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Abstract—The prediction of memory performance using EEG
signals is an active research area in Passive Brain Computer
Interfaces community. In this type of prediction problem it is
important to be able to use unlabeled data and to tackle the
unbalanced nature of the data. In this work we propose two new
Sparse Representation Classification schemes that are able to
address the above properties of the data. The proposed classifiers
have been tested in an EEG dataset related to neuromarketing.
In the data analysis, we define a binary classification problem
using EEG signals corresponding to the condition of remem-
bering and forgetting. Furthermore, we compare the proposed
classifiers with well-known classifiers. The obtained results show
all classifiers perform above chance level, and, among them the
proposed classifiers present the best performance in terms of
Fscore and Kappa Value.

Index Terms—Neuromarketing, Memory, EEG, Sparse Repre-
sentation Classification, Semi-supervised Learning

I. INTRODUCTION

Neuromarketing is an evolving emerging field combining

consumer’s behavior with neuroscience [1], hence its alterna-

tive name consumer’s neuroscience, which gives rise to a more

strict definition that defines neuromarketing as the application

of neuroscience in the marketing domain. The overarching

goal of neuromarketing is to understand customers’ motiva-

tions, preferences, and decisions, which can help to inform

creative advertising, product development, pricing, and other

marketing areas [2], [3]. In order to achieve this goal it is

necessary to acquire measurements of physiological and neural

signals, which describes the participant’s reaction due to the

marketing stimuli. To this end, brain imaging technologies,

which measure neural activity, and physiological tracking tech-

nologies, which measure eye movement and other proxies for

that activity, are the most common methods of measurement

[3]. Among the various brain imaging methods, electroen-

cephalography (EEG) represents the most used method, mainly

because it is the least invasive and cheaper method with

high temporal resolution, compared to other brain imaging
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technologies such as functional Magnetic Resonance Imaging

(fMRI) or Positron Emission Tomography (PET).

The field of EEG-based Neuromarketing presents a vari-

ety of approaches for measuring functionally relevant neural

activity. For example, some research has focused on neural

activity measurements during task performance (e.g buy/no-

buy scenario, like /dislike ) [4]–[6], which can link discrete

neural signatures to behavioral outcomes recorded simultane-

ously. Another direction of research is related to ‘task-free’

neural recordings taken during passive stimulation conditions

(e.g., naturalistic viewing). Task-free scenarios have increased

in popularity because they provide a broader view on neural

dynamics that exceed circumscribed, task scenarios [7], [8].

In neuromarketing community, the promotion of products

and brands have been explored in many directions using

audiovisual stimuli involving consumer’s engagement [9],

pleasantness [10] and memorization of commercials [11], [12].

It becomes evident that a core question in neuromarketing is

if it is possible to observe neural signatures during memory

encoding that can be used to evaluate an advertisement in

term of memory performance. Assuming that such signatures

are existent, they could be used to define important parts of

the commercial in terms of memory. In the proposed work,

we provide a methodology for the prediction of memory

performance using EEG signals when the consumer (or subject

or participant) is exposed to audiovisual marketing stimuli (i.e.

video ads).

Memory formation (or encoding) seems to be a rather

complicated cognitive and perceptual process if we take into

account that various frequency bands are related to mem-

ory formation in various different ways. While most studies

reported that memory formation is related with theta and

gamma brain rhythms, alpha and beta bands seem to be

equally important [13], [14]. These diverse effects are related

to the engagement during memory encoding (i.e. items to be

remembered) and how the memory is being tested (i.e. context

of memory recall, the time between encoding and recall) [13]–

[16]. A further complication in the literature arises from the

fact that some studies found neural signatures in post-stimulus

signals (i.e., after the stimulus had been shown), while other

studies also have found significant neural signatures preceding

stimulus onsets [13], [14]. Based on the above it is natural

to expect that the classification of EEG trials related to

the remembered (RMB) and forgotten (FRG) items would

be a very difficult machine learning task as pointed out in
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[13], [15], [17]. However, the results of [13], [15], [17] are

encouraging since they provide above-chance classification

rates indicating that neural signatures of memory formation

can be used for predictive purposes.

In this work, we propose a new classifier for the dis-

crimination of neural signatures of memory (i.e., FRG/RMB)

during a neuromarketing experiment. The proposed classifier

is based on the idea of sparse representations, called Sparse

Representation Classification (SRC) [18]–[20]. The basic as-

sumption is that brain activity patterns, belonging to the same

memory encoding process, lie on the same linear subspace.

The contributions of our paper are:

• We explore the sparsity of brain activity in neuromarket-

ing scenarios and we propose a novel SRC-based classifi-

cation algorithm with applications to memory formation.

More specifically, we extend the algorithm provided in

[19] to take into account pre-stimulus effects of memory

during the classification procedure

• We performed a neuromarketing-related study which in-

cludes: a) a large number of participants (85 participants)

b) task-free and naturalistic (and dynamic) stimuli (i.e.

videos), and c) real life conditions for the experimental

protocol. The above experiments resulted to an EEG

dataset related to the memory encoding of audiovisual

stimuli (i.e. ads).

• We carry out extensive data analysis experiments, and

the results demonstrate that our proposed framework

achieves superior performance in comparison with the

existing state-of-the-art approaches on the same EEG-

based neuromarketing dataset.

The paper is organized as follows. In Section II, we provide

information about the EEG dataset that is used to predict

memory performance. Then, in Section III a description of

the overall approach and methodology is provided for the

prediction of memory performance during a neuromarketing

scenario using EEG signals. In Section IV, we present the

results from our experiments and we provide a comparative

analysis with well-known classifiers. Also, we provide a

discussion related to our work. Finally, in Section V, some

concluding remarks are drawn.

II. MATERIALS - DATASET’S DESCRIPTION

A. Participants (Demographics)

Eighty Five (85) healthy volunteers (28 males and 57 fe-

males) with an average age of 43 years (43 ± 13, ranging from

19 to 78 years) participated in our study. All the participants

had a normal or corrected to normal vision, and they all

signed a written consent before the experiment. The study was

carried out in accordance with the Declaration of Helsinki,

and the protocol was approved by the Ethics Committee of

our Institution.

B. Description of Stimuli and Experiment’s Procedure

Audiovisual advertising is a type of advertising that comes

with high levels of potential and includes images, sounds

and motion. The audiovisual message is the medium that

Fig. 1. Timeline of the experiment.

offers advertisers the most effective and persuasive way to

communicate with consumers. In our study, the audio-visual

(dynamic) advertising message is a TV spot, in four different

versions, which consumers see on their set-top boxes every

day. The four different versions are related to the presence of

a male and female voice in the spot, as well as the fact that

the products are presented in a different order in each spot.

Finally, besides the four products, the TV spot includes an

introductory video which is the same across all versions of the

TV spot. Hence, the TV spot can be divided into five segments:

introductory video, ads for product 1, ads for product 2, ads

for product 3 and ads for product 4. The TV spot had a

duration of 30 seconds and it was presented to the participants

during the viewing of a TV cartoon with a total duration of

three minutes. In Fig. 1 we provide the timeline related to

the watching of video. Once the video viewing experience

was completed each participant completed a questionnaire

which include demographic questions (e.g. age, etc.), profile

questions (e.g. buying behavior, etc.), and, questions related

to which presented products the participant remembers.

C. Data Collection and Preprocessing

The raw EEG data were recorded using Wearable Sensing’s

Dry Sensor Interface (DSI) with a sampling frequency of

300Hz, via 21 dry sensors, namely Fp1, Fp2, Fz, F3, F4, F7,

F8, Cz, C3, C4, T7/T3, T8/T4, Pz, P3, P4, P7/T5, P8/T6, O1,

O2, A1 and A2, that were placed at locations corresponding to

the 10-20 International System. The Sensors A1 and A2 were

the reference electrodes and were placed on the mastoids. Prior

to the experimental procedure, impedance for all electrodes

was set below 10KΩ and EEG signals were inspected to

avoid any irregularities. We extracted EEG trials corresponding

to a particular product for subsequent analysis, by manually

identifying the starting time point and the ending time point

of each commercial’s product. For each participant five EEG

trials are extracted, where four of them correspond to the

products. For the labelling of EEG trials as FRG/RMB, we use

the questionnaires. Finally, the raw EEG trials were subjected

to a bandpass filter 0.5–45 Hz, followed by artifact removal

using the Artifact Subspace Reconstruction (ASR) [21].

III. PROPOSED FRAMEWORK

A. Feature extraction

The segmentation of the dataset results into five trials for

each subject. From these five trials, four of them have labels as
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FRG or RMB, while one trial is without label. The trial without

label corresponds to the introductory video of the TV spot.

More formally our dataset is composed from labeled trials,

D� = {(Xi, �i)}Ni=1, and unlabeled trials Do = {(Xi)}N+M
i=N+1,

where Xi ∈ �Nch×Nt , Nch denotes the number of channels,

Nt denotes the number of samples, N denotes the number

of labeled trials and M denotes the number of trials without

labels. In our work we computed for each trial power’s features

per channel, hence, the feature vector fi, describing trial Xi, is

of size Nch×1. These type of features describes the strength of

brain activity. Note here that we assume that the multi-channel

EEG signals are centralized since, in practice, the EEG trials

are bandpass filtered.

B. Proposed Semi-supervised SRC-based classification frame-
work

SRC-based classification frameworks use the training sam-

ples directly as the basis to construct the overcomplete dictio-

nary. The idea behind this approach is that a test sample can

be accurately represented by a linear combination of training

examples from the same class. Hence, in terms of EEG-related

studies, the idea is that brain’s features of a test example can

be represented well by a sparse linear combination of brain’s

features from the same class. In this subsection, we provide

a short introduction to the basic SRC scheme, and then, we

describe the proposed semi-supervised SRC scheme.

Given the labeled dataset D = {(fi, �i)}Ni=1, where fi are

the feature vectors and �i the corresponding labels, we can

collect all the features vectors in a matrix, X ∈ �Nch×N .

The basic idea behind SRC is that the label of the test vector

y ∈ �Nch is unknown; however, we can represent it as a linear

combination of the training samples from all classes, where

their labels are known:

y = Xw (1)

where X ∈ �Nch×N is a matrix containing all the training

vectors from all classes, N is the number of training vectors,

and w ∈ �N is the coefficient vector. Furthermore, in the

presence of noise, the model is provided by:

y = Xw + e (2)

where e ∈ �Nch is the noise term with bound energy ‖e‖2 ≤
ε. In this case the coefficients w are found by solving the

following minimization problem:

ŵ = argmin
w
{‖y −Xw‖22 + ρ‖w‖1}. (3)

Now that we have seen how a test vector can be described

as a linear combination of training vectors, we will discuss

how we could use this linear combination to provide a clas-

sification rule. In order to provide the classification rule, we

use the residuals of linear combination. More specifically, if

δc(·) : �N → �N is the function that selects the coefficients

associated with the class c, then the residuals for each class

is: rc(y) = ‖y − Xδc(ŵ)‖2, c = 1, · · · , C. The class for

the given test signal is found by using the minimum of the

residuals class(y) = argminc{rc(y)}. We can see that the

algorithm contains two basic steps. The first step is related to

the minimization problem, while the second step is related to

the classification rule.

Based on the above algorithm various extensions have been

proposed related to the optimization problem of Step 1, as well

as to the calculation of residuals in Step 2. In the proposed

work we adopt the algorithm provided in [19]. This algorithm

exploits the manifold’s structure of the data be utilizing

a specialized prior which has properties rising from graph

theory, while at the same time has a tendency for sparsity.

Besides the solver that someone adopts to find the weights

of linear combination, one important aspect is the matrix X
which contains the training samples (or the dictionary matrix).

In our approach we extend this matrix by including EEG

samples that do not possess any labels and preceding the

presentation of four ads. These EEG samples are extracted

from the time period corresponding to the introduction of the

TV spot. With this extension, the weights can be divided into

two groups, weights that are related to training samples with

labels and weights that are related to training samples without

labels. The main effect of this extension is that the estimation

procedure for the weights of the labeled training samples take

into account information related to the pre-stimulus status of

the brain. Overall this affects the calculation of residuals, and

hence the classification performance.

A more formal description about the new extended matrix

Xe is presented next. Given a dataset D, D = D� ∪ Do,

that constitutes from training samples with labels, D� =
{(fi, �i)}Ni=1, and without labels, Do = {(fi)}N+M

i=N+1 where

fi are feature vectors of size Nch×1 and �i the corresponding

labels (if exist), we collect all features vectors in a matrix

(extended version), Xe ∈ �Nch×(N+M). Observe here that the

sub-matrix Xo ∈ �Nch×(M), corresponding to the columns

N + 1 to N + M of Xe, contains features vector that

do not have labels. The adoption of the above extended

matrix changes significantly the properties of the basic SRC

algorithm since it gives to it the ability to treat training

samples which do not possess any label’s information, hence

it can be considered as a semi-supervised extension of SRC

algorithm presented in [19]. Furthermore, in the case where

we need to address the problem of unbalanced classes we

can weight each training sample. This end up to the use of

diagonal matrix, Xu ∈ �(N+M)×(N+M), which in its main

diagonal contains the weights for each training sample. In

that case the extended matrix is modified as: X
′
e = XeXu.

The overall algorithm is provided in Alg. 1 for the case

of balanced dataset (we called this algorithm semiSRC). In

the case of unbalanced classification problem, the modified

extended matrix is adopted (we called this modified algorithm,

un-semiSRC).

IV. RESULTS

The pre-processed and segmented EEG dataset consist of

340 labeled trials (from them 240 are labeled as RMB and

the rest 80 as FRG), and, 85 unlabeled trials. Power EEG
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Algorithm 1 Proposed Semi-supervised Sparse Representation

Classification scheme (Adapted from [19])

Require: Training samples, X�, with its corresponding labels,

�, unlabeled training samples, Xo, one test sample, y.

1. Construct extended matrix Xe by concatenating matrices

X� and Xo, Xe = [X� Xo].
2. Construct graph Laplacian matrix, L (as reported in [19]).

3. Find ŵ uses Algorithm 2 reported in [19],

4. Calculate the residuals:

rc(y) = ‖y −Xeδc(ŵ)‖2, c = 1, · · · , C
Ensure: class(y) = argminc{rc(y)}

features are extracted from each EEG trial. More specifically,

the energy of EEG signals in each channel is calculated.

These results into 19 features characterizing each trial and

they provide information about the activation patterns of the

brain due to the naturalistic stimuli. The features are fed to the

classifier in order to characterize the trial as FRG or RMB. In

our analysis we compare the proposed algorithms (semiSRC
and un-semiSRC) with three well known classifiers: the SVM

with Radial Basis Functions (RBF) kernel [2], [19], [22],

[23] (SVM-RBF), the k-Nearest Neighborhood (kNN) with

k = 1 [2], [19], and the Graph-based Sparse Representations

Classification (GraphSRC) scheme [19]. For the SVM-RBF

algorithm, we take into consideration the unbalanced nature of

our classification problem, and more specifically, we weight

each class by using the inverse of the class distribution present

in the training dataset. This weighting scheme was introduced

to the algorithm through the cost matrix. A similar procedure

was adopted for the proposed un-semiSRC algorithm. To train

and evaluate the above classifiers the Leave-One-Out cross

validation approach is used. Furthermore, special care must

be taken related to the evaluation of the performance of

classifiers due to the unbalanced nature of the used dataset.

Under this view we calculate the Fscore [24], and the κ
coefficient (or Kappa Value) [25]. These two measures are

suitable for handling the unbalanced nature of the dataset and

providing accurate evaluation of the models. Since, the Fscore

describes the trade off (or the balance) between precision and

recall, while, the κ coefficient describes the randomness of the

agreement (agreement beyond chance).

In Table I we provide the obtained results of the five

classifiers for the aforementioned performance measures. Fur-

thermore, we have included the performance of the Naive
classifier (a classifier that classifies all samples to the majority

class). The main conclusion from the provided results is that all

classifiers provide performance above chance level and better

than the Naive classifier. This indicates that the experimental

protocol did elicit the mental states of interest and that brain

produces activation patterns that are different between the two

groups (FRG vs RMB). Observe here, that this is consisted

across a number of classifiers which indicates its universal

nature. Furthermore, the un-semiSRC method provides the

best performance among all methods since it presents better

TABLE I
CLASSIFICATION ACCURACY RESULTS

Fscore Kappa Value
Naive 0.4343 0

SVM-RBF 0.6324 0.2687
kNN 0.5866 0.1740

GraphSRC 0.6042 0.2091
semiSRC 0.6222 0.2448

un-semiSRC 0.6399 0.2836

agreement between predicted and actual classes (higher κ
coefficient) by correctly identifying both positive and nega-

tive instances (higher Fscore) compared to the other models.

Comparing the various SRC versions, we can observe that the

semiSRC present better performance from GraphSRC in terms

of Kappa Value and Fscore, while the un-semiSRC presents the

best performance among the SRC-based algorithms. The above

observations show the usefulness of the weighting scheme into

the SRC scheme that address the issue of skewed distribution

of class labels for the particular classification problem, as well

as, the usefulness of using unlabeled EEG trials.

We perform additional experiments by investigating the

performance of classifiers in various frequency bands of EEG

signal (i.e. EEG bands). Again, the performance was evaluated

by using the aforementioned measures. The Frequency bands

that we choose are corresponding to the basic EEG rhythms

(delta:1-4Hz, theta:4-8Hz, alpha:8-12Hz, beta:13-30Hz and

gamma:>30Hz). The obtained results are provided in Tables

II, for the Kappa Value, and III, for the Fscore. The best

performance for Kappa Value was obtained by un-semiSRC
in the theta band, while, the best performance in terms of

Fscore metric was obtained by semiSRC in the alpha band. It

is worth to mention here that all algorithms in all frequency

bands provided Kappa Value larger than 0.1, besides the

SVM-RBF in the theta band. Furthermore, the un-semiSRC
method is the only method that presents fair agreement (Kappa

value>0.2) in more than one frequency band, while the other

SRC versions and the SVM-RBF present slight agreement

(Kappa value:0-0.2) in all frequency bands. With respect to the

Fscore measure, the un-semiSRC and the semiSRC are the only

methods that presents Fscore >0.6 in at least one frequency

bands. Also we can observe that all models present Fscore

values larger than the Naive model. Note here that the Naive
model has the same Fscore value (0.4343) for all reported

classification problems. Finally, one significant property of the

proposed algorithm is that it is able to use pre-stimulus, hence

unlabeled in our case, brain data to solve the classification

problem. This property is evident in Tables II and III. More

specifically, we can observe that the semiSRC algorithm has

better performance from GraphSRC in all frequency bands,

and, in addition it has better performance than the SVM-RBF
algorithm in most of the frequency bands.

By taking a look at Tables II and III we can observed

that there is not a single classifier that performs best at all

frequency bands. For example, at frequency band 1-4Hz the
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TABLE II
CLASSIFICATION ACCURACY RESULTS PER EEG BAND/RHYTHM - KAPPA

VALUE

SVM-RBF kNN GraphSRC semiSRC un-semiSRC
1-4Hz 0.1920 0.1920 0.1559 0.1668 0.2189
4-8Hz 0.0872 0.1319 0.1528 0.1619 0.2197

8-12Hz 0.1649 0.1873 0.1974 0.2179 0.1857
13-30Hz 0.1500 0.1824 0.1552 0.1751 0.2090
30-45Hz 0.1500 0.1920 0.1090 0.0959 0.1592

TABLE III
CLASSIFICATION ACCURACY RESULTS PER EEG BAND/RHYTHM - FSCORE

SVM-RBF kNN GraphSRC semiSRC un-semiSRC
1-4Hz 0.5959 0.5959 0.5749 0.5817 0.6007
4-8Hz 0.5430 0.5657 0.5725 0.5794 0.6033

8-12Hz 0.5787 0.5937 0.5956 0.6066 0.5886
13-30Hz 0.5679 0.5910 0.5768 0.5871 0.6024
30-45Hz 0.5679 0.5960 0.5528 0.5460 0.5784

best classifier is the un-semiSRC, while at frequency band

30-45Hz the kNN provides the best performance. As we see

some situations (frequency bands in our analysis) favor a

specific classifier, and some other not. Hence, it raises the

issue of classifier’s robustness, as stated in [26], or how well

a classifier behaves on average in scenarios where favors

other classifiers. A quantity to check the robustness of an

classification algorithm among a given group of algorithms

is the ratio of the performance measure in a given situation

to the largest performance measure for the particular situation

[26]. Under this view, the robustness of the best classifier is

equal to 1 and all other classifiers will have values smaller

than 1. This quantity shows us how much deviate a specific

classifier from the best achievable performance. In Fig. 2 we

depict the distribution of each classifier’s robustness over all

frequency bands. The robustness has been computed for the

Kappa Value metric. From this figure we can concluded that

the most robust classifier is the un-semiSRC with a robustness

of 0.9468 for the particular experiments.

A. Discussion

A significant property of the SRC schemes, as well as the

kNN schemes, is that, while they need training data to perform

Fig. 2. Robustness of the classifiers using the Kappa Value metric.

the decision, they do not need any training procedure to tune

the model’s parameters (at least in principle). Clearly someone

could used the training data to find for example the optimal

neighborhood in kNN, however such cases are beyond our

scope here. The above property affects significantly the model-

ing approach since the model’s parameters need not to be tuned

(ie. retraining the model) if the data distributions have deviated

significantly from those of the original training set. However,

the above property comes with increased computational cost

since an optimization procedure is executed each time we test

a new instance.

The necessity to retrain the model has serious implica-

tions in scenarios where the calibration of the model (the

acquisition of new data and the retraining procedure) is a

time consuming and ”costly” procedure. A situation which

is presented many times in BCI related tasks. EEG signals are

highly subject-specific and vary considerably even between

recording sessions of the same subject within the same exper-

imental paradigm. To minimize the EEG variability effects,

a calibration phase on the beginning of each session is used

in order to optimize models’ parameters. Considerable effort

have been devoted to reduce the time of calibration phase by

utilizing Transfer Learning techniques, however even then, a

few training samples are still required to retrain the model.

However, the proposed SRC scheme doesnot need to be

retrained, hence, it contributes to the efficient design of zero

training BCI systems [27].

It is important to provide comments about the semi-

supervised ability of our algorithms. We can observed how

easily our framework utilizes the pre-stimulus condition of

the brain, without the need to have labels for it. Semi-

supervised learning (SSL) concerns the problem of how to

improve classifiers’ performance through making use of prior

knowledge from unlabeled data. SSL classification algorithms

are divided into two large groups [28]. This division is related

on the way each algorithm treats the unlabeled trials. In the

first group belongs algorithms that treat unlabeled trials as the

test trials and predict their labels during the training, while the

second group predicts the labels for unlabeled trials as well as

the new test trials through the training procedure. As we see

in both groups it is important to predict the labels of unlabeled

trials. Also, the unlabeled trials are connected implicitly with

the classification problem, but we are unable to have their

labels before the training procedure and utilize them during
the training procedure. However, in our case the unlabeled

trials can not be connected implicitly (but explicitly) with the

classification problem i.e. we do not desire and/or we are not

able to assign any label in these trials. While these trials are not

directly connected with the classification problem, there is an

indirect connection which is coming from neuroscience stating

that brain status before the stimulus presentation affects the

memory performance of the subject. Furthermore, from a data

analysis perspective, the pre-stimulus (unlabeled) trials/data

can be used to construct a more informative prior distribution

of stimulus (labeled) data. Overall, under the above views,

our algorithms utilize the unlabeled data to constrain the data
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distribution of the labeled data.

Closing this section, we want to note that the process of

memorizing items (in our study TV ads) is more complex

than other brain processes such as motor imagery tasks or

Steady State Visual Evoked Potentials tasks, hence our lower

performance levels compared to these tasks. However, restrict-

ing our view to memory tasks only, then our findings indicate

that the prediction of memory performance using EEG signals

in neuromarketing scenarios is a viable machine learning

task. Our work contribute to the current literature of memory

prediction using EEG trials [13], [15], [17]. Furthermore, by

taking into account the unbalanced nature of the problem and

the pre-stimulus status of the brain, the un-semiSRC algorithm

provides results beyond random agreement, and much better

performance than classical machine learning algorithms.

V. CONCLUSIONS

In this work we propose two new SRC schemes that are used

for the prediction of memory performance. The basic contribu-

tions of these schemes are: the ability to dealt with unlabeled

data (semi-supervised ability) and with the unbalanced nature

of the data. The provided results in a neuromarketing scenario

show the usefulness of our approach. In the future, first, we

intend to release a comprehensive version of the dataset to the

scientific community. Second, to extend the current algorithms

using the ideas of kernel and riemannian geometry [29]. And

third, to study and propose a new metric related to the concept

of memory performance.
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