

 Optimizing Demand Forecasting: A Framework

With Bayesian Optimization Embedded

Reinforcement Learning for Combined Algorithm

Selection and Hyperparameter Optimization

Zizhe Wang

wang_zizhe@ihpc.a-star.edu.sg

Ping Chong Chua

chua_ping_chong@ihpc.a-star.edu.sg

 Xiao Feng Yin

yinxf@ihpc.a-star.edu.sg

Ning Li

ning_li@ihpc.a-star.edu.sg

Yun Hui Lin

lin_yunhui@ihpc.a-star.edu.sg

Xiuju Fu

fuxj@ihpc.a-star.edu.sg

Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16

Connexis, Singapore 138632, Republic of Singapore

Abstract—Demand forecasting plays an important role in
various fields, and machine learning (ML) has emerged as a
prevailing method to perform this task. The selection of an
appropriate machine learning algorithm and hyperparameter
optimization is essential for accurate predictions. However, this
process can be complex and computationally demanding. In this
paper, we propose a new framework to effectively tackle the
Combined Algorithm Selection and Hyperparameter
Optimization (CASH) problem. Our method utilizes
reinforcement learning (RL) for ML algorithm selection and
Bayesian optimization (BO) for hyperparameter tuning. The
framework integrates a carefully designed reward function with
an -greedy policy to guide the system in discovering the best
ML pipeline and hyperparameter set. We extensively test the
framework on small and large demand forecasting datasets, and
the experimental results verify its ability in achieving high
forecasting accuracy while significantly reducing computational
time.

Index terms—Demand Forecasting, Bayesian Optimization,
Reinforcement Learning, Combined Algorithm Selection and
Hyperparameter Optimization

I. INTRODUCTION

Demand forecasting plays a pivotal role in various
domains, including production planning and supply chain
management, as it involves predicting future demand for
products or services. Accurate demand forecasts empower
organizations to make well-informed decisions, efficiently
allocate resources, and maintain optimal inventory levels,
leading to enhanced operational efficiency and increased
customer satisfaction. While traditional forecasting
techniques, such as time series analysis, moving averages
methods, and trend analysis, have been widely used, machine
learning (ML) has emerged as a prominent and powerful data-
driven approach for demand forecasting in recent years. The
data-driven nature of ML allows it to capture complex patterns
and relationships, thereby enable more accurate predictions
compared to traditional methods. However, despite its
effectiveness, building a robust machine learning pipeline for
demand forecasting still presents several challenges,
particularly concerning the optimization of hyperparameters
and the selection of the most suitable ML algorithms for
complex models or large datasets.

Hyperparameter optimization (HPO) is a critical aspect of
ML pipeline construction, as it involves tuning various
parameters that significantly impact the model's performance.

However, the manual setting and tuning of hyperparameters
in machine learning algorithms presents several challenges
that require extensive professional expertise and practical
experience. Firstly, the relationship between hyperparameter
configurations and ML algorithm's performance cannot be
explicitly expressed. This lack of transparency renders the
hyperparameter optimization akin to a "black box". Secondly,
ML algorithms often consist of multiple hyperparameters,
each with its own space. As a result, the overall
hyperparameter space becomes extensive and highly complex.
As hyperparameter optimization typically involves multiple
iterations and evaluations, the computational burden increases
substantially, making the process resource-intensive and
impractical in many cases.

Currently, there are a variety of methods for solving HPO,
including basic search methods like grid search [1] and
random search [2]. Grid search involves an exhaustive search
over an discretized hyperparameter space, evaluating all
possible combinations, which can be highly time-consuming.
On the other hand, random search randomly selects
hyperparameter combinations, saving computation costs but
lacks guidance and cannot guarantee optimal results. Another
popular approach is the Bayesian optimization (BO) method
[3]. Bayesian optimization constructs a probability surrogate
model of objective function, which aids in determining the
most promising hyperparameter configurations for evaluation
in the true objective function. By leveraging the probability
model, BO effectively explores the hyperparameter search
space and identifies configurations likely to yield better
performance. This reduces the reliance on exhaustive
evaluations and optimizes the process of finding optimal
hyperparameters.

Apart from the HPO problem, selecting an appropriate
machine learning (ML) algorithm for demand forecasting can
be challenging, given the various available options such as the
Random Forest model, XGboost model and Artificial Neural
Network (ANN). Each algorithm choice leads to a different
ML pipeline, including specific machine learning algorithms
and optimized parameter configurations tailored to the unique
characteristics of the datasets. The combined optimization of
both the ML pipeline selection and corresponding
hyperparameter configuration falls within the realm of the
Combined Algorithm Selection and Hyperparameter
Optimization (CASH) problem. Several Automated Machine
Learning (AutoML) models have been developed to address
this CASH problem, such as Auto-sklearn [4] and Auto-Weka

1053

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00190

[5] which belong to the Sequential Model-Based Optimization
(SMBO) family. Additionally, Tree-based Genetic
Programming (TPOT) [6] employs genetic programming
method to design and optimize machine learning pipelines
automatically.

Recently, AutoML models based on Reinforcement
Learning have garnered significant attention. Hyp-RL [7]
applies reinforcement learning in the hyperparameter
optimizations. Reinbo [8] combines reinforcement learning
with Bayesian optimization for the classification task.
However, the application of AutoML models based on
Reinforcement Learning to demand forecasting tasks remains
relatively scarce. Leveraging these innovative techniques in
demand forecasting can potentially improve the efficiency and
accuracy of the forecasting process.

In practice, demand forecasting datasets are often large,
encompassing several years' worth of sales data for various
products. Consequently, HPO for such datasets requires
substantial computational efforts. The CASH problem
becomes even more complex as each ML algorithm
necessitates its own HPO procedure. Despite the above
research attempts, there is a lack of research on appropriate
and effective AutoML frameworks tailored for demand
forecasting tasks. In this paper, we come up with a novel
AutoML framework based on Bayesian optimization
embedded reinforcement learning. The fundamental idea is to
leverage reinforcement learning for ML algorithm selection
and Bayesian optimization for hyperparameter optimization.
This framework harnesses the strengths of both reinforcement
learning and Bayesian optimization, aiming to guide the
system in finding the most efficient and accurate ML pipeline
with tuned hyperparameters.

The paper is organized into the following sections. Section
II briefly introduces the theoretical background of the
proposed framework, covering the definition of HPO, a
summary of the popular Bayesian optimization methods, and
the key components and equations of reinforcement learning.
Section III presents the general flow of the proposed
framework. The CASH problem is modelled as a two-phase
sequential problem, addressing it using reinforcement
learning and Bayesian optimization separately. A novel
reward function is carefully designed to maximize the reward
of the pipeline with high accuracy and efficiency. In Section
IV, we carry out several experiments using the proposed
framework and discuss the results. Section V gives concluding
remarks and summarizes suggestions for future research.

II. THEORICAL BACKGROUND

A. HPO problem with Bayesian optimization
Let denote a ML algorithm, with its corresponding

1 2... P is the P-dimensional hyperparameter space

contains both the discrete and continuous values. Each
hyperparameter configuration is denoted as , where .

Hyperparameter Optimization (HPO) refers to the procedure
of finding the optimal hyperparameter set * that yields the
best prediction on a given dataset D [9] :

 *

train validarg min , ,L D D , (1)

where L denotes the loss function, which serves as objective

function during the optimization process. train valid, ,L D D

is the loss calculated by the algorithm with

hyperparameter set on training set Dtrain and evaluated on
validation set Dvalid.

As mentioned in Section I, Bayesian optimization (BO)
methods have emerged as successful approaches for
hyperparameter optimization, offering high efficiency and
accuracy [3, 10]. The two main components of BO are the
probabilistic surrogate model of objective function and the
acquisition function to select the subsequential point to
evaluate. The prevailing acquisition function in BO is the
expected improvement (EI) [10]. Commonly used surrogate
models in BO include Gaussian process and tree-based
models. Various BO variants have been developed, each with
its strengths in specific scenarios. For example, the Sequential
Model-Based Algorithm Configuration (SMAC) employs
random forest models as surrogate models [11]. Spearmint
integrates Gaussian process (GP) modeling and performs well
in low-dimensional hyperparameter optimization scenarios.
Tree Parzen Estimator (TPE) is renowned for its effectiveness
and employs a tree of Parzen estimators for conditional
hyperparameters. It excels particularly well in structured HPO
tasks [1]. In this paper, we adopt TPE as the chosen BO
method for Hyperparameter Optimization.

B. Reinforcement learning
In reinforcement learning (RL), the initial step involves

modeling the problem using a Markov Decision Process
(MDP). A typical MDP is characterized by several key
components: the agent, the environment, states, actions, and
rewards. The agent refers to the operational system that we
aim to construct and train using reinforcement learning. The
environment represents the physical or virtual world in which
the agent operates and interacts. The state, denoted as S,
represents the set of all valid situations in the environment.
The action, denoted as A refers to the set of choices available
to the agent to interact with the environment. The reward,
denoted as R refers to the positive or negative reinforcement
that the agent receives after performing the actions in the
environment. In general, the RL algorithms can be categorized
as model-based algorithms and model-free algorithms. The
model-free algorithm directly learns the optimal policy from
interacting with the environment. Model-free algorithms like
Q-learning, Deep Q Networks, and SARSA are used when the
environment is complex, and its internal dynamics are not
known [12]. In this paper, we aim to build a robust framework
to solve the CASH problem, thus the model-free algorithm is
selected. The Q-learning method is adopted due to its
efficiency in updating the RL iteration. Assume the agent’s
action is controlled by certain policy , the Q(s, a) represents
the state-action value can be expressed as

0 0

0

, E ,t
t

t
Q s a r S s A a , (2)

where the s S , a A , r R , is a discount factor that

balances the significance of immediate and future rewards.

The goal of the RL model is to maximize the cumulative
reward by choosing the different actions under the certain
policy, written as

 * *() arg max (,)as Q s a , (3)

where *(,)Q s a is the optimal state-action values.

1054

III. BAYESIAN OPTIMIZATION EMBEDDED REINFORCEMENT

LEARNING FOR CASH

Section II discusses Bayesian optimization, and
reinforcement learning. In this paper, we come up with a new
framework that combines Bayesian optimization and
reinforcement learning to address the challenging CASH
problem. Specifically, Bayesian optimization is utilized for
Hyperparameter Optimization (HPO), while reinforcement
learning is employed for the selection of the ML algorithm in
the CASH problem. The detailed formulation of this
framework is presented in this section.

A. Two-phase sequential problem
In the context of the CASH problem, both the ML pipeline

and hyperparameters exist within a conditional hierarchical
space. This means that certain hyperparameters are only valid
and applicable when specific pipelines are present. In our
study, three widely used ML algorithms are studies for
pipeline optimization. As depicted in Fig. 1, the scenario
involves data pre-processing and feature engineering being
selected, representing an incomplete pipeline. To complete the
pipeline, one of three ML pipelines needs to be selected, as
depicted by the dashed arrow. Once an algorithm is selected,
the corresponding hyperparameters associated with that
specific algorithm become valid and relevant, as indicated by
the solid arrow. This conditional relationship ensures that the
hyperparameters are meaningful and applicable within the
context of the chosen algorithm, enabling a more tailored and
accurate optimization process.

Fig. 1. Example of ML pipeline selection and hyperparameter tuning

Based on the information presented in Fig. 1, we can
conceptualize the pipeline selection and hyperparameter
configuration problem as a two-phase sequential problem. In
the first phase, a certain algorithm guides the agent to select a
path representing an ML pipeline. The second phase is the
HPO based on the selected algorithm to give the tunned
hyperparameter set. In this phase, the context is determined by
the path selected in the first phase.

To model the first phase, the RL algorithm is
implemented. The action ai represents the selection of the
machine learning algorithm for demand forecasting. In the
second phase, the BO is employed for the HPO on the given
hyperparameter space. The two phases are connected by the
reward function, which should be designed carefully. The
objective of this BO embedded RL model is to find the best
algorithm with optimized hyperparameters for the demand
forecasting task. The RL process is iterative, with several
episodes wherein the algorithm selection action is performed
in the first phase, followed by HPO in the second phase. A
policy is designed to balance the exploration of different
pipelines in the initial episodes and the exploitation of the
most promising pipeline in the later episodes. In this model,
we use the tabular Q-learning algorithm for RL, which
constructs a Q-table to guide the agent's actions. The Q-table

is updated iteratively based on the rewards received during the
RL process, which will guide the agent’s actions in RL.

B. Initialization of the Q table
Assuming there are k available ML algorithms for

selection in the first phase, the RL undergoes m episodes of
training. We can construct a Q-table with m rows and k
columns to represent the state-action values. At the beginning,
hyperparameters spaces are defined for different ML
algorithms, and the Q-values in the Q-table are all set to 0.
However, these initial zero values may not provide clear
guidance for the agent to make informed decisions.

To address this issue, we take a proactive approach to
gather some information about the available ML pipelines.
Each of the k available ML pipelines is tested using Bayesian
Optimization (BO) for a few steps, typically 3-5 steps. During
this BO process, the objective function or loss function is set
to the mean absolute percentage error (MAPE), which is
evaluated using cross-validation. The MAPE is expressed as

1

ˆ1 n

t

y yL
n y

, (4)

where n represents the total number of data points, y denotes
the actual demand values, and represents the demand values
predicted by the ML pipeline [13]. According to Eq. (4), a
lower MAPE value indicates a more accurate prediction. A
MAPE of 0% indicates a perfect prediction, where the forecast
matches the actual values precisely.

The initial Q-value of different pipeline is set as

 (,) 1Q s a L . (5)

By using this initial Q-value, the pipeline with lower MAPE
will have a larger Q-value. The optimal value for this initial
Q-value is 1, corresponding to a MAPE of 0%. A large Q-
value in the Q-table indicates the promising pipeline.
However, it should be noted that the BO process is only
carried out for a few steps, and as a result, the ML pipelines
will require further exploration. While the initial Q-values
provide a starting point for the RL agent, the pipelines may
need more iterations of BO to obtain accurate hyperparameter
configurations and improve their performance. After
initializing the Q-table, the tuned hyperparameters of different
pipelines are stored in the cache for subsequent steps. This
caching mechanism allows us to reuse the hyperparameter
configurations found during the BO process, which can save
computational time and resources in future iterations.

C. -greedy policy
One crucial aspect of reinforcement learning (RL) is

selecting actions that balance exploration and exploitation. In
this paper, we adopt the -greedy policy to achieve this
balance. The value is decayed exponentially along the
episodes to gradually shift from exploration to exploitation.
Let us denote the maximum value as max (set to 1) and
minimum value as min (set to 0). The decay rate is
represented by , the value at episode m is given

min max min exp()m m . (6)

During each episode of RL, a random number is generated
using a uniform distribution in the range from 0 to 1. This
random number is then compared with the value. If the
random number is smaller than , then the RL agent takes a
random action, meaning that it selects an arbitrary pipeline

1055

and performs BO based on the cached hyperparameter values
stored previously. This approach allows the RL agent to
explore various possible pipelines at the initial stages of
training when the value is relatively high. However, if the
random number is larger than , the RL agent chooses the
pipeline with the largest Q-value. In this case, BO is
performed to further tune the hyperparameter set for the
selected pipeline. As the RL agent advances through episodes
and the value decays, it becomes increasingly likely that the
RL agent will choose the pipeline with the highest Q-value
and exploit the most promising pipeline.

 The -greedy policy ensures that the RL agent
efficiently explores different pipelines in the early stages of
training while gradually transitioning to exploit the pipelines
with the highest Q-values in later stages. This approach strikes
a balance between exploration and exploitation, enabling the
RL agent to learn the best ML pipelines and hyperparameters
for demand forecasting tasks effectively.

D. Update of the Q-table and design of reward function
Once the action is chosen and the BO is carried out to tune

the hyperparameter, the Q-table is updated at each episode
using the Bellman equation:

'(,) (,) max (', ') (,)Q s a Q s a r Q s a Q s a , (7)

where is the learning rate, is the discount factor to balance
the importance of future reward r in update process. The
reward function plays a crucial role in connecting the
iterations of continuous episodes in the RL algorithm and
should be thoughtfully designed. In this paper, we propose a
reward function that considers both the accuracy and
efficiency of the ML algorithm. During the initialization stage,
the trial time of the BO process along different pipelines at a
certain episode is recorded. The mean trial time of BO along
each pipeline is then calculated, representing the efficiency of
the different pipelines. Once the RL algorithm is running, and
BO is performed on the selected pipeline, the new mean trial
time is added to the trial time database. These recorded trial
time data are then normalized to a scale from 1 to 5 at each
episode, denoted as Ttrial. The objective of the BO-embedded
RL algorithm is to choose the best ML pipelines with both
high efficiency and good accuracy for demand forecasting.
Therefore, the reward function is set as follows:

 trail(1) /r L T . (8)

According to the reward function, the pipeline with lower
MAPE and lower trial time will receive a larger reward,
resulting in a larger update to its Q-value. This design ensures
that pipelines with both high efficiency and accuracy receive
the largest reinforcement and are more likely to be selected in
future episodes.

By incorporating efficiency into the reward function, the
RL agent learns to prioritize pipelines that not only yield
accurate predictions but also do so efficiently, saving
computational time and resources. This helps the RL agent
converge to the most suitable ML pipeline with optimized
hyperparameters for demand forecasting tasks effectively.
The reward function plays a vital role in guiding the RL agent
towards the best possible solutions in the CASH problem.

E. Overall framework
The previous sections have discussed the key components

of the BO embedded RL algorithm, the overall framework of

the method is summarized in Fig. 2. In the first step, the Q
table with k columns and m rows is created, where k is the
number of available ML algorithms for selection, m is the
number of the episodes in RL. These episodes can be
considered as the budget for the RL agent. Then the
hyperparameter sets and accuracy results of different ML
algorithms obtained from the BO process are stored in a cache.
Additionally, the trial time of BO on different pipelines is
recorded for evaluating efficiency. Thereafter, the RL agent
implements the -greedy strategy policy to select actions.
Based on the current value and a random number, the agent
chooses either a random action (representing exploration) or
the action with the highest Q-value (representing
exploitation). The chosen action corresponds to the selection
of a pipeline, and the RL agent performs BO based on the
hyperparameter set stored in the cache. In this stage, the cache
is updated with more accurate results and the corresponding
hyperparameter sets. The trial time database is also updated
for the evaluation of the reward using Eq. (8). After
completing each episode, the Q-table is updated using Eq. (7).
The RL agent continues the iterations until it reaches the
budget of episodes (m). This iterative process allows the agent
to refine its decisions over time based on the rewards received
and the exploration-exploitation trade-off. By the end of the
RL iterations, the best ML pipeline and its corresponding
optimized hyperparameter set can be found in the cache.

Fig. 2. Flowchart of the proposed framework

IV. EXPERIMENTS

A. Experimental test on the small dataset
In order to validate the proposed framework, experiments

are carried out using a small dataset and subsequently a larger
dataset for further testing. For these experiments, three
machine learning algorithms were chosen, namely XGBoost,
Random Forest, and Artificial Neural Network (ANN). The
typical hyperparameter spaces for each of these methods are
provided in Table I.

The Triazines dataset, obtained from OpenML, consisting
of 186 samples and 60 features, was chosen to thoroughly test

1056

and validate the proposed framework. The RL algorithm was
executed for 500 episodes, with a learning rate of 0.5 and a
discount factor of 0.95 to update the Q-table during training.
For the -greedy policy, an exponential decay rate of 0.006
was set to balance exploration and exploitation. To evaluate
the accuracy of each pipeline, the 1-MAPE metric was
employed, where a value close to 1 indicates optimal accuracy
in demand forecasting. The objective of the RL algorithm is
to find the best ML pipeline with hyperparameter settings that
minimize the MAPE.

TABLE I HYPERPARAMETER SPACE FOR ML ALGORITHMS

Operation Parameter Range
XGboost eta (0.01, 0.2)

XGboost gamma (0, 9)

XGboost max_depth (3, 20)

XGboost min_child_weight (1, 10)

XGboost subsample (0.5, 1)

XGboost reg_lambda (0.5, 1)

XGboost colsample_bytree (0.5, 1)

XGboost n_estimators (50, 500)

Random Forest max_depth (10, 100)

Random Forest max_features ['sqrt', 'log2', None]

Random Forest min_samples_leaf (2, 20)

Random Forest min_samples_split (2, 20)

Random Forest n_estimators (50, 1000)

Random Forest bootstrap [True, False]

ANN num_layers (2, 3)

ANN units (16, 1024)

ANN dropout (0.25, 0.75)

ANN Batch_size (8, 128)

ANN nb_epochs (20, 200)

ANN optimizer ['adadelta', 'adam',
'rmsprop']

ANN activation ['relu', 'elu', 'selu',
'sigmoid', 'softplus',

'softsign', 'tanh']

Fig. 3. Actions of first 50 episodes (a) and last 50 episodes (b)

The RL actions during the first 50 episodes and the last 50
episodes were plotted in Fig. 3. In Fig. 3 (a), it can be observed
that the RL actions during the initial episodes were nearly
random, as all three ML pipelines (XGBoost, Random Forest,
and ANN) were tested. This demonstrates that the -greedy
policy effectively promotes exploration of all possible
pipelines in the initial stages of training, ensuring that the RL
agent explores different options before focusing on exploiting
the most promising ones. Fig. 3 (b), on the other hand, shows
that during the last 50 episodes, the RL agent consistently
chose the XGBoost algorithm as the most promising pipeline.
This choice indicates that the -greedy policy gradually shifted
the focus to exploitation, as the RL agent learned that the
XGBoost pipeline yielded the best results in terms of accuracy
and efficiency on the Triazines dataset.

Fig. 4 presents the accuracy results of each pipeline during
the training process. In the first episode, the Random Forest
pipeline demonstrated the highest accuracy among the three
pipelines. However, the -greedy policy, wisely incorporated
into the RL algorithm, guided the agent to explore all available
pipelines in search of potential improvements in accuracy. As

a result of this exploration, all three pipelines showed
improvements in accuracy. This showcases the effectiveness
of the RL agent in efficiently exploring the ML pipeline space,
even though Random Forest initially performed well. In the
later stages of training, the RL agent consistently selected the
XGBoost algorithm due to its high accuracy and low trial time.
BO was subsequently applied to further fine-tune the
hyperparameters of the XGBoost pipeline, leading to
additional improvements in accuracy. However, as the
accuracy results of the XGBoost pipeline show, the
improvements in accuracy become more challenging to
achieve in the later stages of training. This suggests that
achieving higher levels of accuracy requires more steps of BO,
indicating the diminishing returns in accuracy improvement as
the pipeline becomes more optimized.

Fig. 4. Accuracy of each pipeline along the episodes

TABLE II SUMMARY OF THE RESULTS OF DIFFERENT PIPELINES

Pipeline Mean trail
time (s)

Number of
episodes

Accuracy
results

XGboost 1.9284 367 0.8050

Random Forest 4.7139 67 0.7687

ANN 3.5588 68 0.7178

Fig. 5. Boxplot of the trail time of three algorithms

 Table II provides a summary of the results evaluated by
different ML pipelines during the experimentation phase.
From the results in Table II, it is evident that the XGBoost
pipeline was selected for the majority of the episodes. This
selection was in line with the RL agent's exploration-
exploitation strategy, as XGBoost consistently demonstrated
the highest accuracy results and the lowest mean trial time
among the three pipelines. As mentioned earlier, the trial times
of different pipelines at each episode were recorded in the
cache for evaluating the reward at different stages. The
experiments were conducted on a personal computer with an
Intel Core i7-7600U CPU and 12GB RAM. To visualize the
trial time distribution of the three algorithms, a boxplot is
presented in Fig. 5. The boxplot shows that the mean trial time
of XGBoost is the lowest, indicating that it is the most efficient

1057

pipeline among the three. Additionally, the boxplot illustrates
that XGBoost's trial times are relatively stable with fewer
outliers, while both Random Forest and ANN exhibit some
outliers with longer trial times.

B. Experimental test on the large dataset
In this experimental test, the orange juice (OJ) dataset

from Azure Open Datasets was used. The dataset consists of
weekly sales of orange juice in 64-ounce containers for 83
stores in the Chicago area. It contains sales data for 121 weeks
and three different brands, resulting in an original dataset with
28947 rows and 17 columns. Before applying the proposed
framework, data pre-processing was carried out, which
involved data cleaning, feature expansion and selection, and
categorical feature encoding. The feature expansion was
performed by taking the logarithm of the numerical features
and then creating polynomial features of order 2. Furthermore,
feature selection was conducted to remove highly correlated
features. The processed data resulted in a dataset with 28947
rows and 151 columns.

TABLE III SUMMARY OF THE RESULTS OF DIFFERENT PIPELINES FOR OJ

DATASET

Pipeline Mean trail
time (s)

Number of
episodes

Accuracy
results

XGboost 170.97 15 0.9713

Random Forest 145.42 3 0.9624

ANN 1034.24 4 0.9231

The proposed framework was then implemented on this
processed dataset. Given the large size of the dataset, the
episode was set to 20, and the decay rate of in the -greedy
policy was set to 0.1. Table III summarizes the results of
different pipelines for the OJ dataset, indicating that XGboost
achieved the best accuracy results.

Notably, for a large dataset like the OJ dataset, the trial
time of Bayesian optimization (BO) can be considerable and
varies significantly for different pipelines. The proposed
framework effectively addresses this issue and saves
computational time vastly. For instance, the number of BO
trials in this experiment is set as 3, if the dataset is tested on
the ANN algorithm with 20 episodes, the total running time
can be estimated as 1034.24×3×20 = 17.23 hours. However,
the proposed framework avoids wasting computational
resources on ANN pipeline, the total running time is
170.97×3×15 + 145.42×3×3 + 1034.24×3×4 = 5.95 hours, the
accuracy result is also better. Overall, the experimental results
on the OJ dataset validate the efficiency and accuracy of the
proposed Bayesian optimization embedded reinforcement
learning framework in selecting the optimal ML pipeline and
hyperparameters for demand forecasting, especially when
dealing with large datasets with varying trial times for
different pipelines.

V. CONCLUSIONS AND FUTURE WORK

This paper introduces a novel AutoML framework
designed to tackle the Combined Algorithm Selection and
Hyperparameter Optimization (CASH) problem for demand
forecasting tasks. By utilizing reinforcement learning for
machine learning algorithm selection and Bayesian
optimization for hyperparameter optimization, the framework
aims to find the most effective ML pipeline with optimized
hyperparameters. The proposed reward function maximizes
pipeline accuracy while ensuring computational efficiency.

The -greedy policy employed in the framework enables
exploration of various pipelines at the beginning and
exploitation of the most promising ones as the process
progresses. Experimental tests on both small and large
datasets validate the effectiveness of the proposed framework
in identifying optimal ML pipelines and corresponding
hyperparameters. Additionally, the framework significantly
reduces computational effort by avoiding wasteful
computations on unpromising pipelines, especially for large
datasets.

For future work, it would be interesting to expand the case
study by incorporating more ML pipelines to assess the final
accuracy results and computational resource allocation. The
different feature engineering techniques can also be
considered in different ML pipelines. Furthermore, enhancing
the framework with a mechanism to automatically determine
the completion of algorithm selection and hyperparameter
optimization could further improve its efficiency and
adaptability to different scenarios.

ACKNOWLEDGMENT

This research is supported by A*STAR under Supply
Chain (SC) 4.0 – Digital Supply Chain Development via
Platform Technologies Programme (Grant No. M21J6a0080).
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
reflect the views of A*STAR.

REFERENCES

[1] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, "Algorithms for
hyper-parameter optimization," Advances in neural information
processing systems, vol. 24, 2011.

[2] J. Bergstra and Y. Bengio, "Random search for hyper-parameter
optimization," Journal of machine learning research, vol. 13, no. 2,
2012.

[3] F. Hutter, H. H. Hoos, and K. Leyton-Brown, "Sequential model-based
optimization for general algorithm configuration," in Learning and
Intelligent Optimization: 5th International Conference, LION 5, Rome,
Italy, January 17-21, 2011. Selected Papers 5, 2011: Springer, pp. 507-
523.

[4] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, "Efficient and robust automated machine learning," Advances
in neural information processing systems, vol. 28, 2015.

[5] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, "Auto-
weka: Automated selection and hyper-parameter optimization of
classification algorithms," CoRR, abs/1208.3719, 2012.

[6] R. S. Olson and J. H. Moore, "TPOT: A tree-based pipeline
optimization tool for automating machine learning," in Workshop on
automatic machine learning, 2016: PMLR, pp. 66-74.

[7] H. S. Jomaa, J. Grabocka, and L. Schmidt-Thieme, "Hyp-rl:
Hyperparameter optimization by reinforcement learning," arXiv
preprint arXiv:1906.11527, 2019.

[8] X. Sun, J. Lin, and B. Bischl, "Reinbo: Machine learning pipeline
search and configuration with bayesian optimization embedded
reinforcement learning," arXiv preprint arXiv:1904.05381, 2019.

[9] M. Feurer and F. Hutter, "Hyperparameter optimization," Automated
machine learning: Methods, systems, challenges, pp. 3-33, 2019.

[10] J. Snoek, H. Larochelle, and R. P. Adams, "Practical bayesian
optimization of machine learning algorithms," Advances in neural
information processing systems, vol. 25, 2012.

[11] M. Lindauer and F. Hutter, "Warmstarting of model-based algorithm
configuration," in Proceedings of the AAAI Conference on Artificial
Intelligence, 2018, vol. 32, no. 1.

[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[13] A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi, "Mean
absolute percentage error for regression models," Neurocomputing, vol.
192, pp. 38-48, 2016.

1058

