
Optimized Vision Transformer Training using GPU
and Multi-threading

Jonathan Ledet†, Ashok Kumar†, Dominick Rizk‡, Rodrigue Rizk�, KC Santosh�
†Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA, USA

‡Department of Electrical Engineering, and Computer Science, Catholic University of America, Washington, DC, USA
�Applied AI Research Lab, Department of Computer Science, University of South Dakota, Vermillion, SD, USA

jonathan.ledet1@louisiana.edu, ashok.kumar@louisiana.edu, rizkd@cua.edu, rodrigue.rizk@usd.edu, kc.santosh@usd.edu

Abstract—Traditional Convolutional Neural Networks (CNNs)
often struggle with capturing intricate spatial relationships and
nuanced patterns in diverse datasets. To overcome these limita-
tions, this work pioneers the application of Vision Transformer
(ViT) models which have gained significant attention in the field
of computer vision for their ability to capture long-range depen-
dencies in images through self-attention mechanisms. However,
training large-scale ViT models with a massive number of param-
eters poses computational challenges. In this paper, we present
an optimized approach for training ViT models that leverages
the parallel processing capabilities of Graphics Processing Units
(GPUs) and optimizes the computational workload distribution
using multi-threading. The proposed model is trained and tested
on the CIFAR-10 dataset and achieved an outstanding accuracy
of 99.92% after 100 epochs. The experimental results demon-
strate the effectiveness of our approach in optimizing training
efficiency compared to existing methods. This underscores the
superior performance of ViT models and their potential to
revolutionize image classification tasks.

Index Terms—CIFAR-10 dataset, convolutional neural net-
works (CNN), GPU, image classification, multi-threading, vision
transformer (ViT), attention mechanism

I. INTRODUCTION

Traditional Convolutional Neural Networks (CNNs) have

been pivotal in the domain of image classification, demon-

strating significant success. However, their inherent limita-

tions in capturing long-range dependencies and global context

have spurred exploration into innovative architectures. Vision

Transformers (ViTs), a novel paradigm in computer vision,

aim to overcome these limitations by adapting the transformer

architecture to process image data. ViTs have demonstrated

state-of-the-art performance in various computer vision tasks,

but their training demands substantial computational resources.

Previous research [1] - [4] has explored parallelizing deep

neural network training using GPUs. However, adapting these

techniques specifically to ViTs requires novel considerations

due to the unique self-attention mechanisms employed in

ViT architectures. In this work, we address the challenge of

efficiently training large-scale ViT models by leveraging the

parallel processing power of GPUs and optimizing the training

pipeline with multi-threading. Our proposed approach aims to

reduce training time while maintaining or even improving the

model’s accuracy.

Fig. 1. Proposed Optimized Vision Transformer Training Pipeline.

II. MULTI-THREADING IN VIT TRAINING

The incorporation of multi-threading into the Vision Trans-

former (ViT) training program represents a strategic optimiza-

tion to elevate the efficiency of key components in the training

pipeline. By embracing concurrent execution strategies, the

training process is enhanced, leading to accelerated conver-

gence and improved overall performance. Fig. 1 illustrates our

proposed approach for efficient Vision Transformer training,

combining GPU acceleration and multi-threading techniques.

Data parallelism across different modules optimizes compu-

tation, while multi-threading streamlines tasks, collectively

reducing training time.

Data Loading and Augmentation: One crucial phase where
multi-threading plays a pivotal role is during the data loading

and augmentation process. Leveraging concurrent execution,

the torch.utils.data.DataLoader efficiently man-
ages the retrieval and preprocessing of batches from the

CIFAR-10 dataset. Through the use of multiple worker threads,

data loading becomes an asynchronous operation, mitigating

potential bottlenecks and substantially enhancing the through-

put of the training process. This optimization ensures that the
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TABLE I
VIT LAYER PROCESSING TIMES

Layer Processing Time (ms)
Input Patching 0.97
Positional Encoding 0.99
Transformer Encoder 15.96
Linear Embedding 0.99
Global Average Pooling 0.02
Fully Connected Layers 0.01
Output Layer 0.11
Total 19.05

model is consistently fed with a stream of diverse and aug-

mented data, contributing to the robustness and generalization

capabilities of the Vision Transformer.

Fine-Grained Timing Measurements: To gain a nuanced under-
standing of the ViT model’s performance, a dedicated Timing
class is employed to conduct fine-grained timing measure-

ments. This class records the execution time of critical sections

within the model, including input patching, positional encod-

ing, transformer encoding, linear embedding, global average

pooling, fully connected layers, and the output layer. These

detailed measurements offer insights into how computational

resources are allocated across different components, allowing

for the identification of potential optimization opportunities.

The fine-grained nature of these timings is instrumental in fine-

tuning the model and ensuring efficient resource utilization.

III. EXPERIMENTAL SETUP, RESULTS, AND DISCUSSION

To evaluate the proposed optimized ViT training approach,

we conducted experiments on the well-established dataset

CIFAR-10 [5], a widely used benchmark in the field of

computer vision. CIFAR-10 consists of 60,000 32x32 color

images across ten classes, making it suitable for assessing the

performance and efficiency of our optimized ViT training ap-

proach. Harnessing the power of GPU acceleration and multi-

threading, the experimental platform boasts the following

hardware specifications: CPU – Intel(R) Core(TM) i5-8600K

CPU @ 3.60GHz; GPU – NVIDIA GTX 1060 6GB; Operating

System – 64-bit Windows 10 Home; and RAM – 32GB DDR4

RAM 3000. The training strategy encompasses key parameters

for achieving optimal results: Optimizer – Adam; Learning

Rate – 0.0001; Loss Function – CrossEntropyLoss; Batch

Size – 64; and Data Augmentation – Basic normalization.

Experiments were executed over a sufficient number of epochs

to allow the models to converge, with performance metrics

recorded at regular intervals for comprehensive analysis. The

source code for the model implementation is available on

GitHub for reproducibility1.

Table I details the processing times for each layer in

the ViT model. Notably, the “Transformer Encoder” layer,
responsible for capturing long-range dependencies, consumes

the majority of the processing time (15.96 milliseconds). The

“Input Patching” and “Positional Encoding” stages contribute

1https://github.com/2ai-lab/Optimized-Vision-Transformer-Training-using-
GPU-and-Multi-threading

TABLE II
TEST ACCURACIES COMPARISON

# of Epochs CNNs Transformers ViT
10 72.18% 68.44% 66.06%
25 71.17% 69.29% 84.73%
50 70.41% 71.62% 98.18%
100 70.13% 71.86% 99.92%

significantly as well. The total processing time for the ViT is

19.05 milliseconds, reflecting the computation-intensive nature

of self-attention mechanisms in large-scale vision models.

We compare the accuracy and convergence speed of our

optimized ViT models against traditional training methods.

Table II provides a comparative analysis of test accuracies for

CNNs, Transformers, and ViTs at different training epochs

on the CIFAR-10 dataset. At the initial 10 epochs, CNNs

lead with the highest accuracy at 72.18%, outperforming both

Transformers and ViTs. However, ViTs steadily outpace CNNs

and Transformers as training progresses, achieving a notable

98.18% accuracy at 50 epochs and an impressive 99.92% ac-

curacy after 100 epochs. These results highlight the consistent

and substantial performance gain of ViTs, showcasing their

effectiveness in capturing intricate relationships within images

over an extended training duration.

IV. CONCLUSION

In this paper, we presented a novel methodology for op-

timizing Vision Transformer training using GPU accelera-

tion and multi-threading. Our experiments revealed that, with

prolonged training durations and the integration of multi-

threading and GPU acceleration, ViTs outperformed both

classical CNNs and Transformers in image classification tasks.

Our approach significantly reduces training time, making

large-scale ViT models more practical for a broader range

of researchers and practitioners in the field of computer

vision. Our experimental results demonstrated the efficiency of

ViTs, especially with multi-threading and GPU acceleration,

showcasing their potential for image classification tasks. The

results underscore the adaptability and parameter efficiency of

ViTs, especially in handling varying-sized inputs.
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