
Path-based Link Prediction on Hyper-relational
Knowledge Graph

Shuzhi Liu
Department of Electronic Engineering

Tsinghua University
Beijing, China

liushuzhi@mail.tsinghua.edu.cn

Shimin Di
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong SAR, China

sdiaa@connect.ust.hk

Jianwen Peng
Department of Electronic Engineering

Tsinghua University
Beijing, China

jianwenpeng02@outlook.com

Quanming Yao
Department of Electronic Engineering

Tsinghua University
Beijing, China

qyaoaa@mail.tsinghua.edu.cn

Abstract—Recently, path-based Graph Neural Networks
(GNNs) have achieved promising performance in the link pre-
diction task on benchmark Knowledge Graphs (KGs). However,
there is no research on leveraging path-based GNNs to promote
the more general case of KGs, namely hyper-relational KGs
(HKGs). To bridge this research gap, we study the path-
based GNNs and discover that existing path-based GNNs fail
to handle HKGs because they cannot well explore the external
information (i.e., qualifiers) stored in HKGs. In this paper, we
propose a novel framework, Hyper Path-based Graph Neural
Network (HyperPGNN) for HKGs. Specifically, we propose a
novel Hyper2Tri conversion and hyper query learner to better
enable the path-based GNNs to understand qualifiers in HKG,
and then capture them into the graph learning. Results show
our method achieves good performance in both transductive
and inductive settings. Codes are available at https://github.com/
LARS-research/HyperPGNN.

Index Terms—Knowledge graph, link prediction, hyper-
relational graph, graph neural network

I. INTRODUCTION

Hyper-relational Knowledge Graphs (HKGs) allow equip-

ping the main triplet (h, r, t) with qualifiers {(qrk : qek)},
providing contextual information for (h, r, t). As the example
in Fig. 1, the fact (Albert Einstein, employer, University of
Zurich) with qualifiers {(start time: 1909), (end time: 1911)}
can be distinguished from the fact (Albert Einstein, employer,
Swiss Federal Institute of Intellectual Property) with qualifiers
{(start time: 1902), (end: 1909)}. Like KG, link prediction is a
fundamental task in HKGs that predicts missing facts based on

known ones. Recently, a series of methods extends the classic

KG embedding models from KGs to HKGs, e.g., m-TransH [1]

from TransH [2], GETD [3] from TuckER [4], StarE [5] from

CompGCN [6].

Despite the success of existing methods for HKGs, those

powerful path-based graph neural networks (GNNs) [7]–[9]

This work is supported by National Natural Science Foundation of China
(No. 92270106)

Fig. 1. Illustration of hyper-relational facts in HKGs.

that achieved outstanding performance on benchmark KGs

have not been explored on the more general HKGs. Different

from aggregating the information from neighbors [6], [10],

path-based GNNs leverage the information from the possible

paths between head and tail entities to predict the link. Inspired

by their success, the path-based idea may also work on

HKGs. For example, from a path a
employer−−−−−→ b

location−−−−→ c
together with qualifiers {(start time: 1909), (end time: 1911)}
as constraints of the employer relation, we can infer that
{(a,work location, c), (start time : 1909), (end time : 1911)}.
The a, b and c here can be any other entities and do not have
to be the same as those in Fig. 1,

However, it is a non-trivial task to extend existing path-

based GNNs to HKGs. Current path-based works can only

traverse and leverage the main triplets without qualifiers

in HKGs. Thus, they will miss the important information

stored in the qualifiers, like the working period in Figure 1.

Therefore, to leverage the capability of path-based GNNs

on HKGs, we propose a new model named Hyper Path-
based Graph Neural Network (HyperPGNN) in this paper.
More concretely, we propose a conversion method Hyper2Tri

to covert the topology of the hyper-relational facts into the

structures that can be incorporated with existing path-based

GNNs. After the topology conversion, we design a query

learner to encode qualifiers to further capture the information

1079

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00194

of qualifiers. Empirical results show that HyperPGNN achieves

good performance on benchmark HKG datasets under both

transductive and inductive settings.

II. PRELIMINARY

A. Link prediction in HKGs

A HKG can be defined as G = (V,R,D), where V is

the set of entities, R represents the set of relations and D
contains a set of hyper-relational facts. Each hyper-relational

fact consists of a main triplet (h, r, t) and a list of qualifiers
{(qrk : qek)}nk=1, where h, t, qek ∈ V and r, qrk ∈ R.
Link prediction on HKGs aims to predict missing head or

tail entities in the query hyper-relational fact {(?, r, t), (qrk :
qek)

n
k=1)} or {(h, r, ?), (qrk : qek)

n
k=1)}. For simplicity, we

use the notation of the tail prediction in the following part.

B. Path-based link prediction framework for KGs

For KGs, path-based link prediction framework infers rela-

tionships between two entities h and t through the paths con-

necting them. For example, from a path a
employer−−−−−→ b

location−−−−→ c
we can infer that (a, worklocation, c). Note that the entities
are not considered and only the relations are used to compute

the representation of entity pair (h, t).

C. Path-based Graph Neural Networks for KGs

The path-based GNN on KGs initializes the head entity’s

representation with a special indicator vector, while other

entities are initialized with zero vectors. The indicator vector

is typically selected to be the embedding of the query relation

to make the final output query-dependent. Messages only

depend on edge type and query relation embedding, unrelated

to entities. After message passing, the embedding at the tail

entity is read out and fed to a MLP to compute the probability

of query relation existence between them. With these design

of embedding initialization and message passing, only the

relations in the paths contribute to the final output, so these

GNNs can be considered as path-based frameworks.

Without using entity embeddings, path-based GNNs natu-

rally generalize to the inductive setting. They are proved to

be more expressive than the neighbor-based GNNs theoreti-

cally [11], and have better performance empirically [7]–[9].

However, without mechanisms to deal with qualifiers, existing

path-based GNNs cannot be directly applied to HKGs.

III. PROPOSED METHOD

We propose HyperPGNN to extend the path-based GNNs

to HKGs. The overall framework of the model is shown in

Figure 2. The challenges in designing a path-based neural

networks for HKGs are two-fold: (i) For the known facts,

expressing the information present in the qualifiers. (ii) For

the query facts, incorporating the qualifier constraints when

conducting link predictions. For the challenge (i), we propose

a Hyper2Tri conversion to utilize the qualifier information in

known facts (section III-A). For the challenge (ii), we design

a hyper query learner to incorporate the qualifiers in the query

(section III-B). Then, we adopt an advanced path-based GNN

to get an expressive representation of possible hyper-relational

facts (section III-C).

A. Hyper Facts Conversion

Intuitively, we may convert the qualifiers into collections of

triplets to facilitate path-based embedding with the restricting

information from statement qualifiers. Existing conversion

approaches, e.g., Star-to-Clique proposed by m-TransH [1],

generally treat qualifier entities equally with triplet entities.

They first reformulate the statement as a set of relation-entity

pairs P = ({rh : h}, {rt : t}, {qri : qei}ni=1), then form a

triplet (e1, r1-r2, e2), for every {r1 : e1}, {r2 : e2} ∈ P . It has
two major defects: 1) losing the semantic difference between

triplet entities and qualifier entities, 2) introducing too much

noise while expanding possible path formulation.

Thus, we propose the following Hyper2Tri (Hyper-

relation to Triangle relations) conversion. Given a statement

{(h, r, t), (qrk : qek)
n
k=1)}, every (qrk : qek) is converted to

two labeled edges (h, r-qrk, qek) and (t, r-qrk, qek). Here, r-
qrk is the new type of relation representing qualifier relation

qrk of relation r, and we denote its type as the pair of r and
qrk. See the Hyper Facts Conversion part of Figure 2 for an

illustration. In other words, a statement with n qualifiers will
be decomposed into 2n+1 triplets, including the main triplet
and 2n triplets derived from the qualifiers. Hence, the original
HKG is transformed into a knowledge graph that can be

processed by previous path-based link prediction frameworks

without losing information in qualifiers. Note that the newly

constructed triplets will form new paths together with existing

main triplets, providing more information about the qualifiers.

As shown in Figure 3, the proposed conversion produced new

paths related to the Argentina national association football
team, making it possible to infer that the nationality of Lionel
Messi is Argentina, and he won the 2022 FIFA World Cup.
Compared with Star-to-Clique [1] Hyper2Tri strengthens the

connection between the primal entity and qualifier entities

while weakening the bonds among qualifier entities. And

Hyper2Tri creates no new bonds between qualifier entities,

thus reducing information noise. Besides, another possible

design is to directly encode the hyper-relations in the paths and

using these representations to conduct predictions. However,

the performance will be limited without collecting path-based

information about qualifiers.

B. Hyper Query Learner

We design a hyper query learner to achieve the embedding

q of a given query {(h, r, ?), (qrk : qek)
n
k=1)} 1:

q ← γ(r,Wr ·
∑

k

φ(qrk,qek)), (1)

where qrk,qek and r are the learned embedding of qrk, qek
and r respectively. φ(·) is the function to composite the

embedding of qualifier keys and qualifier values, and can be

any function of the form IRn × IRn → IRn. We sum the

1We use the same notation for the query facts as known facts here to
maintain symbol simplicity.

1080

Fig. 2. An overview of our pipeline

composition results of all qualifiers to get the embedding of

qualifiers, and then transform with a relation-specific matrix

Wr. γ(·) is another composition function.
In this way, we integrate the information from the qualifiers

included in the query into the embeddings, enabling the final

prediction results to better satisfy the constraints imposed by

the qualifiers. Note that the above process does not need the

embedding of the head entity h , which is crucial for applying
to the inductive setting.

C. Path-based GNN

Given a HKG G, we convert it to a knowledge graph G̃
as described in Section III-A. For a query {(h, r, ?), (qrk :
qek)

n
k=1)}, we initialize the representation on entity h with

the hyper query embedding q obtained in Equation 1. The

representations of other entities are initialized with zero vec-

tors. Then the initial representations are fed into a Path-based

GNN. The two modules proposed above can be integrated

with any path-based methods designed for KGs. We adopt

the NBFNet [7] to compute the final scores of all candidates.

IV. EXPERIMENT

A. Dataset

Experiments are conducted under both transductive and in-

ductive settings. For the transductive setting, we use Wikipeo-

ple [12], JF17K [13], and WD50K [5]. For the inductive

setting, we use WP-IND, JF-IND, and MFB-IND [14]. In a

transductive setting during testing, all the entities and relations

in the main triplet and qualifiers are limited to those that have

occurred in the training set. However, in the inductive setting,

Fig. 3. Hyper2Tri will form new paths for qualifiers

the model is required to predict query facts that may involve

new head entities and new tail entities as potential candidates.

B. Experimental Setup

a) Base models: For the transductive setting, We

compare the proposed method with StarE [5], Hy-

Transformer [15], GRAN [16] and QUAD [17]. For the

inductive setting, we compare our results with GMPNN [14].
b) Metric: We report the mean reciprocal ranking(MRR)

and Hit@1,10 for the transductive setting. For inductive set-

ting, we report MRR and Hit@1,3 to keep in line with existing

work. The reported results are averaged over five runs.
c) Network Details: For the hyper query learner, we use

the rotate function [18] as the φ(·) in Equation 1 and γ(·)
is a weighted sum function with the weight of qualifiers is

set to 0.4. We set the embedding size to be 32. For the path-
based GNN, we use a GNN with 6 layers. We use the DisMult
function proposed by DisMult [19] as the message function

and the pna [20] for aggregation. A two-layer MLP with a

hidden layer of size 32 is used to compute the final scores.
d) Training: We train the model in 1-N setting with

binary cross entropy loss. We employ Adam to train the model

for at most 1000 epochs, the learning rate is 0.001. We use a
NVIDIA GTX 3090 GPU for experiments.

C. Performance Comparison

Table I and Table II show the performance comparison

in the transductive setting and inductive setting respectively.

The results of the baselines were gathered from the original

literature, and ”-” indicates the results were not reported. When

comparing with G-MPNN, the original model also predicts of

values in qualifiers, we retrain the model to only predict head

and tail entities and get slightly better results. It can be seen

that our model consistently outperforms the state-of-the-art.

D. Ablation Study

We compare FullModel with the following variants. (i)
BaseModel eliminates the Hyper2Tri, dropping qualifiers in

1081

TABLE I
COMPARISON ON TRANSDUCTIVE DATASETS. THE BEST RESULTS ARE IN BOLD. THE SECOND-BEST RESULTS ARE UNDERLINED

Method
WD50K WikiPeople JF17K

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10
m-TransH - - - 0.063 0.063 0.300 0.206 0.206 0.463
StarE 0.349 0.271 0.496 0.491 0.398 0.648 0.574 0.496 0.725

Hy-Transformer 0.356 0.281 0.498 0.501 0.426 0.634 0.582 0.501 0.742
GRAN-hete - - - 0.503 0.438 0.620 0.617 0.539 0.770
QUAD 0.348 0.270 0.497 0.466 0.365 0.624 0.582 0.502 0.740

QUAD(Parallel) 0.349 0.275 0.489 0.497 0.431 0.617 0.596 0.519 0.751
HyperPGNN 0.362 0.283 0.505 0.501 0.430 0.648 0.657 0.585 0.771

TABLE II
COMPARISON ON INDUCTIVE DATASETS, THE BEST RESULTS ARE IN BOLD. THE SECOND-BEST RESULTS ARE UNDERLINED

Method
WP-IND JF-IND MFB-IND

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10
G-MPNN-sum 0.010 0.051 0.185 0.240 0.188 0.331 0.292 0.203 0.479
G-MPNN-mean 0.093 0.029 0.189 0.146 0.084 0.221 0.242 0.151 0.416
G-MPNN-max 0.160 0.093 0.293 0.224 0.159 0.315 0.268 0.191 0.283
HyperPGNN 0.312 0.262 0.419 0.463 0.412 0.487 0.507 0.432 0.531

TABLE III
ABATION STUDY IN TRANSDUCTIVE SETTING, HERE WE USE H@10 AS

ABBREVIATION FOR HIT@10 TO SAVE SPACE

Method
WD50K WP JF17K

MRR H@10 MRR H@10 MRR H@10
BaseModel 0.153 0.295 0.251 0.468 0.341 0.570
NoConversion 0.203 0.345 0.322 0.477 0.419 0.619
Star2Clique 0.297 0.425 0.416 0.508 0.543 0.748

NoQueryLeaner 0.276 0.462 0.383 0.471 0.597 0.763
FullModel 0.362 0.505 0.499 0.648 0.657 0.771

known facts, and removes the Hyper Query Learner, relying

solely on main relation r for the query embedding. (ii)

NoConversion removes the Hyper2Tri. (iii) Star2Clique sub-
stitute the Hyper2Tri with Star2Clique. (iv) NoQueryLeaner
elimates Hyper Query Learner.

Table III presents the results of the variants in transductive

setting. Comparing the FullModel, the NoConversion and the

Star2Clique, we show the efficiency of the Hyper2Tri conver-

sion. Comparing the FullModel and the No queryLearner, we

show the importance of the hyper query learner. Comparing

the Basemodel with Noconversion and NoQueryLearner, we

show the two module contribute to performance independently.

V. CONCLUSION

We introduce a Hyper2Tri conversion and a hyper query

learner to incorporate information of qualifiers into path-based

link prediction model for HKGs. Tests on various datasets

show superior performance in both inductive and transductive

settings.

REFERENCES

[1] J. Wen, J. Li, Y. Mao, S. Chen, and R. Zhang, “On the representation and
embedding of knowledge bases beyond binary relations,” arXiv preprint
arXiv:1604.08642, 2016.

[2] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 28, no. 1, 2014.

[3] Y. Liu, Q. Yao, and Y. Li, “Generalizing tensor decomposition for n-
ary relational knowledge bases,” in Proceedings of the web conference
2020, 2020, pp. 1104–1114.

[4] I. Balažević, C. Allen, and T. M. Hospedales, “Tucker: Tensor factoriza-
tion for knowledge graph completion,” arXiv preprint arXiv:1901.09590,
2019.

[5] M. Galkin, P. Trivedi, G. Maheshwari, R. Usbeck, and J. Lehmann,
“Message passing for hyper-relational knowledge graphs,” arXiv preprint
arXiv:2009.10847, 2020.

[6] S. Vashishth, S. Sanyal, V. Nitin, and P. Talukdar, “Composition-
based multi-relational graph convolutional networks,” arXiv preprint
arXiv:1911.03082, 2019.

[7] Z. Zhu, Z. Zhang, L.-P. Xhonneux, and J. Tang, “Neural bellman-ford
networks: A general graph neural network framework for link predic-
tion,” Advances in Neural Information Processing Systems, vol. 34, pp.
29 476–29 490, 2021.

[8] Z. Zhu, X. Yuan, L.-P. Xhonneux, M. Zhang, M. Gazeau, and J. Tang,
“Learning to efficiently propagate for reasoning on knowledge graphs,”
arXiv preprint arXiv:2206.04798, 2022.

[9] Y. Zhang, Z. Zhou, Q. Yao, X. Chu, and B. Han, “Adaprop: Learning
adaptive propagation for graph neural network based knowledge graph
reasoning,” in Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2023, pp. 3446–3457.

[10] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in European Semantic Web Conference, 2018, pp. 593–607.

[11] M. Zhang, P. Li, Y. Xia, K. Wang, and L. Jin, “Labeling trick: A theory
of using graph neural networks for multi-node representation learning,”
arXiv preprint arXiv:2010.16103, 2020.

[12] S. Guan, X. Jin, Y. Wang, and X. Cheng, “Link prediction on n-ary
relational data,” in Proceedings of the 28th International Conference on
World Wide Web (WWW’19), 2019, pp. 583–593.

[13] P. Rosso, D. Yang, and P. Cudré-Mauroux, “Beyond triplets: hyper-
relational knowledge graph embedding for link prediction,” in Proceed-
ings of the web conference 2020, 2020, pp. 1885–1896.

[14] N. Yadati, “Neural message passing for multi-relational ordered and
recursive hypergraphs,” in Advances in Neural Information Processing
Systems (NeurIPS) 33. Curran Associates, Inc., 2020.

[15] D. Yu and Y. Yang, “Improving hyper-relational knowledge graph
completion,” arXiv preprint arXiv:2104.08167, 2021.

[16] Q. Wang, H. Wang, Y. Lyu, and Y. Zhu, “Link prediction on n-ary rela-
tional facts: A graph-based approach,” arXiv preprint arXiv:2105.08476,
2021.

[17] H. Shomer, W. Jin, J. Li, Y. Ma, and J. Tang, “Learning rep-
resentations for hyper-relational knowledge graphs,” arXiv preprint
arXiv:2208.14322, 2022.

[18] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, “Rotate: Knowledge graph
embedding by relational rotation in complex space,” arXiv preprint
arXiv:1902.10197, 2019.

[19] B. Yang, S. W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities
and relations for learning and inference in knowledge bases,” in Pro-
ceedings of the International Conference on Learning Representations
(ICLR) 2015, 2015.

[20] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković, “Principal
neighbourhood aggregation for graph nets,” Advances in Neural Infor-
mation Processing Systems, vol. 33, pp. 13 260–13 271, 2020.

1082

