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Abstract—Indoor farming has emerged as a rapidly growing
industry that harnesses controlled environmental conditions to
cultivate crops. A key component of indoor farming is the
utilization of LED lighting, which serves as the primary source
of light for plant growth. In this study, our objective is to
optimize indoor farming practices through the application of
deep learning techniques, specifically by predicting the growth
of plants under different LED light treatments in controlled
agricultural environments. To achieve this goal, we employed
existing machine learning methods and proposed a novel deep
learning approach that incorporates the effects of LED light
spectrum on plant growth to estimate plant biomass. Our deep
learning model, BioNet, utilizes 1D convolutional neural network
(CNN) to extract spatial features from the light spectrum data.
Through extensive experimentation and analysis, we demonstrate
that our deep learning method outperforms other conventional
methods, showcasing its potential to enhance our understanding
of the impact of LED light on plant growth.

Our research provides valuable insights into optimizing indoor
farming by uncovering the relationship between LED light
treatments and plant biomass. BioNet serves as a valuable
tool for farmers, enabling informed decisions on LED light
selection, leading to improved efficiency and productivity in
indoor farming. This study contributes to advancing indoor
farming techniques through deep learning, opening new avenues
for exploration and highlighting potential improvements in the
field.

Index Terms—Plant biomass prediction, Deep learning, Light
treatment, Indoor farming.

I. INTRODUCTION

Indoor farming, also known as vertical farming or controlled

environment agriculture, offers numerous advantages over tra-

ditional farming methods. With indoor farming, crop produc-

tion can continue year-round, regardless of weather conditions.

This controlled environment also provides ideal growing con-

ditions, resulting in higher crop yields compared to traditional

farming. Additionally, indoor farming uses significantly less

water and reduces the need for chemical pesticides, making

it more environmentally friendly. By reducing land use and

transportation costs, indoor farming can be a viable option for

urban areas. Lastly, indoor farming systems can be designed

to be energy-efficient, further reducing the carbon footprint

of agriculture. Overall, indoor farming provides a promising

solution for sustainable food production.

LED (Light Emitting Diode) lighting is an essential com-

ponent of indoor farming, providing the primary source of

light for plant growth [1]. The LED light spectrum can

have a significant impact on plant growth in indoor farming

environments. Plants require specific wavelengths of light for

photosynthesis, which is the process by which they convert

light energy into chemical energy for growth and develop-

ment. LED lights offer the advantage of allowing for precise

control of the light spectrum, enabling growers to optimize

plant growth by providing the appropriate wavelengths of

light. For example, blue light (400-500 nm) is essential for

vegetative growth, while red light (600-700 nm) is crucial

for flowering and fruiting [2], [3]. In addition to blue and

red light, other wavelengths can also affect plant growth.

For instance, green light (500-600 nm) can penetrate deeper

into the canopy, improving light absorption, and enhancing

plant growth [4]. Similarly, far-red light (700-800 nm) can

influence plant growth by triggering plant responses such as

leaf expansion, and the timing of flowering [5]. Hence, It is

critical to understand the impact of LED light treatment on

plant growth and to optimize the conditions for maximum crop

yield. In this study, we aim to investigate the effects of LED

light treatment on the growth of choy sum, a popular leafy

vegetable, in indoor farming environments.

The field of plant growth prediction commonly relies on

machine learning techniques [6], [7], with limited utilization

of deep learning models. To bridge this gap, our study aims to

assess the performance of various machine learning methods,

including XGBoost, NGBoost, CatBoost, and LightGBM, in

predicting the growth of choy sum under different LED light

treatments. In addition, we propose a novel deep learning

model called BioNet, which leverages a 1D Convolutional

Neural Network (1D CNN) to extract spatial features from the

light treatment data, enabling accurate plant growth prediction.

Unlike existing methods that primarily focus on identifying the

best LED treatment based on available data, our deep learning

model offers the capability to select an LED light treatment

beyond the confines of available data. This is achieved by ad-

justing LED treatment parameters and assessing the predicted

biomass for the modified treatment.

The results of our study demonstrate that BioNet outper-

forms the other machine learning methods, yielding superior
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Fig. 1. Example spectrum of LED light treatment.

predictions for plant growth. By considering the entire range

of light treatment rather than solely focusing on treatment

intensity, our approach provide valuable insights into the

impact of LED light treatment on the growth data of choy sum.

Moreover, it highlights the potential of deep learning models

in indoor farming applications, particularly in optimizing light

treatments for enhanced plant growth.

In summary, our study contributes to the field by showcasing

the efficacy of deep learning models in plant growth prediction,

specifically by considering the comprehensive range of light

treatment. The findings not only advance our understanding of

the relationship between LED light treatment and plant growth

but also underscore the potential of deep learning approaches

in revolutionizing indoor farming practices.

II. LIGHT TREATMENT

A light treatment refers to the specific combination of

wavelengths, intensities, and durations of light that are used

for plant growth and development in indoor farming settings.

The intensity of light treatment is represented using PPFD

(Photosynthetic Photon Flux Density) which is a measure of

the amount of light energy in the PAR (Photosynthetically

Active Radiation) range that is available to plants for pho-

tosynthesis. PPFD is expressed in units of micromoles of

photons per square meter per second (μmol/m2s), and it

indicates the number of photons that fall on a given area of

plants per second. An instance of a light spectrum with a PPFD

of approximately 145 μmol/m2s (where the total PPFD is

the integral under the curve) is illustrated in Figure 1. The

spectrum spans in the wavelength range of 380-780 nm.

III. PLANT GROWTH DATA

In our study, we utilized plant growth data obtained from

choy sum plants. To capture this data, we employed the

use of a PlantEye sensor [8], which is a specialized device

designed to measure various aspects of plant growth. The

sensor combines imaging and light measurement techniques

to gather comprehensive information about the plants under

observation. It is capable of measuring parameters such as

plant biomass (in digital form), leaf area, and plant height.

The PlantEye sensor operates by utilizing multiple wave-

lengths of light to create a 3D model of the plant. By

considering height and 3D leaf area, PlantEye calculates the

digital biomass of the plant, assuming a regular body shape

for the plant and determining its volume accordingly.

In our study, the primary focus was on investigating the

relationship between light treatment and plant biomass. There-

fore, we maintained consistency in other growth factors such

as temperature, humidity, soil pH values, and duration of light

exposure throughout the experimental setup. By controlling

these variables, we aimed to isolate the impact of light

treatment on plant growth and biomass.

To explore the effects of different light treatments, we con-

ducted experiments using a total of 41 distinct light treatments.

The total Photosynthetic Photon Flux Density (PPFD) for these

treatments varied between 100 and 300 μmol/m2s. For most

light treatments, we had six plant saplings under observation.

However, for a few specific light treatments, we utilized three

plant saplings instead. The treatment data included information

about the PPFD corresponding to each wavelength within the

range of 380-780 nm.

During the experiment, plant measurements were captured

every second day over a period of 15 days. This allowed us

to observe the growth of the choy sum plants under different

light treatments and track their biomass changes over time.

The growth data collection process was carried out consistently

across all light treatments, ensuring that the observations were

reliable and comparable. A visual representation of the growth

data collected under different light treatments is presented in

Figure 2.

Fig. 2. Plant growth data over 15 days were collected in controlled
environment while treating with different light spectra.

To ensure consistent scaling and facilitate biomass predic-

tion within a range of 0 to 1, the training data was normalized

by dividing each biomass value by the maximum biomass

observed in the dataset.

IV. MACHINE LEARNING METHODS

In this section we describe different machine learning

methods we use to predict the biomass of the plant under

a given light treatment. We mainly focus on gradient boosting

algorithms as they are known for their ability to handle

complex data structures, high-dimensional data, and noisy

data. The basic idea behind gradient boosting is to iteratively

add new weak models to the ensemble, each one correcting
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the errors made by the previous models. At each iteration,

the algorithm calculates the gradient of the loss function with

respect to the predictions of the current model. It then fits a

new model to the negative gradient of the loss function, which

is equivalent to fitting a model to the residuals of the previous

model. This process continues until the ensemble achieves the

desired accuracy or until a maximum number of iterations is

reached.

A. XGBoost

XGBoost (Extreme Gradient Boosting) [9] is a popular

machine learning algorithm used for both classification and re-

gression tasks. It is a type of boosting algorithm that combines

multiple weak learners (usually decision trees) to create a more

accurate model. XGBoost uses a gradient boosting framework

to iteratively improve the predictions by minimizing a specific

loss function. It also incorporates a regularization technique to

prevent overfitting and provides several hyperparameters that

can be tuned to optimize the model’s performance. XGBoost is

known for its speed and scalability, making it a popular choice

for a variety of machine learning tasks, including classification,

regression, and ranking.

B. LightGBM

LightGBM [10] a gradient boosting framework developed

by Microsoft that is designed to be efficient and scalable

for large datasets. It uses a novel technique called Gradient-

based One-Side Sampling (GOSS) to speed up the training

process by reducing the number of samples used for each

iteration of the boosting algorithm. LightGBM also includes

other optimizations such as histogram-based gradient boosting

and leaf-wise tree growth.

C. CatBoost

CatBoost [11] a gradient boosting framework developed

by Yandex that is designed to handle categorical features

more effectively than other gradient boosting frameworks.

It uses a novel technique called ordered boosting, which

takes into account the natural order of categorical features to

improve accuracy. CatBoost also includes other optimizations

such as gradient-based feature selection and symmetric tree

construction. These techniques enable CatBoost to achieve

better accuracy than other gradient boosting frameworks on

datasets with categorical features.

D. NGBoost

NGBoost (Natural Gradient Boosting) [12] is a recent gradi-

ent boosting framework that uses a probabilistic framework to

estimate predictive distributions rather than point estimates.

This allows NGBoost to model uncertainty in predictions,

which is useful in applications such as anomaly detection,

time series forecasting, and personalized medicine. NGBoost

uses a natural gradient descent algorithm to optimize the

parameters of the predictive distribution, which results in faster

convergence and better accuracy than other gradient boosting

frameworks.

V. BIONET

As PPFD of wavelengths in the entire wavelength range

(380-780 nm in our case) is treated as the feature of the

light treatment, these fatures can be correlated, especially

for neighbouring wavelengths. This is because neighboring

wavelengths can still contain similar spectral information and

contribute to similar biological responses. While gradient

boosting algorithms can handle correlated features to some

extent, it is generally better for the features to be as indepen-

dent as possible. This is because correlated features can lead

to overfitting and cause the model to be less generalizable to

new data. Hence, we propose BioNet, which uses 1D CNN to

extract spatial features of the light spectrum.

Fig. 3. Architecture of BioNet.

We represent the light treatment as a vector x ∈ R
N , where

x = [x1, x2, . . . , xN ] denotes N consecutive wavelengths, and

xi corresponds to the PPFD of the ith wavelength. Figure 3

shows a high level overview of BioNet. As we are interested

in predicting the plant biomass based on its age (in days) and

light treatment used, age of the plant is also an input to the

network. BioNet is a parameterized function Fθ which maps

the light treatment x and age a to the biomass of the plant,

i.e. Fθ(x, a) = ŷ, where ŷ is the predicted biomass. It consists

of four 1D CNN layers followed by a fully connected layer

that connects to the output layer responsible for estimating the

biomass. We also incorporate dropout and batch normalization

layers to enhance the model’s performance and generalization.

The intermediate layers utilize the ReLU activation function,

which introduces non-linearity to the network and enables

better representation learning. On the other hand, we employ

the sigmoid activation function on the final output layer to

ensure that the predicted biomass yield falls within the range

of [0, 1]. It is important to note that BioNet is trained using

normalized values of biomass.

To train BioNet, we utilize the mean squared error (MSE)

loss and the Adam optimizer [13]. The loss value is computed

as follows, where yi represents the ground truth biomass value,

ŷi represents the predicted biomass, and n is the batch size:

Lθ =
1

n

n∑
i=1

(yi − ŷi)
2 (1)
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VI. EXPERIMENTS AND RESULTS

This section provides a detailed discussion of our exper-

imental setup and results. Among the 41 light treatments,

we utilized the growth data from 25 light treatments for

training purposes, while 8 light treatments were used for

testing purposes. The remaining 8 light treatments were used

exclusively for validation.

A. Hyperparameters

We conducted an exclusive hyperparameter search for both

the machine learning methods and the proposed deep learning

method. To obtain the optimal parameters, we utilized the

GridSearchCV [14]. The search for learning rates was per-

formed between 1e-1 and 1e-3, and the optimal learning rates

were found to be 1e-2 for XGBoost, 5e-2 for LightGBM, 1e-

2 for CatBoost, and 5e-2 for NGBoost. In the case of the

deep learning method, we used a learning rate of 5e-3 after

searching between 1e-2 and 1e-4. The batch size for training

was 256, and we trained the models for 300 epochs. We

trained the deep learning models using 100 different seeds and

ultimately chose the model that provided the least validation

error.

B. Evaluation

In our work, we used several evaluation metrics to assess

the performance of our machine learning models and deep

learning method. These metrics included Root Mean Squared

Error (RMSE), Mean Absolute Error (MAE), and R-squared

(R2). RMSE is a measure of the difference between predicted

and actual values, with lower RMSE indicating better model

performance. MAE is another measure of the difference be-

tween predicted and actual values, but it is less sensitive to

outliers than RMSE. R2, on the other hand, measures the

proportion of variance in the target variable that is explained

by the model. They are mathematically expressed as provided

in Equations 2-4

RMSE =

√∑n
i=1(yi − ŷi)

2

n
(2)

MAE =
1

n

n∑
i=1

|yi − ŷi| (3)

R2 = 1 −
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
(4)

Where, y, ŷ and ȳ represent ground truth value, predicted value

and mean of y values respectively. n is the number of samples

in the test data. In summary, RMSE and MAE measure the

accuracy of the predictions made by the model. On the other

hand, R2, quantifies the goodness of fit of a model to the data.

It takes values between 0 and 1, where a higher value indicates

a stronger fit between the model and the data.

In our experiments, we used these metrics to evaluate and

compare the performance of different models and methods,

and to choose the best performing model for our use case.

Metric XGBoost LightGBM CatBoost NGBoost BioNet

R2 0.723 0.723 0.756 0.638 0.787
RMSE 0.039 0.039 0.036 0.044 0.034
MAE 0.027 0.021 0.025 0.023 0.019

TABLE I
PERFORMANCES OF MACHINE LEARNING AND DEEP LEARNING METHODS.

C. Results

Table I presents a comprehensive comparison of evaluation

metrics. Additionally, line plots illustrating the predicted val-

ues against the ground truth values of the test data are included

for each method in Figure 4. These line plots provide insights

into the prediction accuracy relative to the actual values. As

mentioned previously, our test data consisted of growth data

from 8 different light treatments, with either six or three plant

samples under each treatment. Each point on the x-axis of

the plots represents a data point, with the blue value on the

corresponding y-axis being the ground truth value and the red

value being the predicted value. The data points are organized

based on light treatment, and within each light treatment, they

are further sorted by plant samples. The data points for each

plant begin from day 0 and continue up to the day of harvest.

As a result, the decrease in the value along the x-axis indicates

that the data point corresponds to the day 0 of the subsequent

plant in the test data set. Since the input for each model

consists of the light treatment spectrum and plant age, the

predicted biomass for each plant sample under the same light

treatment is expected to be the same, as can be seen in the

plots. However, in reality, the biomass may vary for each plant

even if they are grown under the same conditions. To address

this variance in the ground truth values, one workaround is

to train the model with the average biomass of each plant

under the same light treatment. However, this approach may

reduce the amount of training data, and we observed that it

also reduced the training performance in our experiments.

While the performance of all the methods is comparable,

BioNet demonstrates superior performance across all metrics,

achieving an RMSE of 0.034, MAE of 0.019, and R2 value of

0.787. XGBoost and LightGBM exhibit similar performances,

with an RMSE of 0.039 and R2 of 0.723. However, LightGBM

outperforms XGBoost in terms of MAE, with an MAE of

0.021 compared to 0.027 for XGBoost. One notable difference

between the two models is that XGBoost tends to overpredict

biomass values when the plant is very small (around 2-3 days

old), while LightGBM tends to overestimate final biomass

values (around 15 days old). On the other hand, CatBoost

tends to overpredict biomass values for younger plants, but

underpredicts for older plants. As a result, the R2 value for

CatBoost (0.756) is relatively high, but the MAE is also

high at 0.025. Among all the methods, NGBoost exhibits

the poorest performance, as it tends to overpredict biomass

for older plants. The corresponding RMSE, MAE, and R2

values for NGBoost are 0.044, 0.023, and 0.638, respectively.

The superiority of BioNet, proposed in this study, can be

attributed to its capability to extract spatial features from the
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Fig. 4. Comparison of RMSE, MAE and R2 values for various methods. We
also show how each method predicted the biomass as compared to the ground
truth values. Best viewed in color.

light spectrum.

VII. RELATED WORK

Plant growth under various light treatments has been a

popular research topic among scholars. For instance, [15]

utilized four distinct light treatments to examine the growth

of choy sum and established that LED light intensity and

spectrum both influenced growth, with the red-blue light treat-

ment producing the highest shoot biomass at 160 μmol/m2s.

Meanwhile, [16] studied the effect of sole-sourced LED and

mineral nutrient fertility treatment on Chinese kale and ob-

served that plants showed superior accumulation of sulfur,

boron, and zinc in the root tissue under the 10% blue/90% red

LED light treatment, while iron concentrations were highest in

the 40% blue/60% red LED light treatment. Another research

on Chinese kale by [17] found that plants grown under fluo-

rescent/incandescent light treatment had significantly higher

shoot fresh and dry mass. [18] studied the effects of UV-

A irradiation on the cultivation and quality of microgreens

and found that supplementing light treatments with UV-A

irradiation resulted in increased leaf area and fresh weight of

the plants. In a separate study on pak choi, [19] investigated the

effect of light treatments on the regulation of carotenoid levels

and discovered that blue, red, and white light had varying im-

pacts on carotenoid composition. Although all of these studies

focus on examining the impact of light treatments on plant

growth, they solely concentrate on the light treatments used

in their respective experiments and are unable to comment on

the effects of light treatments not utilized in their studies. Our

work, on the other hand, centers on predicting biomass based

on the light treatment used. Therefore, even if a particular light

treatment has not been tested in an experiment, our model can

provide insight into whether the proposed light treatment is

beneficial or detrimental to the plant. This information can

assist farmers in designing light treatments for their indoor

farming operations.

Similar to our work, [6] developed light-time-biomass

model to predict the biomass of the plant under given light

treatment. However, instead of considering the entire spectrum

of the light treatment, they just include intensity of the

treatment in their model. The experimental light treatments

they used had varying PPFD values ranging from 50-500

μmol/m2s. However, the ratios of PPFD for different wave-

length ranges remained constant across all light treatments.

In other words, they did not take into account the different

light spectrums that had the same PPFD. Our experimental

data showed that light treatments with similar PPFD but dif-

ferent spectra resulted in significantly different biomass yields.

Hence, their model fails to capture any effect of light spectrum

on the plant biomass. Furthermore, their model requires initial

weight of the seedling under the controlled environment. In

contrast to their approach, our work is centered on constructing

a model that takes into account the complete spectrum of the

light treatment when making predictions about biomass yield.

Various researchers have suggested the utilization of 1D

CNN for spectral analysis in different contexts, such as
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identifying unknown substances through Raman spectra [20],

classifying microplastics using Raman spectroscopy [21], and

performing hyperspectral fluorescence imaging [22], vibration-

based structural damage detection in civil infrastructure [23]

and diagnosing bearing faults based on non-stationary signals

of rotating machinery [24]. Additionally, 1D CNN has been

utilized for Electrocardiogram (ECG) beat identification [25].

In our work, we are the first to utilize 1D CNN for predicting

biomass under different light treatments.

VIII. CONCLUSION

In conclusion, we present a study on predicting the biomass

of choy sum plants using different machine learning techniques

and proposed deep learning technique. We use spectral data of

different light treatments and plant age as input features, and

the biomass of the plants as the target variable. We use four

machine learning models: XGBoost, LightGBM, CatBoost,

and NGBoost, as well as proposed BioNet, a deep learning

model.
Our experimental results showed that all the models could

predict the biomass of the plants comparatively. XGBoost

and LightGBM had similar performances, with LightGBM

performing slightly better in terms of MAE. CatBoost had

a relatively high R2 value, but also had a high MAE due

to overprediction for younger plants and underprediction for

older plants. NGBoost showed promising results but required a

longer training time than the other models. The proposed deep

learning model, BioNet, exhibited the best performance among

all the models, with an RMSE of 0.034, MAE of 0.019, and

R2 of 0.787. The model also demonstrated good generalization

ability on the test data.
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