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Abstract—Panoramic depth estimation gains importance with
more 360° images being widely available. However, traditional
mono-to-depth approaches, optimized for a limited field of view,
show subpar performance when naively adapted. Methods tai-
lored to process panoramic input improve predictions but can not
overcome ambiguous visual information and scale-uncertainty
inherent to the task.

In this paper we show the benefits of leveraging sound for
improved panoramic depth estimation. Specifically, we harness
audible echoes from emitted chirps as they contain rich geometric
and material cues about the surrounding environment. We show
that these auditory cues can enhance a state-of-the-art panoramic
depth prediction framework. By integrating sound information,
we improve this vision-only baseline by ≈ 12%.

Our approach requires minimal modifications to the underly-
ing architecture, making it easily applicable to other baseline
models. We validate its efficacy on the Matterport3D and
Replica datasets, demonstrating remarkable improvements in
depth estimation accuracy. Our code is available here: https:
//github.com/peter12398/PANO-ECHO
Index Terms—Audio-Visual learning, panoramic depth estima-

tion, multi-modal fusion

I. INTRODUCTION

Our understanding of the world is mediated through mul-

tiple senses, each contributing to our overall perception. In

particular, sound is more than background noise, it intricately

shapes our perception of our environment. From everyday

sounds like conversations and microwave beeps to the immer-
sive experience of virtual reality, it carries information not just

about its source but also about the physical space around us.

By listening to a concert recorded in a cathedral we are able to

sense the geometric features of the environment without being

physically there. Spatial acoustic cues enable us to perceive

the distance, direction and semantic of sounds without visual

aid, offering crucial insights into our environment.

These cues arise from how sound waves propagate through

space: sound spreads in all directions and is transformed by

various acoustic phenomena, affected by the layout of rooms,

materials and objects.

Recently, sound has proven to be a promising modality on

its own but also to enhance traditional vision tasks. Echoes

from short linear frequency modulated signals (chirps) can be
used to predict depth in front of a robot [11], [25], [29], [31].

Monocular to depth methods are enhanced by the addition

of sound [12], [13], [32]. The conversation between multiple

Fig. 1. Monocular depth prediction for indoor panoramas (ground truth in
top row) can struggle with ambiguous areas. Visual illusions of objectiveness
or openings can lead to systematic prediction errors (middle row). In this
example, an illuminated showcase can be misinterpreted as window to a
space behind it. Our proposed PANO-ECHO uses sound for improved depth
estimation (bottom row) leading to overall better scale and reduced illusions
for challenging distorted panoramas.

people can be used in addition to limited visual information

to infer a scene occupancy map [33]. Sound can add semantic

information to floor plans outside of the field-of-view [34].

When visual sensors fail because of adversarial condition,

sound can provide missing information [35].

Depth information is crucial in various fields such as

computer vision and robotics. It enhances spatial understand-

ing, providing a three-dimensional perspective. Depth can

be obtained using sensors such as an RGB-D camera and

LiDAR. However, reflective and transparent surfaces degrade

their precision.

Monocular depth estimation methods are low-cost and

widely accessible alternatives that are easier to integrate

compared to depth sensors, making them advantageous in

various applications. Still, extracting depth information from

monocular RGB images is challenging due to the inherent

lack of direct depth cues in a single 2D image. Unlike stereo

vision, which relies on the disparity between two images

recorded from offset viewpoints, a monocular image has only

one viewpoint, leading to an ill-posed problem due to scale
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Fig. 2. Our proposed PANO-ECHO framework. Pairs of panoramic equirectangular RGB images and echoes are recorded in simulation at a specific location
and orientation. Images enter the Panoformer and are combined with echo features after the PST Block in the bottleneck using our cross-attention mechanism.
STFT’s of Echoes are concatenated along the channel dimension and processed by a Resnet18 to echo features. Finally the Panoformer decoder creates an
estimated depth map of the panorama.

ambiguity.

Furthermore, occlusions, shadows and certain scene con-

figurations can create illusions of shapes from context and

mislead depth estimation algorithms.

Sound encapsulates depth-like information and is conve-

niently recordable, given the widespread availability of micro-

phones in most electronic devices. In a video, sound is usually

recorded at the same time as the RGB images. Thus, improving

monocular to depth algorithms with sound depth cues is a

realistic option in many use cases and yields promising results.

We propose to use echoes of a frequency modulated signal,

called chirp, to enhance a state-of-the-art panoramic depth
prediction method: PanoFormer [2]. We use the SoundSpaces

[1] simulator to generate 360° equirectangular RGB images

and corresponding binaural Room Impulse Responses (RIR) at

the ego-location. We convolve them with our generated chirp
to obtain binaural echoes.

Many vision-based panoramic depth prediction methods [2],

[3], [6], [7], [20] adopt an encoder-decoder based architecture.

We show that it is possible to further improve their depth

estimation and eliminate visual artefacts by fusing sound

knowledge in the latent space.

Our contribution can be summarized as follows:

1) We demonstrate that, as sound propagation is 360°

and is modified by the room architecture, material and

objects, it can provide valuable depth cues, which are

not available from a single RGB image.

2) We show how to improve 360° monocular depth predic-

tion by incorporating echoes features in the latent space.

We improve the current SOTA baseline ”PanoFormer”

[2] by ≈ 12% MRE and MAE. Qualitatively, we show

this is partly achieved by correctly interpreting ambigu-

ous areas in the image when using audio-visual input.

3) Our method is low cost and easy to set up in real-world

systems. Thus, it has the potential to provide accurate

depth information without the need of complex and

expensive traditional depth sensors. Especially, it solves

issues inherent to visual sensors such as transparent

surfaces leading to wrong depth information.

4) The proposed method can be easily transferred to any

panoramic monocular to depth encoder-decoder archi-

tecture. We show its effectiveness in two other methods,

Bifuse [6] and Unifuse [3].

II. RELATED WORK

Panoramic Depth Estimation. Estimating 360◦ depth

poses challenges due to panoramic distortions, as highlighted

by Zioulis et al. [20]. They found that regular depth mod-

els trained on standard images don’t perform well on 360°

datasets, emphasizing the need for specialized panoramic

methods.

One possible solution to tackle this challenge involves

designing specialized network structures. Tateno et al. [22]

introduced distortion-aware convolution filters, enabling a net-

work trained on regular images to predict panoramic depth

without requiring an additional 360° dataset. Similarly, Chen et

al. [23] suggested using deformable convolution, strip pooling

modules, and a spherical-aware weight matrix to adapt the net-

work to various panoramic distortions. SliceNet [7] segments

the scene into vertical slices, leveraging a multi-layer LSTM

to capture high-frequency features through long and short-

term dependencies between slices. In contrast, PanoFormer

[2] addresses equirectangular projection (ERP) distortions by
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dividing patches in the spherical tangent domain into tokens,

incorporating learnable token flow and a proposed ERP-

specific coherence loss. A second solution involves mitigating

distortion by combining ERP and cube map projection. While

ERP images offer a complete Field of View (FoV) with

simultaneous distortion, especially in polar areas, cube map

projection provides a narrow FoV without distortion but suffers

from boundary discontinuity. To solve different projection

drawbacks, Bifuse [6] adopts a two-branch network to leverage

both projections, introducing learnable masks for fusion in

the encoder and decoder, though at the expense of additional

computational overhead. Shen et al. [21] address the dual-

cubemap method, rotating the ERP image by 45° and employ-

ing two encoder branches with a Boundary Revision module to

mitigate boundary discontinuity. Bifuse++ goes a step further

by enhancing scalability and computation cost-effectiveness

through self-training and Contrast-Aware Photometric Loss

[19]. Similarly, Unifuse introduces a novel fusion framework

at the decoding stage to combine two projections and addresses

the computational complexity of Bifuse [3].

Audio-Visual learning. Sound arrives omnidirectional and
provides rich geometric and semantic information about the

space it traverses. Certain species, are mastering echolocation,

meaning they are capable of navigating and localizing prey

using spatial acoustic cues. Drawing inspiration from this phe-

nomenon, various machine learning methods exploit echoes

generated by audible short linear frequency signals to get

insights about the surrounding space. [1], [13] demonstrate the

efficacy of leveraging echoes for the navigation of embodied

agents within simulated environments. Echoes emerge as a

valuable asset not only for FoV depth estimation as a stan-

dalone modality [11], [26], [31] but also as a complementary

source alongside vision. This synergy extends to enhancing

monocular [12], [13], [27], [32] and stereo [36] depth esti-

mation methods. The versatility of echoes further allows 2D

floor plan estimation outside the field-of-view [34], [37] and

facilitates sound event detection and localization [24].

In the broader context, the 360◦ propagation of sound

has been leveraged for sound-to-panoramic depth estimation

[25], [29], [30]. However, sound-only methods have limited

performances compared to their vision-based counterparts.

Motivated by this, we propose a novel approach that in-

tegrates echoes with vision to enhance the state-of-the-art in

360◦ vision-based depth prediction.

III. APPROACH

We are interested in enhancing 360◦ depth prediction from
monocular RGB images by incorporating geometric-aware

echoes features. The objective is to improve depth accuracy

and reduce visual artefacts. We introduce a novel approach

called PANO-ECHO that leverage complementary information

from audio-visual signals while being easy to transfer to other

panoramic depth estimation models.

Our method has two main components: 1) a vision-based

monocular to panoramic depth encoder-decoder, and 2) a

binaural echoes feature extractor. Visual and sound features are

fused in the encoder-decoder latent space (fig. 2). Specifically,

we choose the current state-of-the-art PanoFormer [2] as the

vision-based model, but we show in section IV-C that this

audio-visual fusion can be easily extended to other panoramic

depth prediction methods such as Unifuse [3] and Bifuse [6].

Next, we describe these two components, the multimodal

fusion and training objective.

A. Audio-Visual Features Extractor

We first generate observations in the SoundSpaces simulator

[1] where an agent is set at various location of a scene. For

each position we generate a binaural RIR and a corresponding

360◦ equirectangular RGB image at the ego-location.
Acoustic Embedding. To obtain echoes, we convolve

generated RIR with a 3ms-long audible chirp i.e. a linear

frequency sweep signal between 20Hz and 20 kHz. Thus,

we obtain echoes of a chirp emitted and recorded at the

agent location. We then use the short-time Fourier transform

(STFT) to represent all echoes as magnitude STFT 2×F ×T ,
where F is the number of frequency bins, T is the number

of overlapping time windows, and each STFT has 2 channels.

We extract the spatial acoustic cues contained in the echoes

STFT with a Resnet18 [4] encoder.

Visual Embedding. The corresponding 360◦ RGB images
are resized to resolution 512 × 256 using bilinear interpola-
tion, standardized and encoded by PanoFormer encoder and

bottleneck blocks [2].

B. Multimodal Fusion Module

Most methods fuse visual and acoustic latent vectors along

the channel dimension [1], [13], [15]–[17], [27], [28]. Others

explore individual bilinear transformation before concatena-

tion followed by attention masks to decide on the contribution

of each modality [12] or use a complete cross-modal trans-

former [14].

[43] develop a cross-modality encoder to identify agree-

ment between textual and visual features. This concept most

closely resembles our need to see if visual and sound in-

formation agree on depth estimation. Inspired by their work,

we propose a cross-modal fusion method to pay attention to

suitable features.

Our cross-modal fusion queries distance aware audio fea-

tures to select propagation of visual features and queries

in parallel semantic rich visual features about which audio

features to propagate. Finally both are summed to one latent

vector, from which the network can not only learn the feature

content but also the agreement (see fig. 3).

This can be used by the network to be aware of hard

instances. For example, while a transparent window is invis-

ible, a chirp will be reflected and provide depth information
resulting in audio-visual information mismatch. The network

can thereby learn to put its attention to the more reliable

modality for each instance conditioned on this mismatch.

The attention matrix, A, can be formulated as follow:

A (
fV , fS) = softmax

(
QV(KS)T√

s

)
V S (1)
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Fig. 3. Illustration of our proposed two-branch cross-modal attention module
for audio-visual fusion: In residual connections latent vectors of one modality
are added to their respective cross-modal aware vector and finally summed
for the final feature.

With Qm, Km and V m respectively the query, the key and

the value for the latent sequence of one modality m. The
modality can be S for sound or V for visual. fm represents the

feature sequence of one modality. The query can be expressed

as QV = WV
QfV ,KS = WS

KfS , V S = WS
V fS . s is a scaling

factor and set to 512 which equals to dimension of cross-modal

attention module.

Symmetrically, we also calculated the echo-guided visual

attention map A (
fS , fV), by using audio information as

attention key. The goal is to guide the network to pay attention

to different part of visual input according to different echoes

components. Thus the final audio-visual fusion latent can be

presented as:

LS,V = A (
fV , fS)+A (

fS , fV) (2)

Following [14], [18], [42] we use pre-normed residual units

with dropout for better regularization.

C. Model Training

Our model learns to predict a panoramic depth map using

a corresponding pair of echo and 360◦ equirectangular RGB
image during training in a supervised manner.

Following related work in SliceNet [7] and Panoformer [2],

we adopt the combination of BerHu loss [8] on depth maps,

horizontal and vertical gradients to preserve high frequency

details. The BerHu loss between predicted depth map D̂ and

the ground truth one D can be written as follows:

Bc(D̂,D) :=

{
|D̂ −D| |D̂ −D| ≤ c

(D̂−D)2+c2

2c |D̂ −D| > c
(3)

where c is the parameter controlling switch between L1 and
L2 loss.

Similarly to [6], the loss function exclusively considers

pixels with valid depth values in the ground truth map,

achieved by applying a mask to both the ground truth and

predicted maps.

By denoting respectively the horizontal and vertical gradient

operator ∇x and ∇y , our final training objective can be

formulated as follows:

L(D̂,D) := Bc(D̂,D)+

Bc(∇x(D̂),∇x(D))+

Bc(∇y(D̂),∇y(D))

(4)

We train our model on two RTX3090 GPUs using c = 0.2,
a learning rate of 10−4 and Adam optimizer [5]. Similar to

PanoFormer, we use a batch size of 2. Ground truth depth

maps are also clipped to 16m and normalized.

IV. EXPERIMENTS

A. Dataset

SoundSpaces [1], [38], built upon the Habitat simulator

[39], [40], introduces a realistic sound propagation simulation,

enhancing its capabilities for generating sound observations at

various agent locations across scenes sourced from diverse vi-

sion datasets, such as Replica [10] and Matterport3D (MP3D)

[9]. In the initial version of SoundSpaces [1], pre-computed

binaural Room Impulse Responses (RIRs) and 90◦ FoV RGB
and depth images are provided for these datasets. We generate

360◦ equirectangular images by using the corresponding simu-
lated sensor in Habitat. The corresponding RIRs are generated

with SoundSpaces 1 provided code. We use only the RIRs at

the camera positions, where emitter and listener are at the

same position. This choice is inspired by echolocation and

the desire for our method to seamlessly integrate with easily

accessible data, as found in common devices like smartphones

with co-located microphones and speakers.

Considering the orientation dependence of binaural micro-

phone shape, we render binaural RIRs for different orienta-

tions, specifically θ ∈ [0◦, 90◦, 180◦, 270◦]. Panoramic RGB
images are created with the center aligning to the direction

faced by the binaural microphone.

Each generated RIR undergoes convolution with a 3ms-long

linear frequency modulated signal spanning 0Hz to 22.05 kHz

for Replica and 0Hz to 8 kHz for MP3D. The magnitude

Short-Time Fourier Transform (STFT) of the resulting echoes

is then computed. For Replica and MP3D data, we compute the

STFT with an Hann window and distinct parameters— FFT

size of 512, window length of 1.4ms, and hop length of 0.3ms

for Replica, and FFT size of 512, window length of 2ms, and

hop length of 0.5ms for Matterport3D. This results in two-

channel STFTs where each channel has 257 frequency bins

and respectively 312 and 226 overlapping temporal windows.

The parameter differences stem from the distinct sample rates

of Replica (44.1 kHz) and MP3D (16 kHz).

In total, we obtain 6,928 audio-visual samples for the

Replica dataset and 8,281 for Matterport3D 1. For Matter-

1The total number of rendered RGB-D observation samples for MP3D
in SoundSpace 1 is 82810, we decided to randomly sample 10% of the
position-orientation pairs with a constant random seed for each scene to be
more consistent with previous work in terms of data number. In addition, our
experiments with Unifuse showed that training with 10% or 100% of rendered
samples had little effect on the final results.
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Fig. 4. Issues improved when adding echo features to training of PanoFormer a), Unifuse b), c) and Bifuse d) with the proposed cross-modal fusion strategy.
The visual only PanoFormer baseline may misinterpret the mirror in a) as open window while the Unifuse baseline b) may predict a space between two
shelves as hollow. Using echoes can disambiguate perception in these local areas. Estimation of the global dimensions of the room is also improved c) which
can be based on cues in the reverberations of the echoes. Bifuse is not able to predict if an invisible glass door is open or closed in case d), while echoes
reflect distinctively different. The colour bar unit is in metres.

TABLE I
QUANTITATIVE RESULTS USING PANOFORMER, UNIFUSE AND BIFUSE AS BASELINES ON MATTERPORT3D AND REPLICA DATASETS. ECHO Architecture
DENOTES BASELINE MODEL ENHANCED WITH ECHOES WITH OUR PROPOSED TWO-BRANCH CROSS ATTENTION MODULE. CAT AND SUM MEANS USE

CONCATENATION AND SUMMATION AS LATENT FUSION METHOD RESPECTIVELY. METRICS ARE COMPUTED ON UN-NORMALIZED DEPTH. RMSE IS IN

METERS.

Dataset Method MRE ↓ MAE ↓ RMSE ↓ RMSE(log) ↓ δ1 ↑ δ2 ↑ δ3 ↑

Matterport3D

PanoFormer 0.2725 0.1193 1.1097 0.0934 0.8287 0.9104 0.9408
Echo PF (Cross-Att.) 0.2399 0.1057 1.0562 0.0863 0.8549 0.9187 0.9518

Echo PF (cat) 0.2457 0.1106 1.0537 0.0892 0.8450 0.9154 0.9486
Echo PF (sum) 0.2398 0.1106 1.0317 0.0865 0.8478 0.9178 0.9509

Unifuse 0.3135 0.1412 1.2114 0.1115 0.7941 0.8945 0.9354
Echo Unifuse (Cross-Att.) 0.2728 0.1250 1.1398 0.0989 0.8251 0.9080 0.9505

Echo Unifuse (cat) 0.2927 0.1338 1.1804 0.1053 0.8090 0.8986 0.9400
Echo Unifuse (sum) 0.2888 0.1326 1.1679 0.1045 0.8092 0.9012 0.9406

Bifuse 0.3330 0.1492 1.2573 0.1147 0.7829 0.8882 0.9303
Echo Bifuse (Cross-Att.) 0.2806 0.1257 1.1585 0.0999 0.8271 0.9093 0.9438

Echo Bifuse (cat) 0.3061 0.1328 1.2048 0.1063 0.8077 0.8988 0.9351
Echo Bifuse (sum) 0.2929 0.1364 1.1806 0.1041 0.8068 0.9005 0.9396

Replica

PanoFormer 0.0238 0.0654 0.2063 0.0497 0.9398 0.9838 0.9924
Echo PF (Cross-Att.) 0.0209 0.0643 0.1969 0.0455 0.9409 0.9876 0.9956

Echo PF (cat) 0.0211 0.0644 0.1944 0.0458 0.9392 0.9862 0.9949
Echo PF (sum) 0.0201 0.0630 0.1874 0.0438 0.9416 0.9883 0.9961

Unifuse 0.0295 0.0702 0.2343 0.0549 0.9236 0.9782 0.9915
Echo Unifuse (Cross-Att.) 0.0279 0.0660 0.2201 0.0507 0.9299 0.9813 0.9926

Echo Unifuse (cat) 0.0273 0.0664 0.2262 0.0522 0.9295 0.9815 0.9921
Echo Unifuse (sum) 0.0290 0.0694 0.2355 0.0536 0.9236 0.9786 0.9918

Bifuse 0.0308 0.0833 0.2526 0.0568 0.9142 0.9824 0.9938
Echo Bifuse (Cross-Att.) 0.0255 0.0677 0.2306 0.0506 0.9339 0.9842 0.9939

Echo Bifuse (cat) 0.0258 0.0693 0.2304 0.0509 0.9362 0.9850 0.9937
Echo Bifuse (sum) 0.0244 0.0652 0.2196 0.0482 0.9379 0.9857 0.9947

port3D, we use the official split of the SoundSpaces 1 dataset,

resulting in 57 scenes for training, 11 for validation and 15

for testing. For Replica, we split the dataset into training,

validation, and test sets based on different scenes, resulting

in 11 scenes for training, 4 for validation, and 3 for testing. 2

2We split the Replica dataset to balance each room type in the train, vali-
dation and test sets as follows: Train: {apartment 0, frl apartment {0,1,2,3},
hotel 0, office {0,1,2}, room 0} Val: {apartment 1, frl apartment 4, of-
fice 3, room 1} Test: {apartment 2, frl apartment 5, office 4, room 2}
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Fig. 5. Grad-CAM visualizations using Unifuse. We investigate network activations in the RGB image and STFT for two cases having large performance gap
between the vision-only baseline and the echo-enhanced approach. Shown are the RGB image, the two depth predictions, Gradcam activations on the STFT,
depth-prediction difference between predictions and finally Gradcam activations on each RGB image. It shows how our approach estimates distances to walls
correctly and how it puts attention on the first echo. The baseline fails with an entire wall, potentially due to low spatial cues. The last two rows investigate a
scene with a low, broken wall. The background and the wall are of similar colour and texture but at very different distances. The Grad-CAM [44] activations
are harder to interpret but the echo-enhanced approach seems to pay attention on the RGB image and STFT at several locations for this complex scene. It
pays attention to the early reflections of the signal and to the reverberant tails, which contain useful cues to distinguish fore- and background. The colour bar
unit is in metres.

This framework enables us to assess our task across a mul-

titude of environments, facilitating testing across diverse scene

types, method comparison under uniform settings, and the

reporting of reproducible results. Notably, there is currently no

publicly available real-world dataset that includes panoramic

RGB and depth images coupled with binaural RIRs or echoes.

B. Evaluation Metrics

Similar to related works on depth estimation [2], [3], [6],

[41] we consider 5 metrics: 1) Mean Absolute Error (MAE),

2) Mean Relative Error (MRE), 3) Root Mean Squared Error

(RMSE), 4) RMSE in logarithmic space, and 5) threshold

accuracies denoted as δ1, δ2, δ3.

C. Results

With our experimental design, we aim to highlight specific

achievements:

1) Depth Estimation Enhancement: Our PANO-ECHO
method, enriched with echoes, outperforms vision-only

state-of-the-art approaches, exemplified by the compar-

ison with its vision-only counterpart, PanoFormer.

2) Adaptability to Various Architectures: We establish
the versatility of our method by seamlessly integrating it

into encoder-decoder and CNN-based panoramic mono-

to-depth methods, as shown by its augmentation of

PanoFormer, Unifuse and Bifuse.

For the first point we compare PANO-ECHO and

PanoFormer to showcase the improved depth estimation

achieved by our echo-augmented method. Then, we demon-

strate the adaptability of our approach by incorporating echoes

into two further CNN-based 360◦ monocular to depth meth-
ods. Our benchmarking involves a comparison with vision-

based state-of-the-art methods, specifically Panoformer, Uni-

fuse and Bifuse, providing a comprehensive evaluation of our

echo-enhanced methods.

Depth Estimation Enhancement. In Section III, we extend
the capabilities of PanoFormer by incorporating echo-features

and integrating them within the latent space. Our novel

echo-guided method demonstrates a substantial performance

improvement compared to the original PanoFormer baseline

when trained and evaluated on the same datasets. Notably, we

observe more than 11% reduction in both MRE and MAE on
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Matterport3D and more than 12% improvement in MRE on

Replica. Please find all details in table table I.

Based on a quantitative and qualitative analysis we have

several hypothesis what leads to these performance gains.

Including echoes seems to mitigate the generation of ar-

tifacts, presumably resulting from visual illusions. In vision-

only methods there are unresolvable ambiguities about scale

and shapes as with a showcase in case b) and a glass door

in case d) of fig. 4. Mirrors as in case a) in fig. 4 can be

impossible to distinguish from the scene without additional

sensors. Confusion about fore- and background of a scene, as

in case b) of fig. 5, due to textures and viewpoint are another

source of depth estimation errors. Echoes carry information of

distance to obstacles and can therefore disambiguate percep-

tion in all of these cases. Moreover, even in the case where the

semantic layouts are correctly predicted, the absolute value of

distances and spatial dimensions can still be a challenge for

vision-only methods, as shown in case c) in fig. 4 and case a) in

fig. 5. However, echoes, which inherently contain the absolute

distance values and spatial dimensions in the first echoes and

reverberations, can help to resolve such scale uncertainties.

Consequently, PANO-ECHO improves prediction of depth

values in several ways, even in low-texture areas, such as

walls, as depicted in fig. 5.

Adaptibility to Various Architectures. Our proposed echo-
guided framework is not limited to improve the performance

of PanoFormer, but can be extended to other models with an

encoder-decoder structure, commonly used in SOTA models

[3], [6], [7], [20].

We showcase and evaluate integration into two other

panoramic depth prediction methods, Bifuse and Unifuse [3],

[6]. While relative performance of these methods trained

on our datasets is consistent with the vision-only case (see

table I), integration of our method improves performance for

MRE and MAE by an average of ≈ 14% for Unifuse and

Bifuse on Matterport3D and ≈ 12% on the Replica dataset.

We also studied alternative fusion methods, shown in table I.

Summation and concatenation of visual and audio features

performs in some conditions well on PanoFormer and Bifuse.

On Unifuse, cross-modal attention is almost always best.

While future work could explore the reason and improvements

e.g. by combining methods, any fusion method beats the

baseline, showing the large and robust contribution of sound.

Limitations. Our approach was tested in simulation with
a specific simulated hardware configuration: one binaural

microphone directed in one direction, consistent with the

camera image. Alternatives such as 4 microphones were not

explored. Binaural microphones can be oriented in different

ways in a panorama but we have chosen to create data

samples from 4 discrete directions. That means the method

is orientation dependent, we need to choose an orientation for

each panorama to emit the chirp.
Furthermore, SoundSpaces 1 provides RIR samples for the

MP3D dataset at the sample rate of 16 kHz which is low

compared to the chirp maximum frequency (20 kHz). Thus

it limits the maximum frequency which we can use without

aliasing and keeps us from using the same chirp for both

datasets. This can be improved in future work by creating

one large custom dataset sampled with a constant, and higher

rate for every scene.

We use STFT’s as input whose maximum length limits the

distance at which we can measure depth due to the speed

of sound. However, in this work we follow the baseline in

clipping the maximum depth therefore the length of the STFT

is more than sufficient.

Our results were achieved in simulation and performance

in the real-world may differ. We are aware of issues such as

that meshes of the simulator contain holes and un-annotated

surfaces. Furthermore, material properties are estimated with

a high uncertainty. All this impacts the sound simulation.

Finally, potential use of ambient sound instead of echoes could

make the approach even wider applicable.

V. CONCLUSIONS

In this paper, we propose PANO-ECHO, an echo-enhanced

method improving 360° mono to panoramic depth estima-

tion models. By taking the current state-of-the-art method,

PanoFormer, as a vision-only baseline, experimental results

show that the proposed PANO-ECHO improves depth predic-

tion performance on all metrics on two simulated datasets:

Matterport3D and Replica. Qualitative results show the effec-

tiveness of echoes in resolving visual illusions and improving

overall depth estimation even under heavy distortions. Finally,

we demonstrate the easy extensibility of our method to other

frameworks by adapting two recent panoramic depth estima-

tion approaches, Unifuse and Bifuse. Thus we show that using

echoes is an easy to use and implement addition to mono

to panoramic depth estimation pipelines leading to significant

positive impacts on performance.
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