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Abstract—Demand forecasting plays an important role in 
various fields, and machine learning (ML) has emerged as a 
prevailing method to perform this task. The selection of an 
appropriate machine learning algorithm and hyperparameter 
optimization is essential for accurate predictions. However, this 
process can be complex and computationally demanding. In this 
paper, we propose a new framework to effectively tackle the 
Combined Algorithm Selection and Hyperparameter 
Optimization (CASH) problem. Our method utilizes 
reinforcement learning (RL) for ML algorithm selection and 
Bayesian optimization (BO) for hyperparameter tuning. The 
framework integrates a carefully designed reward function with 
an -greedy policy to guide the system in discovering the best 
ML pipeline and hyperparameter set. We extensively test the 
framework on small and large demand forecasting datasets, and 
the experimental results verify its ability in achieving high 
forecasting accuracy while significantly reducing computational 
time.   

Index terms—Demand Forecasting, Bayesian Optimization, 
Reinforcement Learning, Combined Algorithm Selection and 
Hyperparameter Optimization 

I. INTRODUCTION  

Demand forecasting plays a pivotal role in various 
domains, including production planning and supply chain 
management, as it involves predicting future demand for 
products or services. Accurate demand forecasts empower 
organizations to make well-informed decisions, efficiently 
allocate resources, and maintain optimal inventory levels, 
leading to enhanced operational efficiency and increased 
customer satisfaction. While traditional forecasting 
techniques, such as time series analysis, moving averages 
methods, and trend analysis, have been widely used, machine 
learning (ML) has emerged as a prominent and powerful data-
driven approach for demand forecasting in recent years. The 
data-driven nature of ML allows it to capture complex patterns 
and relationships, thereby enable more accurate predictions 
compared to traditional methods. However, despite its 
effectiveness, building a robust machine learning pipeline for 
demand forecasting still presents several challenges, 
particularly concerning the optimization of hyperparameters 
and the selection of the most suitable ML algorithms for 
complex models or large datasets. 

Hyperparameter optimization (HPO) is a critical aspect of 
ML pipeline construction, as it involves tuning various 
parameters that significantly impact the model's performance. 

However, the manual setting and tuning of hyperparameters 
in machine learning algorithms presents several challenges 
that require extensive professional expertise and practical 
experience. Firstly, the relationship between hyperparameter 
configurations and ML algorithm's performance cannot be 
explicitly expressed. This lack of transparency renders the 
hyperparameter optimization akin to a "black box". Secondly, 
ML algorithms often consist of multiple hyperparameters, 
each with its own space. As a result, the overall 
hyperparameter space becomes extensive and highly complex. 
As hyperparameter optimization typically involves multiple 
iterations and evaluations, the computational burden increases 
substantially, making the process resource-intensive and 
impractical in many cases. 

Currently, there are a variety of methods for solving HPO, 
including basic search methods like grid search [1] and 
random search [2]. Grid search involves an exhaustive search 
over an discretized hyperparameter space, evaluating all 
possible combinations, which can be highly time-consuming. 
On the other hand, random search randomly selects 
hyperparameter combinations, saving computation costs but 
lacks guidance and cannot guarantee optimal results. Another 
popular approach is the Bayesian optimization (BO) method 
[3]. Bayesian optimization constructs a probability surrogate 
model of objective function, which aids in determining the 
most promising hyperparameter configurations for evaluation 
in the true objective function. By leveraging the probability 
model, BO effectively explores the hyperparameter search 
space and identifies configurations likely to yield better 
performance. This reduces the reliance on exhaustive 
evaluations and optimizes the process of finding optimal 
hyperparameters. 

Apart from the HPO problem, selecting an appropriate 
machine learning (ML) algorithm for demand forecasting can 
be challenging, given the various available options such as the 
Random Forest model, XGboost model  and Artificial Neural 
Network (ANN). Each algorithm choice leads to a different 
ML pipeline, including specific machine learning algorithms 
and optimized parameter configurations tailored to the unique 
characteristics of the datasets. The combined optimization of 
both the ML pipeline selection and corresponding 
hyperparameter configuration falls within the realm of the 
Combined Algorithm Selection and Hyperparameter 
Optimization (CASH) problem. Several Automated Machine 
Learning (AutoML) models have been developed to address 
this CASH problem, such as Auto-sklearn [4] and Auto-Weka 
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[5] which belong to the Sequential Model-Based Optimization 
(SMBO) family. Additionally, Tree-based Genetic 
Programming (TPOT) [6] employs genetic programming 
method to design and optimize machine learning pipelines 
automatically. 

Recently, AutoML models based on Reinforcement 
Learning have garnered significant attention. Hyp-RL [7] 
applies reinforcement learning in the hyperparameter 
optimizations. Reinbo [8] combines reinforcement learning 
with Bayesian optimization for the classification task. 
However, the application of AutoML models based on 
Reinforcement Learning to demand forecasting tasks remains 
relatively scarce. Leveraging these innovative techniques in 
demand forecasting can potentially improve the efficiency and 
accuracy of the forecasting process. 

In practice, demand forecasting datasets are often large, 
encompassing several years' worth of sales data for various 
products. Consequently, HPO for such datasets requires 
substantial computational efforts. The CASH problem 
becomes even more complex as each ML algorithm 
necessitates its own HPO procedure. Despite the above 
research attempts, there is a lack of research on appropriate 
and effective AutoML frameworks tailored for demand 
forecasting tasks. In this paper, we come up with a novel 
AutoML framework based on Bayesian optimization 
embedded reinforcement learning. The fundamental idea is to 
leverage reinforcement learning for ML algorithm selection 
and Bayesian optimization for hyperparameter optimization. 
This framework harnesses the strengths of both reinforcement 
learning and Bayesian optimization, aiming to guide the 
system in finding the most efficient and accurate ML pipeline 
with tuned hyperparameters.  

The paper is organized into the following sections. Section 
II briefly introduces the theoretical background of the 
proposed framework, covering the definition of HPO, a 
summary of the popular Bayesian optimization methods, and 
the key components and equations of reinforcement learning. 
Section III presents the general flow of the proposed 
framework. The CASH problem is modelled as a two-phase 
sequential problem, addressing it using reinforcement 
learning and Bayesian optimization separately. A novel 
reward function is carefully designed to maximize the reward 
of the pipeline with high accuracy and efficiency. In Section 
IV, we carry out several experiments using the proposed 
framework and discuss the results. Section V gives concluding 
remarks and summarizes suggestions for future research.   

II. THEORICAL BACKGROUND  

A. HPO problem with Bayesian optimization 
Let  denote a ML algorithm, with its corresponding 

1 2... P  is the P-dimensional hyperparameter space 

contains both the discrete and continuous values. Each 
hyperparameter configuration is denoted as , where  . 

Hyperparameter Optimization (HPO) refers to the procedure 
of finding the optimal hyperparameter set * that yields the 
best prediction on a given dataset D [9] :  

 *

train validarg min , ,L D D , (1) 

where L denotes the loss function, which serves as objective 

function during the optimization process. train valid, ,L D D  

is the loss calculated by the algorithm   with 

hyperparameter set  on training set Dtrain and evaluated on 
validation set Dvalid.  

As mentioned in Section I, Bayesian optimization (BO) 
methods have emerged as successful approaches for 
hyperparameter optimization, offering high efficiency and 
accuracy [3, 10]. The two main components of BO are the 
probabilistic surrogate model of objective function and the 
acquisition function to select the subsequential point to 
evaluate. The prevailing acquisition function in BO is the 
expected improvement (EI) [10]. Commonly used surrogate 
models in BO include Gaussian process and tree-based 
models. Various BO variants have been developed, each with 
its strengths in specific scenarios. For example, the Sequential 
Model-Based Algorithm Configuration (SMAC) employs 
random forest models as surrogate models [11]. Spearmint 
integrates Gaussian process (GP) modeling and performs well 
in low-dimensional hyperparameter optimization scenarios. 
Tree Parzen Estimator (TPE) is renowned for its effectiveness 
and employs a tree of Parzen estimators for conditional 
hyperparameters. It excels particularly well in structured HPO 
tasks [1]. In this paper, we adopt TPE as the chosen BO 
method for Hyperparameter Optimization. 

B. Reinforcement learning 
In reinforcement learning (RL), the initial step involves 

modeling the problem using a Markov Decision Process 
(MDP). A typical MDP is characterized by several key 
components: the agent, the environment, states, actions, and 
rewards. The agent refers to the operational system that we 
aim to construct and train using reinforcement learning. The 
environment represents the physical or virtual world in which 
the agent operates and interacts. The state, denoted as S, 
represents the set of all valid situations in the environment. 
The action, denoted as A refers to the set of choices available 
to the agent to interact with the environment. The reward, 
denoted as R refers to the positive or negative reinforcement 
that the agent receives after performing the actions in the 
environment. In general, the RL algorithms can be categorized 
as model-based algorithms and model-free algorithms. The 
model-free algorithm directly learns the optimal policy from 
interacting with the environment. Model-free algorithms like 
Q-learning, Deep Q Networks, and SARSA are used when the 
environment is complex, and its internal dynamics are not 
known [12]. In this paper, we aim to build a robust framework 
to solve the CASH problem, thus the model-free algorithm is 
selected. The Q-learning method is adopted due to its 
efficiency in updating the RL iteration. Assume the agent’s 
action is controlled by certain policy , the Q(s, a) represents 
the state-action value can be expressed as 

 
0 0

0

, E ,t
t

t
Q s a r S s A a , (2) 

where the s S ,  a A ,  r R ,  is a discount factor that 

balances the significance of immediate and future rewards. 

The goal of the RL model is to maximize the cumulative 
reward by choosing the different actions under the certain 
policy, written as  

 * *( ) arg max ( , )as Q s a , (3) 

where *( , )Q s a  is the optimal state-action values. 

1054



 

 

III. BAYESIAN OPTIMIZATION EMBEDDED REINFORCEMENT 

LEARNING FOR CASH  

Section II discusses Bayesian optimization, and 
reinforcement learning. In this paper, we come up with a new 
framework that combines Bayesian optimization and 
reinforcement learning to address the challenging CASH 
problem. Specifically, Bayesian optimization is utilized for 
Hyperparameter Optimization (HPO), while reinforcement 
learning is employed for the selection of the ML algorithm in 
the CASH problem. The detailed formulation of this 
framework is presented in this section. 

A. Two-phase sequential problem 
In the context of the CASH problem, both the ML pipeline 

and hyperparameters exist within a conditional hierarchical 
space. This means that certain hyperparameters are only valid 
and applicable when specific pipelines are present. In our 
study, three widely used ML algorithms are studies for 
pipeline optimization. As depicted in Fig. 1, the scenario 
involves data pre-processing and feature engineering being 
selected, representing an incomplete pipeline. To complete the 
pipeline, one of three ML pipelines needs to be selected, as 
depicted by the dashed arrow. Once an algorithm is selected, 
the corresponding hyperparameters associated with that 
specific algorithm become valid and relevant, as indicated by 
the solid arrow. This conditional relationship ensures that the 
hyperparameters are meaningful and applicable within the 
context of the chosen algorithm, enabling a more tailored and 
accurate optimization process. 

 

Fig. 1.   Example of ML pipeline selection and hyperparameter tuning 

Based on the information presented in Fig. 1, we can 
conceptualize the pipeline selection and hyperparameter 
configuration problem as a two-phase sequential problem. In 
the first phase, a certain algorithm guides the agent to select a 
path representing an ML pipeline. The second phase is the 
HPO based on the selected algorithm to give the tunned 
hyperparameter set. In this phase, the context is determined by 
the path selected in the first phase. 

To model the first phase, the RL algorithm is 
implemented. The action ai represents the selection of the 
machine learning algorithm for demand forecasting. In the 
second phase, the BO is employed for the HPO on the given 
hyperparameter space. The two phases are connected by the 
reward function, which should be designed carefully. The 
objective of this BO embedded RL model is to find the best 
algorithm with optimized hyperparameters for the demand 
forecasting task. The RL process is iterative, with several 
episodes wherein the algorithm selection action is performed 
in the first phase, followed by HPO in the second phase. A 
policy is designed to balance the exploration of different 
pipelines in the initial episodes and the exploitation of the 
most promising pipeline in the later episodes. In this model, 
we use the tabular Q-learning algorithm for RL, which 
constructs a Q-table to guide the agent's actions. The Q-table 

is updated iteratively based on the rewards received during the 
RL process, which will guide the agent’s actions in RL. 

B. Initialization of the Q table 
Assuming there are k available ML algorithms for 

selection in the first phase, the RL undergoes m episodes of 
training. We can construct a Q-table with m rows and k 
columns to represent the state-action values. At the beginning, 
hyperparameters spaces are defined for different ML 
algorithms, and the Q-values in the Q-table are all set to 0. 
However, these initial zero values may not provide clear 
guidance for the agent to make informed decisions.  

To address this issue, we take a proactive approach to 
gather some information about the available ML pipelines. 
Each of the k available ML pipelines is tested using Bayesian 
Optimization (BO) for a few steps, typically 3-5 steps. During 
this BO process, the objective function or loss function is set 
to the mean absolute percentage error (MAPE), which is 
evaluated using cross-validation. The MAPE is expressed as 

 
1

ˆ1 n

t

y yL
n y

, (4) 

where n represents the total number of data points, y denotes 
the actual demand values, and   represents the demand values 
predicted by the ML pipeline [13]. According to Eq. (4), a 
lower MAPE value indicates a more accurate prediction. A 
MAPE of 0% indicates a perfect prediction, where the forecast 
matches the actual values precisely.  

The initial Q-value of different pipeline is set as  

 ( , ) 1Q s a L . (5) 

By using this initial Q-value, the pipeline with lower MAPE 
will have a larger Q-value. The optimal value for this initial 
Q-value is 1, corresponding to a MAPE of 0%. A large Q-
value in the Q-table indicates the promising pipeline. 
However, it should be noted that the BO process is only 
carried out for a few steps, and as a result, the ML pipelines 
will require further exploration. While the initial Q-values 
provide a starting point for the RL agent, the pipelines may 
need more iterations of BO to obtain accurate hyperparameter 
configurations and improve their performance. After 
initializing the Q-table, the tuned hyperparameters of different 
pipelines are stored in the cache for subsequent steps. This 
caching mechanism allows us to reuse the hyperparameter 
configurations found during the BO process, which can save 
computational time and resources in future iterations. 

C. -greedy policy 
One crucial aspect of reinforcement learning (RL) is 

selecting actions that balance exploration and exploitation. In 
this paper, we adopt the -greedy policy to achieve this 
balance. The  value is decayed exponentially along the 
episodes to gradually shift from exploration to exploitation. 
Let us denote the maximum  value as max (set to 1) and 
minimum  value as min (set to 0). The decay rate is 
represented by , the  value at episode m is given 

 
min max min exp( )m m . (6) 

During each episode of RL, a random number is generated 
using a uniform distribution in the range from 0 to 1. This 
random number is then compared with the  value. If the 
random number is smaller than , then the RL agent takes a 
random action, meaning that it selects an arbitrary pipeline 
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and performs BO based on the cached hyperparameter values 
stored previously. This approach allows the RL agent to 
explore various possible pipelines at the initial stages of 
training when the  value is relatively high. However, if the 
random number is larger than , the RL agent chooses the 
pipeline with the largest Q-value. In this case, BO is 
performed to further tune the hyperparameter set for the 
selected pipeline. As the RL agent advances through episodes 
and the  value decays, it becomes increasingly likely that the 
RL agent will choose the pipeline with the highest Q-value 
and exploit the most promising pipeline. 

    The -greedy policy ensures that the RL agent 
efficiently explores different pipelines in the early stages of 
training while gradually transitioning to exploit the pipelines 
with the highest Q-values in later stages. This approach strikes 
a balance between exploration and exploitation, enabling the 
RL agent to learn the best ML pipelines and hyperparameters 
for demand forecasting tasks effectively. 

D. Update of the Q-table and design of reward function 
Once the action is chosen and the BO is carried out to tune 

the hyperparameter, the Q-table is updated at each episode 
using the Bellman equation:  

 
'( , ) ( , ) max ( ', ') ( , )Q s a Q s a r Q s a Q s a , (7) 

where  is the learning rate,  is the discount factor to balance 
the importance of future reward r in update process. The 
reward function plays a crucial role in connecting the 
iterations of continuous episodes in the RL algorithm and 
should be thoughtfully designed. In this paper, we propose a 
reward function that considers both the accuracy and 
efficiency of the ML algorithm. During the initialization stage, 
the trial time of the BO process along different pipelines at a 
certain episode is recorded. The mean trial time of BO along 
each pipeline is then calculated, representing the efficiency of 
the different pipelines. Once the RL algorithm is running, and 
BO is performed on the selected pipeline, the new mean trial 
time is added to the trial time database. These recorded trial 
time data are then normalized to a scale from 1 to 5 at each 
episode, denoted as Ttrial. The objective of the BO-embedded 
RL algorithm is to choose the best ML pipelines with both 
high efficiency and good accuracy for demand forecasting. 
Therefore, the reward function is set as follows: 

 trail(1 ) /r L T . (8) 

According to the reward function, the pipeline with lower 
MAPE and lower trial time will receive a larger reward, 
resulting in a larger update to its Q-value. This design ensures 
that pipelines with both high efficiency and accuracy receive 
the largest reinforcement and are more likely to be selected in 
future episodes. 

By incorporating efficiency into the reward function, the 
RL agent learns to prioritize pipelines that not only yield 
accurate predictions but also do so efficiently, saving 
computational time and resources. This helps the RL agent 
converge to the most suitable ML pipeline with optimized 
hyperparameters for demand forecasting tasks effectively. 
The reward function plays a vital role in guiding the RL agent 
towards the best possible solutions in the CASH problem. 

E. Overall framework  
The previous sections have discussed the key components 

of the BO embedded RL algorithm, the overall framework of 

the method is summarized in Fig. 2. In the first step, the Q 
table with k columns and m rows is created, where k is the 
number of available ML algorithms for selection, m is the 
number of the episodes in RL. These episodes can be 
considered as the budget for the RL agent. Then the 
hyperparameter sets and accuracy results of different ML 
algorithms obtained from the BO process are stored in a cache. 
Additionally, the trial time of BO on different pipelines is 
recorded for evaluating efficiency. Thereafter, the RL agent 
implements the -greedy strategy policy to select actions. 
Based on the current  value and a random number, the agent 
chooses either a random action (representing exploration) or 
the action with the highest Q-value (representing 
exploitation). The chosen action corresponds to the selection 
of a pipeline, and the RL agent performs BO based on the 
hyperparameter set stored in the cache. In this stage, the cache 
is updated with more accurate results and the corresponding 
hyperparameter sets. The trial time database is also updated 
for the evaluation of the reward using Eq. (8). After 
completing each episode, the Q-table is updated using Eq. (7). 
The RL agent continues the iterations until it reaches the 
budget of episodes (m). This iterative process allows the agent 
to refine its decisions over time based on the rewards received 
and the exploration-exploitation trade-off. By the end of the 
RL iterations, the best ML pipeline and its corresponding 
optimized hyperparameter set can be found in the cache. 

 

Fig. 2.   Flowchart of the proposed framework 

IV. EXPERIMENTS  

A. Experimental test on the small dataset 
In order to validate the proposed framework, experiments 

are carried out using a small dataset and subsequently a larger 
dataset for further testing. For these experiments, three 
machine learning algorithms were chosen, namely XGBoost, 
Random Forest, and Artificial Neural Network (ANN). The 
typical hyperparameter spaces for each of these methods are 
provided in Table I. 

The Triazines dataset, obtained from OpenML, consisting 
of 186 samples and 60 features, was chosen to thoroughly test 
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and validate the proposed framework. The RL algorithm was 
executed for 500 episodes, with a learning rate of 0.5 and a 
discount factor of 0.95 to update the Q-table during training. 
For the -greedy policy, an exponential decay rate of 0.006 
was set to balance exploration and exploitation. To evaluate 
the accuracy of each pipeline, the 1-MAPE metric was 
employed, where a value close to 1 indicates optimal accuracy 
in demand forecasting. The objective of the RL algorithm is 
to find the best ML pipeline with hyperparameter settings that 
minimize the MAPE. 

TABLE I   HYPERPARAMETER SPACE FOR ML ALGORITHMS 

Operation Parameter Range 
XGboost eta (0.01, 0.2) 

XGboost gamma (0, 9) 

XGboost max_depth (3, 20) 

XGboost min_child_weight (1, 10) 

XGboost subsample (0.5, 1) 

XGboost reg_lambda (0.5, 1) 

XGboost colsample_bytree (0.5, 1) 

XGboost n_estimators (50, 500) 

Random Forest max_depth (10, 100) 

Random Forest max_features ['sqrt', 'log2', None] 

Random Forest min_samples_leaf (2, 20) 

Random Forest min_samples_split (2, 20) 

Random Forest n_estimators (50, 1000) 

Random Forest bootstrap [True, False] 

ANN num_layers (2, 3) 

ANN units (16, 1024) 

ANN dropout (0.25, 0.75) 

ANN Batch_size (8, 128) 

ANN nb_epochs (20, 200) 

ANN optimizer ['adadelta', 'adam', 
'rmsprop'] 

ANN activation ['relu', 'elu', 'selu', 
'sigmoid',  'softplus',  

'softsign', 'tanh'] 

 

 

Fig. 3.   Actions of first 50 episodes (a) and last 50 episodes (b) 

The RL actions during the first 50 episodes and the last 50 
episodes were plotted in Fig. 3. In Fig. 3 (a), it can be observed 
that the RL actions during the initial episodes were nearly 
random, as all three ML pipelines (XGBoost, Random Forest, 
and ANN) were tested. This demonstrates that the -greedy 
policy effectively promotes exploration of all possible 
pipelines in the initial stages of training, ensuring that the RL 
agent explores different options before focusing on exploiting 
the most promising ones. Fig. 3 (b), on the other hand, shows 
that during the last 50 episodes, the RL agent consistently 
chose the XGBoost algorithm as the most promising pipeline. 
This choice indicates that the -greedy policy gradually shifted 
the focus to exploitation, as the RL agent learned that the 
XGBoost pipeline yielded the best results in terms of accuracy 
and efficiency on the Triazines dataset. 

Fig. 4 presents the accuracy results of each pipeline during 
the training process. In the first episode, the Random Forest 
pipeline demonstrated the highest accuracy among the three 
pipelines. However, the -greedy policy, wisely incorporated 
into the RL algorithm, guided the agent to explore all available 
pipelines in search of potential improvements in accuracy. As 

a result of this exploration, all three pipelines showed 
improvements in accuracy. This showcases the effectiveness 
of the RL agent in efficiently exploring the ML pipeline space, 
even though Random Forest initially performed well. In the 
later stages of training, the RL agent consistently selected the 
XGBoost algorithm due to its high accuracy and low trial time. 
BO was subsequently applied to further fine-tune the 
hyperparameters of the XGBoost pipeline, leading to 
additional improvements in accuracy. However, as the 
accuracy results of the XGBoost pipeline show, the 
improvements in accuracy become more challenging to 
achieve in the later stages of training. This suggests that 
achieving higher levels of accuracy requires more steps of BO, 
indicating the diminishing returns in accuracy improvement as 
the pipeline becomes more optimized. 

 

Fig. 4.   Accuracy of each pipeline along the episodes  

TABLE II   SUMMARY OF THE RESULTS OF DIFFERENT PIPELINES 

Pipeline Mean trail 
time (s) 

Number of 
episodes 

Accuracy 
results 

XGboost 1.9284 367 0.8050 

Random Forest 4.7139 67 0.7687 

ANN 3.5588 68 0.7178 

 

      

Fig. 5.   Boxplot of the trail time of three algorithms  

     Table II provides a summary of the results evaluated by 
different ML pipelines during the experimentation phase. 
From the results in Table II, it is evident that the XGBoost 
pipeline was selected for the majority of the episodes. This 
selection was in line with the RL agent's exploration-
exploitation strategy, as XGBoost consistently demonstrated 
the highest accuracy results and the lowest mean trial time 
among the three pipelines. As mentioned earlier, the trial times 
of different pipelines at each episode were recorded in the 
cache for evaluating the reward at different stages. The 
experiments were conducted on a personal computer with an 
Intel Core i7-7600U CPU and 12GB RAM. To visualize the 
trial time distribution of the three algorithms, a boxplot is 
presented in Fig. 5. The boxplot shows that the mean trial time 
of XGBoost is the lowest, indicating that it is the most efficient 
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pipeline among the three. Additionally, the boxplot illustrates 
that XGBoost's trial times are relatively stable with fewer 
outliers, while both Random Forest and ANN exhibit some 
outliers with longer trial times. 

B. Experimental test on the large dataset 
In this experimental test, the orange juice (OJ) dataset 

from Azure Open Datasets was used. The dataset consists of 
weekly sales of orange juice in 64-ounce containers for 83 
stores in the Chicago area. It contains sales data for 121 weeks 
and three different brands, resulting in an original dataset with 
28947 rows and 17 columns. Before applying the proposed 
framework, data pre-processing was carried out, which 
involved data cleaning, feature expansion and selection, and 
categorical feature encoding. The feature expansion was 
performed by taking the logarithm of the numerical features 
and then creating polynomial features of order 2. Furthermore, 
feature selection was conducted to remove highly correlated 
features. The processed data resulted in a dataset with 28947 
rows and 151 columns. 

TABLE III   SUMMARY OF THE RESULTS OF DIFFERENT PIPELINES FOR OJ 

DATASET 

Pipeline Mean trail 
time (s) 

Number of 
episodes 

Accuracy 
results 

XGboost 170.97 15 0.9713 

Random Forest 145.42 3 0.9624 

ANN 1034.24 4 0.9231 

 

The proposed framework was then implemented on this 
processed dataset. Given the large size of the dataset, the 
episode was set to 20, and the decay rate of  in the -greedy 
policy was set to 0.1. Table III summarizes the results of 
different pipelines for the OJ dataset, indicating that XGboost 
achieved the best accuracy results. 

Notably, for a large dataset like the OJ dataset, the trial 
time of Bayesian optimization (BO) can be considerable and 
varies significantly for different pipelines. The proposed 
framework effectively addresses this issue and saves 
computational time vastly. For instance, the number of BO 
trials in this experiment is set as 3, if the dataset is tested on 
the ANN algorithm with 20 episodes, the total running time 
can be estimated as 1034.24×3×20 = 17.23 hours. However, 
the proposed framework avoids wasting computational 
resources on ANN pipeline, the total running time is 
170.97×3×15 + 145.42×3×3 + 1034.24×3×4 = 5.95 hours, the 
accuracy result is also better. Overall, the experimental results 
on the OJ dataset validate the efficiency and accuracy of the 
proposed Bayesian optimization embedded reinforcement 
learning framework in selecting the optimal ML pipeline and 
hyperparameters for demand forecasting, especially when 
dealing with large datasets with varying trial times for 
different pipelines. 

V. CONCLUSIONS AND FUTURE WORK 

This paper introduces a novel AutoML framework 
designed to tackle the Combined Algorithm Selection and 
Hyperparameter Optimization (CASH) problem for demand 
forecasting tasks. By utilizing reinforcement learning for 
machine learning algorithm selection and Bayesian 
optimization for hyperparameter optimization, the framework 
aims to find the most effective ML pipeline with optimized 
hyperparameters. The proposed reward function maximizes 
pipeline accuracy while ensuring computational efficiency. 

The -greedy policy employed in the framework enables 
exploration of various pipelines at the beginning and 
exploitation of the most promising ones as the process 
progresses. Experimental tests on both small and large 
datasets validate the effectiveness of the proposed framework 
in identifying optimal ML pipelines and corresponding 
hyperparameters. Additionally, the framework significantly 
reduces computational effort by avoiding wasteful 
computations on unpromising pipelines, especially for large 
datasets. 

For future work, it would be interesting to expand the case 
study by incorporating more ML pipelines to assess the final 
accuracy results and computational resource allocation. The 
different feature engineering techniques can also be 
considered in different ML pipelines. Furthermore, enhancing 
the framework with a mechanism to automatically determine 
the completion of algorithm selection and hyperparameter 
optimization could further improve its efficiency and 
adaptability to different scenarios. 
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