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Abstract—Molecular activities in vivo, such as protein-
peptide binding residues, contribute to understanding disease
mechanisms and discovering targeted drugs, but are often
limited by the cost of wet experiments. Therefore, this paper
proposes a Pre-trained module-based Fourier Network inspired
by Fourier Neural Operators for predicting protein-peptide
binding residues (PepPFN). First, the model captures high-
latent protein representation and implicit information through
Bert and ESM, respectively. Subsequently, the contrastive
learning module is used to optimize the representation of
binding residues to mitigate the effects of data diversity.
Furthermore, the order and frequency information of the
residual is obtained by strengthening the model with Fourier
network. Comprehensive analysis of multiple tasks and protein
visualization results demonstrates that PepPFN outperforms
state-of-the-art methods on multiple performance metrics.
Datasets and the source code is available at
https://github.com/xueleecs/PepPFN.git.

Keywords—protein-peptide binding residues, Pre-trained
module, Fourier network, deep learning

L

Proteins, essential molecular entities within living
organisms, intricately engage in a myriad of biological
processes [1]. Peptides are the building blocks of proteins[2]
and protein-peptide interactions[3] is one of the most
important interactions [4], and the identification of protein-
peptide binding residues is necessary to understand the
mechanism of protein function and discover new drugs[5].
However, owing to the small size [6], weak affinity [7] and

INTRODUCTION

* Corresponding authors: Na Kang; Tao Song

This work was supported by National Key Research and Development Project
of China (2021 YFA1000103, 2021YFA1000102), National Natural Science
Foundation of China (Grant Nos. 61873280, 61972416, 62272479,
62202498), Taishan Scholarship (tsqn201812029), Foundation of Science
and Technology Development of Jinan (201907116), Shandong Provincial
Natural Science Foundation(ZR2021QF023), Fundamental Research Funds
for the Central Universities (21CX06018A), Spanish project PID2019-
106960GB-100, Juan de la Cierva IJC2018-038539-1.

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00195

1083

Qingdao, China
tsong@upc.edu.cn

strong flexibility [8] of peptides, determining the structure of
protein-peptide complexes becomes challenging. This
complexity not only complicates the identification of protein-
peptide binding residues through experimental methods but
also escalates the time and cost of experiments [9]. Therefore,
it is urgent and important to develop an effective method for
predicting protein-peptide binding residues.

Currently, computational methods for predicting protein-
peptide binding residues in prediction tasks are categorized
into two groups, structure-based and sequence-based
approaches. Structure-based methods like PepSite [10],
SPRINT-Str [11], and Peptimap [12] typically characterize
proteins based on structural properties such as Accessible
Surface Area (ASA) and Secondary Structure (SS). On the
other hand, sequence-based methods encompass SPRINT-Seq
[13], PepBind [14], Visual [15], PepNN-Seq [16], and
PepBCL [17]. Most of these methods tend to utilize amino
acid composition information, physicochemical properties,
and evolutionary information to describe proteins[18], and
often perform feature extraction in a single dimension, which
limits the accuracy of prediction. This is related to the
characterization of proteins and the feature extraction network
of models, as the singularity of protein embedding methods
makes it difficult to fully reflect protein characteristics.
Finally, the scarcity of positive samples in imbalanced
datasets imposes stricter requirements on model performance.

To address these issues, we here propose a pre-trained
module-based Fourier Network, called PepPFN, which makes
full use of Fourier layers to extract multiple dimensions of
information. Specially, this model utilizes pre-trained protein
language models (Bert and ESM) to encode residues into
high-latent representations, encompassing various aspects
such as protein structure. Subsequently, the introduction of a
contrastive learning module enhances adaptive learning of
binding residue representations, ensuring high-quality
representations while making optimal use of available
samples. Following that, the Fourier network is employed to



extract time-domain and spectral-domain features, capturing
order and frequency information of residues. Finally, based on
experimental results and protein visualization assessments,
PepPFN demonstrates its performance advantage on the
datasets.

II. MATERIALS AND METHODS

A. Datasets

To evaluate the performance of PepPFEN in protein-peptide
binding residues prediction, we selected 2 benchmark
datasets, which are the same as the other computational
methods, namely Dataset 1 and Dataset 2 (TABLE I) [17]. For
a fair comparison, we split Dataset 1 and Dataset 2 following
the general method for model training and testing,
respectively. In addition, considering the similarity of protein-
protein binding sites to this task, it was also validated on this
task (dataset 3) [19].

TABLE L. SUMMARY OF DATASETS
Datasetl Dataset2 Dataset3
Datasets
TRI154° | TE125" | TR640° | TE639° | TR843" | TE164"
b
NO% s 125 640 639 843 | 164
proteins
NO' 276822 | 30870 | 157362 | 150330 | 225302 | 33 675
residues
No.
binding | 15030 1719 8259 8490 32253 6096
residues
No. non-
binding | 261792 | 29 151 | 149103 | 141 840 | 193049 | 27 585
residues

“(TR: training set; TE: testing set)
®(No.: number of)

B. Architecture of the proposed method
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Fig. 1. Flowchart of the proposed PepPFN.

The model framework of PepPFN (Fig. 1) consists of four
modules: the embedding module, feature extraction module,
contrastive learning module, and output module. In the
embedding module, the protein sequence employs Bert and
ESM to obtain a high-latent representation vector, and then the
obtained high-latent representation vector is input into the
Fourier layer for feature extraction. At the same time, the
initial residual connection is added to reduce information loss.
Next, in the contrastive learning module, the model is
optimized by calculating the contrastive loss between two
training samples, so as to make the discrimination more
accurate. Finally, the output module applies the fully
connected layer to calculate whether each residue has peptide
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binding ability, so as to complete the prediction task. More
details of the four modules are described below.

C. Embedding module

The Embedding module employs two pre-trained protein
models, Bert and ESM, to capture structural and sequence
information from residues, embedding biological sequences
into high-latent vectors to enhance interpretability and
richness [20]. The pre-trained model is trained based on a
large number of protein sequences, and the original protein is
first divided into multiple sequences according to a fixed
maximum length. The input embeddings are then the sum of
token embeddings and position embeddings with learnable
weights. To explore token relationships, a percentage of input
tokens are randomly masked, and the model is continuously
trained to strengthen predictions for these masked tokens,
accomplishing both masked language modeling and next
sentence prediction tasks. Specifically, the pre-trained BERT
model, ProtBert-Big Fantastic Database (BFD) [21,22], is
trained on general domain Bert, utilizing a large amount of
unlabeled protein data from BFD, encompassing 2.1 billion
protein sequences for pre-training. ESM [23] is pre-trained on
250 million protein data, using distributed context vectors as
protein representations. The resulting representation space
demonstrates a multiscale organization, capturing long-range
homology features extending from amino acid biochemical
properties to proteins. Moreover, information about secondary
and tertiary structure is embedded in the representation and
can be identified through linear projection.

Since pre-trained models can effectively obtain
interpretable data representations, this paper introduces Bert
and ESM into PepPFN. The PepPFN performs fine-tuning on
small datasets through pre-trained models to complete the
adaptation of downstream tasks. Specifically, the PepPFN
divides the protein sequence in the protein-peptide binding
residues task into a fixed length, and then inputs it into a pre-
trained model with parameters. After adjusting the
parameters, it outputs an interpretable fusion representation at
the biological word level.

D. Feature extraction module

The feature extraction layer mainly utilizes the Fourier
layer, which is inspired by the Fourier neural operator [24].
The Fourier neural operator can break through the traditional
neural network to learn the mapping between finite
dimensional spaces, and can take care of learning the mapping
relationship between function spaces. Operator learning can
be viewed as an image-to-image problem, and Fourier layers
can be viewed as an alternative to convolutional layers. The
potential high-latent vector of each sequence obtained by the
Embedding module can be regarded as a tractable vector, and
the global information is obtained by virtue of the property of
invariant resolution of the Fourier layer, rather than the local
information limited to the CNN network. Specifically, as
shown in Feature Extraction Module in Fig. 1, the process
starts with the input vector v. On one hand, Fourier
transformation £ is applied to v. First, the Fourier transform /'
is applied to process the input vector. This transformation will
decompose the input signal into components with different
frequencies. Next, a linear transformation R is applied to the
lower Fourier patterns and the higher patterns are filtered out,
which helps to retain important information at lower
frequencies. Then, the inverse Fourier transform £ is applied
to restore the processed signal to a time-domain
representation. On the other hand, a local linear



transformation W is applied in order to further extract features.
Finally, the activation function is used to obtain a high-
dimensional representation of the residues. The application of
the Fourier network in the feature extraction module
transforms the order of residues into the time domain, while
the frequency is mapped into the spectral domain. The Fourier
transform (Eq 1) and the inverse Fourier transform (Eq 2) can
be converted to each other under appropriate conditions.

for=[ reerea @

Where ¢ is any real number and the domain is the
frequency domain, which we consider here to be the
frequency of residues.

feo) =7 flple?™9xdg )

Where x is any real number and the domain is the time

domain, which we consider here to be the order of residues.

E. Contrastive learning module

Supported by data augmentation techniques, the
acquisition of a large number of negative samples has become
feasible, sparking widespread applications of contrastive
learning in various domains [25]. In order to strengthen the
constraint on negative samples, a contrastive learning module
based on supervised learning is applied in this work, which
can make the representations of the same class closer in the
spatial mapping, while the representations of different classes
are further away. The advantages of contrastive learning in
this task have been demonstrated [17]. Then, a contrast loss
Leonrast 18 constructed to calculate the loss of imbalanced
datasets to distinguish samples from the same class and
different classes. For different sequence lengths, contrastive
learning of residues is carried out by dividing the sequence
into two parts in turn, and each residue can be more
discriminative by minimizing the loss. For a pair of residues
in a batch representing 7, r», the loss function is defined as
follows.

D(ry, 1) =1 — cosine < ry,1, >

A3)

_ 4=9)D(ryry)?
2

+ }"{Dmax_D(7’1:7'2)}3 (4)

Leontrast (11, 12, Y) 2

And where y is calculated using the formula (5).

y = cat(L(ODLW)) for i in o, -1) ©)

Here, D(r;, r;) represents the distance between two
residues (r;, r3), and Dye is obtained when two residues
belong to different classes, which is equal to 2. In order to
focus on minority categories, pairs of different categories are
given a higher power of 3.

len(ry)
2

F. Output module

The output module is able to classify the latent vector after
the Feature extraction module. The output module is
composed of fully connected layers, and the number of nodes
is 64, 32, 16, 2 respectively. Assuming that the vector output
through the Fourier layers is z, and the calculation formula is
as follows. At the same time, in order to improve the
performance of the model, the loss function designed in this
paper includes cross-entropy loss in addition to contrastive
learning loss.
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y = Linear(relu(z))

()
(M

Lioss = Leg + Leontrast
G. Evaluation metrics

In addressing the significant imbalance between positive
and negative samples in the dataset, five indicators commonly
used in imbalanced classification tasks are selected, which are
Sensitivity, Specificity, Precision, Matthews Correlation
Coefficient (MCC), and AUC. The formulas are as follows.
Where TP (True Positive) is the correct prediction of binding
residues in the sample, TN (True Negative) is the correct
prediction of non-binding residues, FP (False Positive) is the
prediction of non-binding residues in the sample as binding
residues, and TP (true positive) is the prediction of binding
residues. False Negative (FN) is the prediction of binding
residues as non-binding residues. The larger the value of the
above evaluation index, the better the performance of the
method.

TP

Sensitivity = . (8)
Specificity = % ()
Precision = TPT:)FP (10)

Mce TPXTN-FPXFN a1

= /(TP+FP)(TP+FN)(TN+FP)(TN+FN)

III. RESULT

A. Comparison with existing methods

To evaluate the performance of PepPFN, it is compared
with nine existing methods, including PepSite [10], Peptimap
[12], SPRINT-Seq [13], SPRINT-Str [11], PepBind [14],
Visual [15], PepNN-Seq [26], PepBCL [17], SPPPred [27].
Out of the nine methods evaluated, six (SPRINT-Seq, Visual,
PepNN-Seq, PepBCL, SPPPred) are sequence-based models,
while the remaining three (PepSite, Peptimap, and SPRINT-
Str) are structure-based. We conduct comparative experiments
on two benchmark datasets TE125 and TE639, respectively.

TABLE II. PERFORMANCES OF THE PROPOSED PEPPFN MODEL AND
THE PREVIOUS METHODS ON THE TE125 TEST SET

Methods | Sensitivity | Specificity | Precision | MCC AUC
PepSite 0.180 0.970 - 0.200 0.610
Peptimap 0.320 0.950 - 0.270 0.630
SPRINT-Seq 0.210 0.960 - 0.200 0.680
SPRINT-Str 0.240 0.980 - 0.290 0.780
PepBind 0.344 - 0.469 0.372 0.793
Visual 0.670 0.680 - 0.170 0.730
PepNN-Seq - - - 0.278 0.805
PepBCL 0.315 0.984 0.540 0.385 0.815
SPPPred 0.315 0.959 - 0.230 0.710
PepPFN 0.195 0.992 0.600 0.322 0.813

The comparison results are shown in TABLE II and III,
respectively. At the same time, considering the similarity
between protein-protein binding sites and this task, the
performance evaluation is also carried out on the TE164
dataset, and the results are shown in Table IV. In the tables,
the boldface is the highest value of the evaluation metric in the
table. Since the source code of most methods is not directly



available, in order to ensure the fairness of the results, the
results of the methods compared on the three datasets are
directly from their research.

Table I shows the evaluation results of PepPFN in TE125.
PepPFN achieves 0.992 specificity, 0.600 precision, and 0.813
AUC. Compared with other methods, PepPFN shows
advantages in specificity, and precision. We observe similar
results on the TE639 test set to the TE125 test set, with
improved specificity, precision, and AUC compared to
previous methods. The results of TE639 test set are shown in
TABLE III, and the sensitivity, specificity, precision, MCC
and AUC values are 0.127, 0.996, 0.680, 0.307 and 0.813,
respectively. Although the PepPFN method does not perform
the best in all metrics in both test sets, the overall performance
is better than the other methods, and these advantages prove
the good performance of the PepPFN model. This can be
attributed to the embedding method being pretrained on a
comprehensive set of protein sequences, covering information
such as protein structure and function. Furthermore, the
inclusion of the contrast module enhances the model's ability
to address imbalanced data.

TABLE IIL PERFORMANCES OF THE PROPOSED PEPPFN MODEL AND
THE PREVIOUS METHODS ON THE TE639 TEST SET
Methods | Sensitivity | Specificity | Precision | MCC AUC
PepBind 0.317 - 0.450 0.348 | 0.767
PepNN-Seq - - - 0.251 0.792
PepBCL 0.252 0.983 0.470 0.312 0.804
PepPFN 0.127 0.996 0.680 0.307 0.813

To further illustrate the robustness of the PepPFN model
and its performance advantage on imbalanced data, we added
the task of protein-protein binding sites prediction. TABLE IV
shows the prediction results of PepPFN in protein-protein
binding sites. Compared with other methods [28], PepPFN
achieves the Precision of 0.383 and AUC of 0.689, which
reaches the maximum value. The value of MCC is 0.193,
which is the second highest value. Since the comparison
method did not calculate Sensitivity and Specificity, we only
compared the same three indicators of Precision, MCC and
AUC.

TABLE IV. PERFORMANCES OF THE PROPOSED PEPPFN MODEL AND
THE PREVIOUS METHODS ON THE TE164 TEST SET
Methods | Precision MCC AUC
SPPIDER 0.253 0.090 0.528
PSIVER 0.216 0.043 0.554
CRFPPI 0.280 0.121 0.608
SSWRF 0.266 0.103 0.606
SCRIBER 0.327 0.179 0.657
DLPred 0.338 0.192 0.672
DELPHI 0.352 0.209 0.685
PepPFN 0.383 0.193 0.689

B. Ablation experiments of the model

To investigate the effectiveness of each component in the
PepPFN model, a series of ablation experiments are conducted
based on TE125 (TABLE V). Due to the leading advantage of
the pre-trained model in the field of protein representation,
this part conducts the ablation experiment based on the pre-
trained model. The methods for ablation experiments are Bert
and methods with contrastive learning methods, including
Bert (Bert+CL), ESM (ESM+CL), Bert combined with ESM
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(Bert+ESM+CL), and models with different Fourier layers
added (Bert+tESM+CL+FNX, X refers to 3, 4, and 5). The two
methods of Bert and Bert+CL are carried out under the same
hyperparameters, and the values in the table show that the
effect of Bert without contrastive learning is not significant.
This suggests that the loss has a substantial impact on the
model, further confirming the effectiveness of the loss
function. The results of Bert+CL, ESM+CL, and
Bert+ESM+CL demonstrate the necessity of Bert and ESM,
affirming the complementary of the two pre-training models
with high-latent features. The results of exploring the
influence of different Fourier layers on the model
(Bert+ESM+FNX) show that the PepPFN (Bert+ESM+FN4)
model achieves the best performance.

TABLE V. PERFORMANCES OF THE DIFFERENT COMPONENT IN
PEPPFN
Methods | Sensitivity | Specificity | Precision | MCC AUC
Bert 0.176 0.877 0.078 0.037 0.550
Bert+CL 0.606 0.776 0.137 0.230 0.764
ESM+CL 0.639 0.799 0.158 0.240 0.785
Bert+ESM
+CL 0.240 0.980 0.417 0.287 0.766
BerttESM
+CLAFN3 0.327 0.977 0.458 0.357 0.811
PepPFN 0.200 0.992 0.600 0.322 0.813
Bert+tESM
+CLAFN5 0.204 0.990 0.550 0.313 0.804

C. Case study

In order to visually show the ability of the model to predict
protein-peptide binding residues, we randomly selected three
protein sequences (pdbID: 1dpuA, 1jmgA and 1kugA) from
TE125 for prediction. The visualized predictions are shown in
Fig. 2, where gray means non-binding residues and blue
means binding residues.

Fig. 2. 3D structure visualization of three proteins (pdbID: 1dpuA, 1jmgqA
and lkugA)

1dpuA
Experimental:
Predicted:

...SSIKQAVDFLSNEGHIYSTVDDDHFKSTDAE
... SSIKOAVDFLSNEGHIYSTVDDDHFKSTDAE

1jmqA
Experimental: ... TSSGQRYFKNHIDQTTTWQDPRKAMLSQM
Predicted:  ...TSSGQRYFKNHIDQTTTWQDPRKAMLSQM

1kugA

Experimental:... FARNTIGW...DHSSKVFMVAVTMTHELGHN

LGMEHDDKDKCKCTTCIMSAVISDKQ...
...FARNTIGW...DHSSKVFMVAVTMTHELGHN

LGMEHDDKDKCKCTTCIMSAVISDKQ...

Predicted:

Fig. 3. Comparing the experimental data of residues with the prediction of
PepPFN (with pdbID 1dpuA, 1jmqA and 1kugA)



Fig. 2A-C shows the actual binding residue obtained from
biological experiments and Fig. 2D-F shows the residues
predicted by PepPFN. We also present from the unfolded
sequence(Fig. 3). The orange residues indicate the binding
residues obtained in the experiments, while the green residues
indicate the binding residues predicted by PepPFN. As can be
seen from the protein visualization results, the binding
residues predicted by the proposed method are very similar to
the actual binding residues. In particular, compared with
discrete regions, the model has more advantages in continuous
regions of binding residues, which is also more consistent with
the law that protein binding regions tend to be continuous and
concentrated.

IV. CONCLUSION

In this study, we construct a pre-trained module-based
Fourier Network, PepPFN, which can effectively predict
binding and non-binding residues in protein sequences. The
model employs two high-performing pre-training models for
protein language to capture the essence of proteins, producing
interpretable vectors with high-latent representation vectors of
structural, functional, and biological characteristics.
Additionally, it is demonstrated that different pre-training
models emphasize distinct aspects and the Bert and ESM
models with embedded modules can complement high-latent
features. The added contrastive learning can alleviate the
problem of data imbalance, so that samples from the same
class have more similar representations, while samples from
different classes have more different representations, making
the model discrimination more biased. And the Fourier layer
network can complete the multi-dimensional extraction of
residue features to reduce the loss of information.

The reliability of PepPFN model has been confirmed
through visual comparisons of randomly selected proteins.
Also same time, in order to show the generality of the model,
we also predict the protein-protein binding site task and
achieve good results. Compared with other methods, although
PepPFN is not the best in all indicators, the comprehensive
evaluation performance is still in a better position. This may
be attributed to the fact that the pre-trained model is built on
the protein language models, and the data used by the pre-
trained model is more biased towards protein sequences,
which does not fully reflect the advantage of short peptides.
At the same time, the prediction of protein-peptide binding
residues involves an imbalanced sample problem, and a large
number of negative samples can easily lead to false positive
prediction results. In the future, employing fine-tuning
methods can align the generated representations with
downstream tasks more effectively, thereby improving the
accuracy of those tasks.
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