised fashion.

In this paper, we are concerned with classification under

the SSL framework. In particular, we work under the trans-

ductive learning assumption, where the model learns from the

combined dataset and aims to classify the unlabeled samples.

Here, we focus on open-world classification, where novel

classes unseen in the training data may appear in the test

data. Standard classification models are ill-equipped to tackle

the open-world setting because the labeled and unlabeled sets

are assumed to overlap. When dealing with data in-the-wild,

the closed-set assumption rarely holds. A robust and reliable

model needs to be able to account for novel classes as well.

To construct a universal classifier, we further relax the

fatal assumption in conventional machine learning models that

the training and test domains are independent and identically

distributed (i.i.d.). Our primary objective is to improve the

learning of models for open-world classification under the SSL

paradigm, specifically in the challenging case when there is

a shift between the training and test domains. We propose

Open-world Domain Adapted Classification (ODAC), a unified

training method to handle this setting. The key to our approach

is the introduction of a novel weighted variance minimization

term that enforces the model to be cautiously confident, and

output more certain predictions for data that belong to classes

seen in the training data, but not for those of unknown novel

classes. We find the simple approach to be useful in helping

to learn a more compact representation, and achieve better

accuracy, especially for the seen classes. We evaluate our

method against the vanilla model on benchmark datasets.

II. RELATED WORK

Open-world learning: Open-world learning [1]–[4] operates

under the open-world setting where novel classes appear in the

test data. The first paper to address the open-world nature [2]

focused on preventing the model from overfitting to the seen

classes. Subsequent works such as [1], [3] deviated in their

goals, such as aiming to learn a compact feature representation,

and working on the estimation of number of novel classes. A

potential extension would be to combine the strengths of the

different methods, such as using [3] as a pretraining protocol

to [2]. However, these works have not explicitly considered a

dataset shift from training to test data.

Domain adaptation: In domain adaptation, the training and

test domains are different, and the model is required to adapt

to and perform well on the test data. The common approach

is to learn domain invariant representation by minimizing the

divergence between the feature distributions of the source

(training) data and the target (test) data [5]. Prior methods

worked on various definitions of divergence between feature

distributions [6]–[8]. Operating under the same setting as

our own is universal or open-set domain adaptation [9]–[11]

which accounts for novel classes in the test data. Nonetheless,

their chief objective is to faithfully align feature distributions,

they focus on representation learning, and often require an

additional step to train a classifier. Meanwhile, ODAC is an

end-to-end framework concerned with classification.

Semi-supervised learning (SSL) SSL methods utilized unla-

beled data to improve the performance of models trained only

with labeled data. Various works have explored either making

the model either more certain [12] or less certain [13] when

predicting on the unlabeled data.
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III. PROPOSED APPROACH: ODAC

In the open-world setting with dataset shift, we have the

source labeled dataset Dl = {(xi, yi)}ni=1 and the target

unlabeled dataset Du = {(xj)}mj=1, each x ∈ R
k, usually

with n � m, such that Dl and Du are drawn from different

distributions. The task is to assign instances from Du to either

a seen class cs ∈ Cs or a novel class cn ∈ Cn, assuming the

number of novel classes is known. The network architecture

we adopt consists of (i) a backbone embedding function

fθ : Rk → R
d, mapping inputs x ∈ Xl∪Xu to obtain features

z ∈ Zl ∪ Zu, and (ii) a linear classifier with weight W .

To tackle the problem of Open-World Learning under

dataset shift, we propose ODAC, which operates on top

of ORCA [2]. ORCA trains the model on the combined

dataset using a composition of supervised and unsupervised

objectives. ODAC combines the vanilla ORCA with a novel

regularisation term to minimise the variance of the model

predictions on the unlabeled dataset. Encouraged to make

more confident predictions on the unlabeled data, the model

effectively learns discriminative features from labeled data that

result in low-variance predictions for the unlabeled data as

well [12]. This advantage would likely be more apparent in

our case, as the unlabeled data provides greater variation due

to the dataset shift.

However, there are both known and unknown classes in the

target unlabeled data. Thus, while we would like our network

to be more confident in its predictions for unlabeled data of

known classes to reduce overfitting to labeled data, we do not

want it to be overconfident for unlabeled data of unknown

classes. Therefore, we propose to minimise the variance of

predictions only for unlabeled data of known classes to avoid

misguiding the model.

Since we do not have information on which instances in

the unlabeled dataset belong to the unknown classes, outright

rejection of samples would likely propagate error. We avoid

this by applying a soft weight on the unlabeled samples:

for those samples deemed to belong to an unknown class,

their weight should be smaller, and vice versa. Under the

mild assumption that if feature z belongs to a seen class,

the uncertainty of the predictions will be low. We model the

uncertainty using entropy. Equivalently, if the entropy is high,

z is likely to belong to the unknown class. Here, the classifier

only predicts for known classes. To avoid training a separate

classifier, we take the first |Cl| softmax outputs of σk(W
T ·z),

where σ is the sigmoid function, and truncate the rest, and

normalize these outputs such that their sum is 1.

With this assumption, we can define the weight in relation

to the entropy of the classifier:

w(z) =
1

W
exp

⎛
⎝

|Cl|∑
k=1

−p̂k log p̂k

⎞
⎠,

where p̂k = σk(W
T · z), and W is a normalizing constant

such that
∑

w(z) = 1. We define the additional variance

TABLE I: Mean accuracy over three different corruption types

for CIFAR10-C, CIFAR100-C, and VisDA datasets

Method CIFAR10-C CIFAR100-C VisDA
Seen Unseen Overall Seen Unseen Overall Seen Unseen Overall

ORCA 7.1 14.2 11.7 1.88 2.73 1.83 2.0 36.2 24.9
ODAC 19.6 20.5 13.7 1.97 2.12 1.42 10.2 29.8 22.3

minimization term as

γ
∑
z∈Zu

w(z)Var(z),

where γ > 0 is a balancing hyperparameter, Var(z) =
1−maxk P (y = k|z) = 1−maxk σk(W

T · z). Additionally,

we employ domain-specific batch normalization (DSBN) to

address the domain shift [14].

IV. EXPERIMENTAL RESULTS

Experimental Setup. We test on three benchmarks:

• CIFAR10-C and CIFAR100-C [15]: we consider three

corruptions, namely snow, gaussian noise and glass blur.

• VisDA [16]: a large synthetic-to-real dataset of 12 classes.

For all datasets, 50% of the total number of classes are unseen

in the labeled dataset, and the unlabeled dataset is the same

size as the labeled one. We use ResNet18 [17] as the network

and leverage the model weights pretrained on ImageNet. We

note that a different pretraining protocol, particularly one that

works in the open-world such as [3], could boost performance.

Lastly, we apply DSBN by simply forwarding the source and

target data in separate mini-batches as in [18].

Evaluation. We compare the seen, unseen, and overall ac-

curacy of ODAC to ORCA in TABLE I. ODAC consid-

erably outperforms the vanilla model on the seen classes,

especially for CIFAR10-C which shows an improvement of

176%. This improvement is in line with what is observed

in the closed set scenario when we enforce a model to be

more confident in its predictions. However, besides CIFAR10-

C, ODAC does not perform competitively in the unseen and

overall accuracy. We observe that the accuracy is sensitive

to the weight hyperparameter γ, and so, ODAC may require

more finetuning. Further, we visualize the feature embeddings

by ODAC compared to OpenCon [3] on the VisDA dataset

in Fig. 1. Under the dataset shift, OpenCon is unable to

achieve a compact representation, whereas ODAC shows better

embeddings in more distinct clusters.

V. CONCLUSION

We improve on the vanilla open-world model by incorpo-

rating a novel weighted variance minimization term in the

objective. We extend the idea of enforcing the model to be

more certain in its predictions, which is often used in semi-

supervised learning, to the open-world setting. We introduce

the notion of cautious confidence, whereby the model is

encouraged to predict more confidently on instance of the

seen classes, but not on those of the novel classes. This

simple regularization term requires no ground truth labels, and
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(a) OpenCon (b) ODAC

Fig. 1: UMAP visualization [19] of feature embeddings for

the VisDA dataset by (a) OpenCon, and (b) ODAC.

could be easily adopted even beyond SSL, such as in test-

time adaptation. Future work could formulate the confidence

differently, such as in terms of entropy, instead of our naive

formulation of variance. Furthermore, we utilize DSBN, a

simple approach to address the dataset shift. More scrutiny

of the domain adaptation literature could be inspiring to

effectively align feature distributions and enhance accuracy.

Our preliminary experiments are promising, especially on

the seen classes, though the overall performance is still not

satisfactory. Nonetheless, our work brings to attention the

practical setting of open-world learning under dataset shift, and

showcases how existing methods can be extended to develop

reliable open-world learning systems.
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