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Abstract—Indoor farming has emerged as a promising solution
for year-round cultivation and efficient resource utilization in
crop production. Achieving optimal plant growth and quality in
indoor environments requires precise control of light conditions.
This study introduces PLNet, a generative deep learning method
for the designing the light recipes specifically tailored for indoor
farming.

Leveraging the power of deep neural networks, our approach
establishes complex connections between light spectra and plant
growth characteristics. Initially, a biomass estimator model is
trained using a diverse dataset encompassing different light
recipes and corresponding plant responses. Subsequently, a
generative model is trained using the estimator model as a foun-
dation, enabling the generation of optimal light spectra to achieve
desired growth outcomes. This novel generative method offers an
efficient and effective approach to formulating light recipes for
indoor farming. By reducing the reliance on traditional trial-and-
error methods, our method saves significant time and resources.

The presented generative deep learning method holds great
potential for advancing the design of light recipes in indoor
farming. Leveraging the capabilities of deep neural networks
facilitates more targeted and efficient optimization of light
conditions, resulting in improved crop yield and quality for a
variety of leafy green crops. The findings of this study contribute
to the ongoing efforts in enhancing productivity and sustainability
in indoor cultivation practices.

Index Terms—Indoor farming, Generative deep learning, Light
treatment, Light recipe design.

I. INTRODUCTION

Indoor farming has emerged as a transformative approach

to agricultural practices, offering a viable solution for year-

round crop cultivation and addressing challenges related to

land scarcity and climate variability. By providing controlled

environments, indoor farming enables precise manipulation of

various growth parameters, including temperature, humidity,

and most importantly, light conditions. Light plays a crucial

role in plant growth and development, influencing photosyn-

thesis, morphology, and nutritional content.

Traditionally, light recipes for indoor farming have been

formulated through empirical approaches, relying on trial-and-

error methods and expert knowledge. However, this approach

has its limitations as it relies on a small set of predefined

recipes and may overlook the vast space of possible light

combinations. Furthermore, the complex and nonlinear re-

lationships between light spectra and plant responses make

it challenging to optimize light conditions effectively. This

motivated us to leverage deep learning to enhance the design

of light recipes in indoor farming.

Deep learning, a subfield of machine learning, has shown

remarkable success in various domains, including computer

vision, natural language processing, and speech recognition.

Its ability to automatically learn hierarchical representations

from large datasets and capture intricate patterns makes it a

promising tool for tackling complex problems in agriculture.

While deep learning has been extensively applied to image

analysis and yield prediction in plant science [1]–[4], its

utilization for the design of light recipes in indoor farming

remains relatively unexplored.

In this study, we propose Plant Light Network, PLNet, a

generative deep learning framework for the optimization of

light recipes in indoor farming. Our approach aims to learn

the underlying relationships between light spectra and plant

growth characteristics, enabling the generation of tailored light

recipes to achieve higher biomass yields. By leveraging the

power of deep neural networks, we aim to overcome the

limitations of traditional empirical approaches and provide

a more efficient and effective solution for formulating light

recipes in indoor farming.

The primary objective of this study is to demonstrate the

efficacy of the generative deep learning method in designing

optimized light recipes for indoor farming. Our methodology

involves leveraging a plant growth dataset that captures a

range of growth parameters, such as biomass and leaf area.

These parameters are observed in saplings as they undergo

development under various light recipes. We first use this

dataset to train a biomass estimator model that estimates the

plant growth based on given light conditions. Subsequently, the

proposed generative model PLNet is trained using the biomass

estimator model as a foundation, allowing the generation of

light spectra that maximize the biomass yield of plant. In the

training process of PLNet, we incorporate two distinct regular-

ization terms. This serves two purposes: firstly, to expedite the

convergence of the model, and secondly, to guarantee that the

generated light recipe curves exhibit a smooth profile while

maintaining the Photosynthetic Photon Flux Density (PPFD)

within the desired range.

Through qualitative analysis we show that the generative

deep learning method is a promising approach to design

light recipes for indoor farming. Overall, this study represents

a significant step towards leveraging deep learning for the
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Fig. 1. Example spectrum of LED light recipe.

optimization of light recipes in indoor farming. By harnessing

the power of deep neural networks, we aim to enhance

productivity, resource efficiency, and sustainability in indoor

cultivation, contributing to the ongoing efforts in transforming

the future of agriculture.

II. LIGHT RECIPE

A light recipe refers to the specific combination of wave-

lengths and corresponding intensities of light that are used for

plant growth and development in indoor farming settings. PAR

(Photosynthetically Active Radiation) refers to the spectral

range of solar radiation that is essential for photosynthesis in

plants. This range generally covers the visible light spectrum.

The intensity of light treatment is represented using PPFD

(Photosynthetic Photon Flux Density) which is a measure

of the amount of light energy in the PAR range that is

available to plants for photosynthesis. PPFD is expressed in

units of micromoles of photons per square meter per second

(μmol/m2s), and it indicates the number of photons that fall

on a given area of plants per second. Figure 1 illustrates an

instance of a light spectrum with a PPFD of approximately

145 μmol/m2s. This value corresponds to the integral under

the curve, symbolizing the total PPFD. The spectrum spans in

the wavelength range of 380-780 nm encompassing the crucial

colors necessary for photosynthesis.

III. RELATED WORK

Light optimization in indoor farming has been a subject

of considerable research interest in recent years. Traditional

approaches have relied on empirical methods, where growers

and researchers manually adjust light spectra and intensities

based on prior knowledge and trial-and-error experiments.

Generally, the impact of light recipes on plant growth has been

investigated through the selection of a limited number of man-

ually designed recipes. Researchers have typically observed

and compared various plant growth parameters to evaluate

the effectiveness of these recipes. For instance, [5] utilized

four distinct light recipes to examine the growth of choy sum

and established that LED light intensity and spectrum both

influenced growth, with the red-blue light treatment producing

the highest shoot biomass at 160 μmol/m2s. Meanwhile, [6]

studied the effect of sole-sourced LED and mineral nutrient

fertility treatment on Chinese kale and observed that plants

showed superior accumulation of sulfur, boron, and zinc in

the root tissue under the 10% blue/90% red LED light recipe,

while iron concentrations were highest in the 40% blue/60%

red LED light recipe. Another research on Chinese kale by [7]

found that plants grown under fluorescent/incandescent light

recipe had significantly higher shoot fresh and dry mass. [8]

studied the effects of UV-A (ultraviolet-A radiation) irradiation

on the cultivation and quality of microgreens and found that

supplementing light recipes with UV-A irradiation resulted in

increased leaf area and fresh weight of the plants. In a similar

study, [9] explored the impact of supplementing red and blue

light with UV-A on the growth of Kale. The findings indicated

that the addition of UV-A positively influenced both the growth

and quality of Kale. In a separate study on pak choi, [10]

investigated the effect of light recipes on the regulation of

carotenoid levels and discovered that blue, red, and white light

had varying impacts on carotenoid composition. Although

all of these studies focus on examining the impact of light

recipes on plant growth, they solely concentrate on the light

recipes used in their respective experiments and are unable

to comment on the vast space of possible light combinations.

Rather than solely relying on the comparison of preselected

light recipes to identify the most effective one, our approach

takes a different route. We leverage the available data to

train a biomass estimator, which serves as a valuable tool

for exploring the extensive landscape of light treatments and

ultimately discovering the optimal light recipe.

The utilization of generative models for inverse design is a

pertinent research direction, with several proposed methods fo-

cusing on designing devices in the domains of nanophotonics

[11]–[14], polymer design [15] and design of complex metallic

glasses [16]. PLNet stands out as the first study to employ

generative techniques for the optimization of light recipes,

specifically aiming to maximize biomass yield in plants.

The utilization of deep neural networks for generating

optimized light spectra based on desired growth outcomes

represents a novel and promising approach in this field. This

study aims to contribute to the growing body of research by

exploring the capabilities of deep learning in the design and

optimization of light recipes, ultimately improving crop yield,

quality, and resource efficiency in indoor farming.

IV. PLANT LIGHT NETWORK: PLNET

In this work, we present PLNet (Plant Light Network), a

neural network architecture designed to generate optimal light

recipes for plant growth. Our approach involves training a

generative neural network that has the capability to produce

light recipes with a high probability of yielding high biomass.

The architecture of PLNet is illustrated in Figure 2. The

generator Gφ is trained to generate optimal light recipes, while
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Fig. 2. The architecture of PLNet. Generator maps a random noise vector sampled from uniform distribution to the light recipe. Biomass estimator estimates
biomass yield of the generated recipe. The generator is trained to generate optimal light recipe with a very high probability.

the biomass estimator Fθ is trained to estimate biomass of

plants at a later stage based on the light recipe applied. First,

the biomass estimator is trained using the plant growth data.

Once the training of Fθ is completed, its weights are frozen,

and it is used to estimate the biomass yield for different light

recipes generated by Gφ. By optimizing the generator we aim

to generate light recipes that maximize the estimated biomass

yield.

We represent the light recipe as a vector x ∈ R
N , where

x = [x1, x2, . . . , xN ] signifies a sequence of N consecutive

wavelengths. Each xi within this sequence corresponds to the

PPFD of the ith wavelength. The search space of the light

recipe, denoted as S = R
N , defines the permissible range

of PPFD values for each wavelength in the light recipe. To

generate optimal light recipes, we introduce a random noise

vector z sampled from the uniform distribution UN (−1, 1) as

an input to the generator. The generator, parameterized by φ,

maps z to x, denoted as Gφ(z) = x. In other words, the

generator transforms noise vectors sampled from the uniform

distribution into light recipe samples. We use Pφ to denote the

light recipe distribution generated by Gφ.

The objective of our approach is to maximize the probability

of generating optimal light recipes that lead to high biomass

yields. The biomass yield at the time of harvest for a specific

light recipe x is denoted as bx. Therefore, our objective is to

find the optimal parameter φ∗ that maximizes the following

integral:

φ∗ := arg max
φ

∫
S
bx · Pφ(x), dx (1)

However, evaluating Equation 1 over the entire search space

S is computationally infeasible. To overcome this challenge,

we resort to approximating the objective by sampling a batch

of light recipes {xm}Mm=1 from the recipe distribution Pφ.

As our focus is on maximizing biomass yield at the time of

harvest, we keep the age of the plant fixed at the harvest age

ah when estimating biomass for the generated light recipe xm.

This leads to the following approximation:

φ∗ ≈ arg max
φ

1

M

M∑
m=1

bx (2)

In this equation, M denotes the number of sampled light

recipes, and the objective is to find the parameter configuration

φ∗ that maximizes the average biomass yield over the sampled

recipes. This approximation enables a more computationally

feasible approach to optimizing the generator for generating

effective light recipes.

Furthermore, it is not practical to experimentally measure

the biomass yield bx for each recipe in the selected sample

batch in Equation 2. This is the reason we employ our biomass

estimator, a neural network Fθ parameterized by θ, to predict

the biomass yields. The estimator receives the light recipe

x and the future age of the plant a as input, predicting the

biomass yield bxa at age a, denoted as Fθ(x, a) = bxa. The

estimator Fθ is trained on a dataset that includes plant growth

data at various ages until the harvest age, collected under

diverse light recipes. This leads us to modify the objective

function as follows:

φ∗ ≈ arg max
φ

1

M

M∑
m=1

Fθ(xm, ah) (3)

To ensure efficient optimization, we define a loss function

L that, when minimized, maximizes the objective function.

L = − 1

M

M∑
m=1

Fθ(xm, ah)
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The gradient of the loss function is computed using the chain

rule. It is important to note that θ is kept constant during the

training of Gφ. Furthermore, the age of harvest, ah, is also

fixed for a given plant.

∇φL = ∇φx
m · ∇xmFθ(xm, ah) (4)

The gradient of the loss with respect to φ is calculated by

multiplying the gradient of the generated light recipe ∇φx
m

with the gradient of the biomass estimator ∇xmFθ(xm, ah).

This gradient calculation enables the optimization of the

generator network Gφ by adjusting its parameters φ to generate

light recipes that result in higher estimated biomass yields

according to the fixed estimator Fθ. By iteratively updating

the parameters using gradient-based optimization techniques,

the generator network learns to generate light recipes that lead

to improved plant growth outcomes.

To facilitate the training process and ensure the generated

light recipes are feasible, we integrate two distinct regulariza-

tion terms aimed at ensuring the smoothness of the generated

light recipe curve and controlling the total PPFD of the

generated light recipe.

Smoothness: Light recipes often exhibit smooth curves.

To encourage smoother light recipe curves, we introduce a

smoothness regularization term. To compute the regularization

value, we first compute sxm = [sxm
1 , sxm

2 , · · · , sxm
N ], repre-

senting the smoother version of the generated recipe xm. We

define k as the kernel size of the sliding window and compute

smoothed values as follows

sxm
i =

⎧⎨
⎩

1

k

∑i+k−1
j=i xm

i , if i ≥ k and i ≤ N − k + 1,

xm
i , otherwise,

Finally, the smoothness loss is computed as follows

LS = |xm − sxm|
Total PPFD: To control and limit the range of PPFD values

within the generated light recipes, we incorporate a loss term

when the sum of PPFD values exceeds a predefined threshold,

denoted as Pmax. This threshold represents the maximum

allowable cumulative PPFD value for a given light recipe. The

total PPFD loss is defined as follows

LP =

{
0, if

∑n
i=1 xi ≤ Pmax,∑n

i=1 xi − Pmax, otherwise,

Here,
∑n

i=1 xi represents the total sum of PPFD values in

the light recipe, and the loss is incurred only when this sum

exceeds the specified threshold. This mechanism ensures that

the generated light recipes adhere to a predetermined PPFD

range, contributing to the feasibility and practicality of the

generated solutions.

The overall loss function for training the generator becomes:

Lφ = L + λs · LS + λp · LP

where λs and λp are weighting coefficients for the smooth-

ness and total PPFD losses, respectively. By minimizing this

loss function, we aim to find the optimal parameter φ∗ that

maximizes the biomass yield estimation.

A. Biomass Estimator

Biomass estimator Fθ(x, a) plays a pivotal role in our

methodology as it is tasked with predicting the biomass yield

at the time of harvest, given a specific light recipe x used

for indoor plant growth. It is essential to note that the PPFD

values of neighboring wavelengths in a light recipe are not

entirely independent, and capturing the spatial relationships

among these values is crucial for accurate predictions. To

address this, we leverage a 1D convolutional neural network

(1D CNN) to analyze and extract spatial features from the

light recipe vector [x1, x2, · · · , xN ].
The primary objective of utilizing the 1D CNN is to extract

meaningful features from the light recipe and map them to

the corresponding biomass yield of the plant at the time of

harvest. By leveraging the convolutional layers, the network

can capture spatial dependencies and patterns in the light

recipe, enabling a more comprehensive understanding of how

different wavelengths and their interactions influence plant

growth and biomass accumulation.

To train the biomass estimator Fθ, we employ a dataset com-

prising plant growth data collected under various light recipes.

These light recipes encompass a range of different spectral

compositions and intensity levels. By associating the known

biomass yields and age of the plant with their corresponding

light recipes, we establish a supervised learning framework to

train Fθ. The training process allows the neural network to

learn the complex relationships between the input light recipe

vectors, the age of the plant and the resulting biomass yields.

This learning facilitates accurate biomass estimation even for

novel light recipes.

B. Network Architecture

The architecture of the generative neural network in our

PLNet framework is inspired by the Deep Convolutional

Generative Adversarial Network (DCGAN) [17]. It consists

of two fully connected layers, four transposed convolution

layers, and a Gaussian filter at the end to remove small

features. LeakyReLU activation functions are applied to all

layers except for the final layer, which uses a tanh activation

function. To enhance the diversity of the generated patterns,

we incorporate dropout layers and batch normalization layers.

These architectural choices allow the generative neural net-

work to effectively capture the complex relationships between

the input noise vectors and the desired light recipes, resulting

in diverse and high-quality generated light recipes.

The biomass estimator network consists of four 1D CNN

layers followed by a fully connected layer that connects to

the output layer responsible for estimating the biomass. In

alignment with the generative network, we incorporate dropout

and batch normalization layers to enhance the model’s per-

formance and generalization. The intermediate layers utilize

the ReLU activation function, which introduces non-linearity

to the network and enables better representation learning. On
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the other hand, we employ the sigmoid activation function

on the final output layer to ensure that the predicted biomass

yield falls within the valid range of [0, 1], aligning with

the normalization of biomass values in the training data. By

employing these architectural choices and activation functions,

the biomass estimator network is designed to effectively es-

timate the biomass based on the age of the plant and given

light recipe.

In summary, our PLNet framework leverages a generative

neural network and a biomass estimator to generate optimal

light recipes for plant growth.

V. EXPERIMENTS

To evaluate the performance of PLNet in generating optimal

light recipes for plant growth, we conducted experiments

using plant growth data of Choy Sum (Brassica rapa var.

parachinensis). Choy Sum is a leafy vegetable commonly

cultivated in indoor farming systems.

A total of 41 distinct light treatments were employed in the

generation of the training data, encompassing a range of total

PPFD values spanning from 100 to 300 μmol/m2s. Out of

these 41 light treatments, 25 were selected for training the

models, while 8 were reserved for testing. The remaining 8

light treatments were exclusively used for validation purposes.

Concerning the training of the biomass estimator, multiple

models were trained using 100 different seeds, and the model

with the lowest validation error was identified as the optimal

choice. A learning rate of 5e-3 was employed after exploring a

range between 1e-2 and 1e-4. The batch size for training was

set to 256, and the models were trained for 300 epochs. The

training data was normalized to predict biomass in the range

of 0-1.

The generator was trained for 1e4 epochs using a learning

rate of 1e-4. During the training process, we conducted a

hyperparameter search to determine the optimal values for

λs, λp, k, and Pmax. We explored a range of values for each

hyperparameter: [0-100] for λs, [0-1] for λp, [3, 5, 7] for k.

For Pmax, we searched for [300, 400, 500, 600]. The search

results led to the selection of λs = 20, λp = 0.001, k = 3, and

Pmax = 400 as the optimal values for these hyperparameters.

In our study, we performed a qualitative analysis of the

light recipe generated by the generator. Specifically designed

for Choy Sum, a leafy vegetable, the optimal light recipe was

generated to maximize the growth and yield of Choy Sum

plants. Figure 3 visually presents this optimized light recipe.

Detailed information on the light recipe is provided in

Table I, including the Total PPFD and the corresponding

PPFD values for specific color bands within the wavelength

range. The estimated biomass for this recipe was found to be

0.99. It is crucial to emphasize that the biomass values have

been normalized, where a value of 1.0 signifies the maximum

attainable biomass yield. Additionally, it is noteworthy that,

despite the PPFD range in the training data being 100-300

μmol/m2s, the generated light recipe demonstrates a PPFD

of 374.49 μmol/m2s. This aligns with the findings of another

research study [18], which concluded that a light recipe with

Fig. 3. Light recipe generated by the generator for the optimal growth of
Choy Sum.

a PPFD of approximately 400 μmol/m2s is optimal for Choy

Sum.

Additionally, previous studies [8], [19]–[21] have shown

that specific ranges of light wavelengths have beneficial effects

on plant growth. For instance, irradiation with UV-A light has

been found to increase leaf area and biomass of plants [8],

[9], indicating the importance of including PPFD values in the

UV-A range (315-400 nm). In our generated light recipe, we

observe a PPFD of 23.96 μmol/m2s in the range of 380-399

nm, suggesting that the generator has learned to incorporate

UV-A light to enhance the biomass yield of Choy Sum.

Furthermore, far-red radiation (701-800 nm) has been shown

to promote leaf area and biomass of plants [19]–[21]. Our

generated light recipe includes a PPFD of 29.21 μmol/m2s in

the far-red range, indicating that the generator has also learned

to include far-red radiation to optimize biomass yield.

Overall, the qualitative analysis of the generated light recipe

highlights the effectiveness of our approach in designing light

recipes that promote plant growth. The generator has success-

fully learned to optimize the light spectrum by incorporating

specific wavelengths known to enhance biomass yield in Choy

Sum.

Further studies and experiments are needed to validate

the performance of PLNet across different plant species,

growth conditions, and indoor farming systems. Additionally,

exploring the generalizability of PLNet to other plant growth

parameters, such as nutrient uptake and leaf morphology, could

provide valuable insights for holistic plant growth optimiza-

tion.

VI. CONCLUSION

In this study, we introduced PLNet (Plant Light Network), a

novel approach for generating optimal light recipes to promote

plant growth. PLNet utilizes a generative neural network,

trained on plant growth data, to generate light recipes that are

expected to result in high biomass yields. By formulating the
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Total PPFD Ultraviolet Blue Green Red Far red
[μmol/m2s] (380-399 nm) (400-499 nm) (500-599 nm) (600-700 nm) (701-780 nm)

374.49 23.96 124.07 18.52 178.72 29.21

TABLE I
GENERATED LIGHT RECIPE FOR THE OPTIMAL GROWTH OF CHOY SUM.

light recipe as a vector and using a generative neural network,

we aim to maximize the probability of generating optimal light

recipes.

To address the challenge of evaluating the objective function

over the entire search space, we employed a sampling-based

approximation approach. By sampling a batch of light recipes

from the generator, we obtained an estimate of the objective

function, allowing us to optimize the generator network ac-

cordingly.

Furthermore, to estimate the biomass yield associated with

each generated light recipe, we developed a biomass estimator

network. This network consists of multiple 1D CNN layers

followed by a fully connected layer and a sigmoid activation

function to ensure the predicted biomass falls within a valid

range. The biomass estimator network was trained on plant

growth data collected under various light recipes, enabling it to

accurately estimate the biomass yield for a given light recipe.

Our qualitative analysis highlight the potential of PLNet

as a viable approach for optimizing indoor plant cultivation.

However, to further validate and consolidate these results, it is

essential to conduct comprehensive experiments across differ-

ent plant species and under varying environmental conditions.

Such experimental studies will provide a more rigorous eval-

uation of the performance and effectiveness of the generated

light recipes.

In summary, our work makes a valuable contribution to

the field of indoor plant cultivation by introducing a neural

network-based framework, PLNet, for generating optimal light

recipes. This innovative approach offers promising opportuni-

ties to enhance biomass yield, improve efficiency, and promote

sustainability in indoor farming practices. By leveraging the

power of artificial intelligence and deep learning, we pave the

way for precision agriculture and the cultivation of thriving

and healthy plants.
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