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Abstract—In multi-agent reinforcement learning, achieving ef-
fective exploration for agents remains challenging due to the non-
stationarity of the environment and discrepancies between local
and global information. In this paper, we propose a curiosity-
driven phased continuous exploration method, termed PCE. We
recognize that agents in different learning phases possess distinct
knowledge and policies, allowing them to learn diverse knowledge
and experiences from the same states. Therefore, we divide the
training process of agents into different phases, employing a
curiosity-driven method to explore independently within each
phase. Simultaneously, addressing the characteristic of inconsis-
tent local and global information in multi-agent systems, we strike
a balance between exploration from local and global perspectives.
Finally, we evaluate the proposed method in the popular multi-
agent test task, StarCraft II. The results indicate that the method
excels in enhancing the exploration capabilities of agents.

Index Terms—Multi-agent systems, multi-agent reinforcement
learning (MARL), exploration.

I. INTRODUCTION

In recent years, with the continuous development of deep

reinforcement learning, significant progress has been made in

multi-agent reinforcement learning (MARL). Indeed, MARL

shows great promise in addressing various real-world problems

involving multiple agents, demonstrating notable performance

in areas such as traffic control [1], robot coordination [2],

and game AI [3]. In MARL, multiple agents learn policies

within the same environment, where the dynamic changes in

the environment are influenced by all agents. Early MARL

research tended to directly apply single-agent reinforcement

learning algorithms to multi-agent scenarios [4], with each

agent treating others as part of the environment and learning

independently. However, this approach suffers from apparent

non-stationarity issues.
To address these issues, the paradigm of centralized training

with decentralized execution (CTDE) [5] has become popular
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in recent years. This paradigm allows agents to leverage

additional global information during training but requires only

local information during execution. For example, algorithms

such as multi-agent deep deterministic policy gradient (MAD-

DPG) [6], monotonic value function factorization (QMIX) [7],

and multi-agent proximal policy optimization (MAPPO) [8]

follow the CTDE paradigm and exhibit excellent performance.

However, despite their impressive performance, these methods

all employ classic noise-based exploration strategies, which

tend to be slow and may lead to inadequate exploration and

suboptimal performance [9].

In order to achieve effective exploration in MARL, some

recent relevant works have been proposed. For instance,

MAVEN [10] introduces a hierarchical control strategy by

encouraging exploration by adjusting the agent’s behavior on

a shared latent variable controlled by a hierarchical policy.

Wang [11] measures the influence of an agent’s behavior

on the actions of other agents and promotes coordinated

exploration by encouraging agents to access critical states.

In addition, curiosity is an exploration mechanism based on

intrinsic motivation, which usually uses the prediction error

of the future state to measure novelty and serves as a reward

signal to encourage the agent to explore. Its essence is to

measure the agent’s familiarity with the state and encourage

the agent to explore unfamiliar states. For example, EMC [12]

adopts the prediction error of individual Q-values as an intrin-

sic reward for coordinated exploration and utilizes episodic

memory techniques to leverage explored information to facil-

itate policy training. Although these works achieve promising

performance, they evaluate exploration metrics by considering

the training process as an indivisible whole. However, it is

important to note that the agent is in a continuous learning

process and has different policy networks at different learning

phases. These policy networks may lead to different behavioral

decisions when facing the same scenario, resulting in distinct

outcomes. Therefore, the knowledge and experience that an

agent can vary depending on the phase in which it learns from

a given state.

For instance, when a one-year-old human faces a book, they
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only learn the behavior of flipping through pages. At the age

of five, facing the same book, the individual may search for

interesting pictures, learning the behavior of looking for cap-

tivating images. By the age of fifteen, facing the same book,

the person can read the text, acquiring knowledge from its

contents. Therefore, during the learning process of the agent,

even though certain states have been explored previously, due

to the limited cognitive level of the agent at that time, it did

not fully explore all the knowledge in those states. With the

continuous updating of the policy network, the agent now

has the ability to acquire new knowledge from past learned

states. Thus, for the same state in a multi-agent environment,

we should also give it certain exploration at different phases

to encourage the agents to learn new knowledge from it.

Specifically, when we evaluate the novelty of a state, we

will not only consider the agent’s familiarity with it but also

consider the time dimension, that is, whether the state has been

fully explored recently.

Based on the above considerations, this paper proposes

a curiosity-driven phased continuous exploration method to

encourage the agent to fully explore the environment and

promote the learning of the agent’s policy. First, we divide

the training process into different phases and calculate the

state novelty based on the agent’s familiarity with the state

features within each phase respectively. Then, we balance the

exploration of both local and global perspectives in response

to the characteristic of inconsistency between local and global

information in multi-agent systems. Finally, we evaluate it in

the popular multi-agent testing platform StarCraft II micro-

management benchmark tasks. The results are compared with

other traditional methods and demonstrate the effectiveness of

the proposed method.

II. BACKGROUND

In this section, we first introduce Markov decision processes

in multi-agent reinforcement learning. Then, we introduce

Random Network Distillation, an exploration method for re-

inforcement learning based on prediction errors. Finally, we

also discuss the baseline algorithms used in this paper.

A. Problem Formulation

This paper investigates fully cooperative multi-agent rein-

forcement learning tasks and formulates them as decentral-

ized partially observable markov decision processes (Dec-

POMDP). A Dec-POMDP can be defined as a tuple G =
〈S,A, P, r,Ω, O, n, γ〉. Here, S is the finite state space of the

environment. For each time step t, every agent i ∈ N ≡
{1, . . . , n} chooses an action ai ∈ A which forms the joint

action a ∈ A ≡ An. P (s′|s,a) : S×A×S → [0, 1] is the state

transition function. r(s; a) : S×A → R is the reward function

shared by all agents and γ ∈ [0, 1) is the discount factor. In

the present work, partially observable settings are considered,

where an agent only has access to an observation oi ∈ Ω drawn

according to observation function O(s, i) : S × N → Ω, not

its true state si. The action-observation history for an agent i
is τ i ∈ T ≡ (Ω × A)∗ on which it can condition its policy

πi(ai|τ i) : T × A → [0, 1]. The policies of all agents form a

joint policy π = (π1, · · · , πN ), and the goal is to maximize

the expected total reward:

J (π) � Eρ0,π,P [
∞∑
t=0

γtrt]. (1)

where ρ0 represents the initial state distribution, and s0 ∼
ρ0(s0), st+1 ∼ P (·|st, at), at ∼ π(st).

B. Random Network Distillation

Random Network Distillation (RND) [13] is a curiosity-

driven method based on prediction error used in single-agent

reinforcement learning to enhance the exploration efficiency of

algorithms. The core idea of RND is to initialize two neural

networks to generate state features: one is the target network f ,

and the other is the predictor network f̂ . After random initial-

ization, f remains fixed, while f̂ learns to reduce the prediction

error in comparison to the target network. Consequently, states

that are frequently visited have small prediction errors, while

states that are infrequently visited exhibit larger prediction

errors. The prediction error values are then employed as intrin-

sic rewards for agents to enhance the exploration capabilities

of the algorithm. RND, as a simple and effective exploration

method, has made significant contributions to the research in

reinforcement learning algorithms. In this paper, we propose

enhancements to the RND algorithm and extend its application

to the domain of multi-agent reinforcement learning settings.

C. Multi-Agent Proximal Policy Optimization

Multi-Agent Proximal Policy Optimization (MAPPO) [8]

is a multi-agent reinforcement learning proximal policy opti-

mization algorithm designed to optimize the policies of agents

in a multi-agent environment. Essentially an extension of the

PPO [14] algorithm into the realm of multi-agent scenarios,

MAPPO adheres to the paradigm of centralized training with

decentralized execution. It achieves this by utilizing a global

value function to guide the training of individual PPO agents.

MAPPO follows common practices found in PPO implemen-

tations, including Generalized Advantage Estimation (GAE),

observation normalization, gradient clipping, and others. Ad-

ditionally, MAPPO introduces five crucial implementation

details, namely value normalization, value function inputs,

training data usage, policy and value clipping, and death

masking. Moreover, MAPPO conducts a limited grid search

on certain hyperparameters, ensuring its robust performance

in complex multi-agent tasks.

III. METHODOLOGY

In the following, we first introduce how to divide the

phases, and then give the complete intrinsic reward calculation

method. Finally, we summarize the algorithm flow.

A. Exploring in Phases

In the exploration process of reinforcement learning, the

states learned in the past still have new exploration value for

the agent at the current phase. This is because the agent is
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Fig. 1: Overall architecture of our method. Utilizing local observations and global states from the environment to generate

local features and global features, respectively. Subsequently, local and global random network distillation models are employed

separately to calculate novelty intrinsic rewards, and then combined to compute the final intrinsic reward.

constantly learning, and the policy network at each phase

is different, that is, it has different knowledge and skills.

Even when facing the same state, agents may make different

decisions, allowing the exploration of diverse knowledge and

experiences. Therefore, for states that have been familiar for a

long time, agents should re-explore them at different phases,

attempting to learn new experiential knowledge. Specifically,

when we evaluate the novelty of a state, we consider not only

the agent’s familiarity with it but also whether the state has

been sufficiently explored recently.

To achieve phased continuous exploration, we draw in-

spiration from the design principles of Random Network

Distillation (RND) and incorporate temporal features into the

familiarity measurement calculation. Specifically, we annotate

the training time for each state data, referred to as Phase. We

divide the entire MARL training process into M phases, with

each phase p labeled by the set of numbers {1, 2, · · · ,M}.

The formula for calculating the phase number is given by:

p =

⌊
k ·M
K

⌋
+ 1 (2)

where K is the total number of training episodes, k is the cur-

rent episode index, and k ∈ {0, 1, · · · ,K−1}. We concatenate

the one-hot encoding of the phase number with every state data

generated during that time period as the input to the RND,

which is used to compute the novelty and train the predictor

network for the RND. As a result, similar states within the

same phase remain deemed similar after the RND assessment.

On the other hand, similar states across different phases have

distinct phase number encodings (e.g., one might be 10000,

and another 00010), introducing novelty errors. These novelty

errors eventually serve as intrinsic motivation to encourage

exploration by the agent. Consequently, due to the inherent

differences in phase encodings, states that were thoroughly

explored in previous phases continued to be encouraged for

exploration in new phases, facilitating the acquisition of new

knowledge and experiences.

Fig. 2: Local and global RND inputs.

B. Balancing Local and Global Novelty
Given the partially observable nature of multi-agent sys-

tems, we need to measure novelty from both a local and

global perspective. To balance these aspects, we calculate

novelty from a holistic perspective using the global state and,

simultaneously, from an individual standpoint using the local

observations of the agent. We then use the mean of these

measurements as the final result for generating intrinsic reward

signals, encouraging agents to explore. Equipping each agent

with a dedicated RND mechanism for calculating local novelty

is complex and lacks scalability. Therefore, we optimize

this process by parameter sharing, where all agents share a

common local RND. Each agent’s local observations, along

with the agent’s ID code for differentiation, are jointly used

as input.
In summary, the feature information for our method’s input

is illustrated in Figure 2, comprising both local and global

features. The local features consist of local observation, phase

number encoding, and agent ID encoding, used for calculating

local novelty. Global features comprise global state and phase
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number encoding, used for calculating global novelty. Addi-

tionally, the overall framework of our approach, as illustrated

in Figure 1, involves two RND models that independently

compute local and global novelties. The final novelty intrinsic

reward is obtained by calculating their mean and is subse-

quently employed as intrinsic motivation to encourage agents

for phased continuous exploration. Therefore, the specific

calculation formula of the intrinsic reward ri,int of agent i at

time t is as follows:

ri,lt = ||f̂(xi
t+1)− f(xi

t+1)||2 (3)

rg
t = ||ĝ(yt+1)− g(yt+1)||2 (4)

ri,int =
1

2
(ri,lt + rg

t ) (5)

Among them, xi
t+1 represents the local feature input of agent

i, yt+1 represents the global feature input, ri,lt+1 represents the

local novelty intrinsic reward of agent i, and rg
t+1 represents

the global novelty intrinsic reward. Then, the intrinsic reward

is combined with the extrinsic reward ri,ex
t provided by the

environment to construct the overall reward. Therefore, the

total reward ri,total
t of agent i at time t is expressed as follows:

ri,total
t = ri,ex

t + α× ri,int (6)

where α is a hyperparameter that balances extrinsic reward

and intrinsic reward.

C. Algorithmic Summary
The details of our algorithm are discussed in Algorithm

1. Initially, we initialize the parameters of the local RND

target network and predictor network, the global RND target

network and predictor network, and the policy network. The

parameters of the target networks are fixed after initialization

(line 2). Subsequently, we conduct training for K episodes,

as shown in lines 3 to 20. In each episode, the agents first

collect a set of trajectories through the joint policy π (line 5).

We then calculate the phase number p of the current episode

and obtain the global features yt+1 by concatenating p and the

global state st+1 (lines 6-7). Next, we separately concatenate

the local observations, phase number, and agent ID for each

agent to obtain their local features xt+1, and compute their

intrinsic novelty rewards rit individually. The transitions are

then stored in a buffer (lines 8-13). Following this, a batch

of data is randomly sampled for training, and this data is

used to update the policy networks of the agents (lines 15-

16). Finally, the loss values for both local RND and global

RND are computed using the sampled data, and their predictor

networks are updated (lines 17-19). This process is repeated

throughout the entire training cycle until completion.

IV. EXPERIMENTS

In this section, we first introduce the environment setup

of the experiment. Subsequently, we present experimental

results and analysis to verify the effectiveness of the proposed

method.

Algorithm 1 Phased Continuous Exploration (PCE)

1: Input: batch size B, number of agents n, episodes K,

steps per episode T , phases M .

2: Initialize: Local RND target θf and predictor θ
̂f , Global

RND target θg and predictor θĝ , Policy φ, Replay buffer

B
3: for k = 0, 1, . . . ,K − 1 do
4: // COLLECT TRANSITIONS

5: Collect a set of trajectories by running the joint policy

πφ = (π1
φ1 , . . . , πn

φn).

6: Compute phase number p =
⌊
k·M
K

⌋
+ 1.

7: Concatenate global features yt+1.

8: for each agent i do
9: Concatenate local features xi

t+1.

10: Calculate intrinsic reward according to formula 5.

11: Calculate total reward according to formula 6.

12: Push {(oit, st, ait, oit+1, st+1, x
i
t+1, yt+1, r

i,total
t )} into

B.

13: end for
14: // UPDATE NETWORKS

15: Sample a random minibatch from B.

16: Update policy φ with sampled data.

17: Compute losslocal = ||f̂(xi
t+1)− f(xi

t+1)||2.

18: Compute lossglobal = ||ĝ(yt+1)− g(yt+1)||2.

19: Update local RND predictor θ
̂f and global RND pre-

dictor θĝ .

20: end for

A. Environment Setup

To evaluate our method, we considered the widely used

StarCraft II [15] environment. The StarCraft II Multi-Agent

Challenge (SMAC) platform is developed based on the Star-

Craft II game and serves as an open platform for studying

Multi-Agent Reinforcement Learning (MARL). It provides a

challenging multi-agent environment designed to evaluate the

performance of agents in solving complex cooperative tasks.

As illustrated in Figure 3, our experiments were conducted

on two difficult maps and one extremely challenging map,

with specific details outlined in Table I. These maps are

carefully designed, requiring the learning of one or more

micro-management techniques to defeat opponents. Each map

involves a confrontation between two armies, with variations

in initial positions, quantity, and unit types for each army. In

each map, agents controlled by our algorithm engage in intense

battles with enemy agents controlled by the built-in game AI.

The end condition of the game is when all agents from any

side are annihilated, and victory is achieved by eliminating all

enemy agents.

B. Overall Results

PCE is an exploration technique that can be flexibly applied

to different MARL algorithms. To validate the adaptability

and effectiveness of PCE, we apply it to the MAPPO [8]

algorithm and test it on three SMAC maps: 5m vs 6m (hard),
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(a) 5m vs 6m(hard) (b) 3s5z vs 3s6z(super hard) (c) 6h vs 8z(super hard)

Fig. 3: (a-c) The maps we considered in the StarCraft II Multi-Agent Challenge: 5m vs 6m(hard), 3s5z vs 3s6z(super hard),

and 6h vs 8z(super hard).

TABLE I: The SMAC maps considered in our experiments.

Name Ally Units Enemy Units Type

5m vs 6m 5 Marines 6 Marines homogeneous & asymmetric
3s5z vs 3s6z 3 Stalkers & 5 Zealots 3 Stalkers & 6 Zealots heterogeneous & asymmetric

6h vs 8z 6 Hydralisks 8 Zealots micro-trick: focus fire

(a) 5m vs 6m (b) 3s5z vs 3s6z (c) 6h vs 8z

Fig. 4: Performance comparison between PCE, MAPPO, MAVEN, and EMC on three SMAC tasks; The x-axis is the number

of environmental steps during training; The y-axis is the evaluation of winning rate during testing.

3s5z vs 3s6z (super hard), and 6h vs 8z (super hard). We

adopt MAVEN, EMC, and the original MAPPO as comparison

methods, which are related to our method and have advanced

performance. Their descriptions are as follows:

1) MAVEN [10]: the method proposes to restrict the agent’s

behavior to a shared latent variable controlled by a

hierarchical policy to improve exploration.

2) EMC [12]: the method enables curiosity-driven explo-

ration by predicting individual Q-values and facilitates

policy training through episodic memory technology.

3) MAPPO [8]: the method is a variant of the PPO al-

gorithm in MARL using implementation tricks such as

generalized advantage estimation and value normaliza-

tion.

In Figure 4, we present the results for “evaluate winning

rate” and “steps”. The lines in the figure represent the average

evaluation winning rate over five independent runs, and the

shaded areas denote the 95% confidence interval. The results

indicate that PCE outperforms the baseline MAPPO algorithm

on all maps. In 5m vs 6m, PCE shows the most significant

improvement, achieving an average win rate of over 95%,

a 23% increase over the baseline, and outperforming other

methods in both convergence speed and final win rate. In

3s5z vs 3s6z and 6h vs 8z, PCE exhibits a noticeable im-

provement in convergence speed and a slight advantage in

final win rate compared to MAPPO. In addition, the overall

performance of PCE is better than that of MAVEN and EMC

algorithms. These results demonstrate that PCE enhances the

performance of the baseline algorithm in SMAC tasks by

improving the exploration capability of the agents.
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Fig. 5: Local and global RND loss.

C. Visual Analysis

To illustrate the effect of phased continuous exploration, we

conduct a visual analysis of the impact on local and global

novelty. Specifically, we analyze the variation curves of the

loss functions for local and global RND models. As shown

in Figure 5, the curves for local and global variations are

quite similar. In terms of the overall trend, their loss function

values decrease from high to low. This is because, through

continuous exploration and training, the agents become quite

familiar with the majority of state features, leading to a gradual

reduction in the loss function values for the RND models.

On a microscopic level, their loss function values exhibit a

periodic pattern of highs and lows. This is attributed to the

fact that PCE utilizes phase numbers to label the training

process into different phases, allowing agents to independently

explore state features within each phase. Consequently, the loss

function values within each phase also undergo a process of

decreasing from high to low. Through this phased exploration

technique, agents can effectively explore and learn from the

task environment at different phases, preventing them from

falling into suboptimal policies.

V. CONCLUSION

In this paper, we present a curiosity-driven phased contin-

uous exploration method to address the exploration deficit in

multi-agent systems. We recognize that agents possess distinct

knowledge at different learning phases, leading to diverse

decisions when confronted with the same state, consequently

resulting in varied knowledge acquisition. Therefore, we par-

tition the training process into different phases, employing a

curiosity-driven approach for exploration within each phase.

Simultaneously, considering the partially observable charac-

teristics of multi-agent systems, we strike a balance between

exploration from local and global perspectives. Finally, we

evaluate the proposed method for the StarCraft II task, demon-

strating its effectiveness in enhancing the agents’ exploratory

capabilities.

In future work, we will delve into dynamically and judi-

ciously defining different training phases and provide effective

solutions. In addition, we will try to extend the proposed

method to a wider range of multi-agent task scenarios with

practical significance to fully demonstrate its practical appli-

cation potential, such as robot control, etc.
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