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Abstract—Major Depressive Disorder (MDD) is a leading 
cause of disability worldwide. Current first line treatments are 
antidepressant medication and psychotherapy. However, they 
have limited effectiveness and there are no biomarkers that can 
predict treatment response at the individual level.  Transcranial 
direct current stimulation (tDCS) is non-invasive brain 
stimulation method that is a potential novel treatment for MDD. 
The present study sought to investigate neural biomarkers for 
predicting response to tDCS at the individual level using 
portable EEG. The clinical trial was a double-blinded, placebo-
controlled, randomized, superiority trial of home-based tDCS. 
Participants were randomized to a 10-week course of either 
active or sham tDCS sessions. Resting state, eyes closed EEG 
data were acquired at baseline, prior to starting tDCS, and at 
week 10. EEG data acquisition was conducted using a portable, 
4-electrode EEG device (Muse). The baseline EEG data from 21 
participants were used to train and test the deep learning models 
of 1D convolutional neural networks (1DCNNs), Long Short-
Term Memory (LSTM), Gated recurrent units (GRU) and the 
hybrid models combining 1DCNN and LSTM/GRU. A 
prediction rule was proposed and applied to the classifier 
outputs of each participant and the treatment outcomes were 
predicted. Different combinations of power spectral density 
vectors extracted from the EEG frequency bands of four 
electrodes were selected to improve the treatment outcome 
prediction. Using 1DCNN model the work achieved a treatment 
outcome prediction accuracy 85.7%, with a specificity of 71.4% 
for predicting treatment remission and sensitivity of 92.8% for 
predicting residual depressive symptoms, which was based on 
the combined theta and alpha EEG band power spectral density 
from the TP10 electrode. 

Keywords— deep learning, major depression, MDD, treatment 
outcome, CNN, LSTM, GRU, treatment remission, transcranial 
direct current stimulation 

I. INTRODUCTION 

Major depressive disorder (MDD) represents a 
significantly prevalent and debilitating mental health disorder, 
characterized by persistent feelings of a low mood or inability 
to experience pleasure that is associated with a diminished 
interest in daily activities and changes in neurovegetative 
symptoms [1]. It stands as one of the leading contributors to 
global disability [2], with a lifetime prevalence estimated at 
17% [3], thereby constituting a substantial economic burden 
[4]. Treatment of MDD remains challenging, related to the 
heterogeneity of the disorder and limited effectiveness of 
current treatment options [5].  Furthermore, treatments require 
several weeks duration to evaluate efficacy [6]. In recent 
years, research has focused on identifying neurological 

biomarkers of treatment response from electroencephalogram 
(EEG) data. EEG, being portable, offering high temporal 
resolution, and is cost-effective, emerging as a potential tool 
for such investigations. It enables the observation of 
neurological changes in the brain and has shown promising 
results in detecting treatment outcomes in MDD [7]. Pre-
treatment differences in theta band resting activity in the 
rostral anterior cingulate cortex were observed between 
responders and non-responders to antidepressant treatment 
[8].  Increased anterior cingulate cortex activity is reported as 
a reliable biomarker for antidepressant treatment response [9]. 
EEG signals from 21 electrodes during eyes closed resting 
state prior to treatment in 52 MDD participants showed that 
improvements in depressive severity were negatively related 
to delta and theta wave activity and positively related to beta 
activity at frontal recording sites [10]. Moreover, increased 
frontocentral theta EEG power, a slower anterior individual 
alpha peak frequency, a larger P300 amplitude, and decreased 
pre-frontal delta and beta cordance were predictors of non-
response to repetitive transcranial magnetic stimulation 
(rTMS) [11]. 

Recent advancements in machine learning and deep 
learning techniques have revolutionized treatment outcome 
prediction. One of the key strengths of machine learning 
systems lies in their adaptability and ability to be trained based 
on provided data. The Establishing Moderators and 
Biosignatures of Antidepressant Response in Clinical Care 
(EMBARC) study [12], which consisted of 309 MDD 
participants in a placebo-controlled antidepressant study, 
introduced Sparse EEG Latent SpacE Regression (SELSER), 
a machine learning algorithm predicted treatment outcomes 
using band powers by encompassing spatial filtering, band 
power feature extraction, and linear regression [13]. Pre-
treatment resting-state EEG data was used to train the 
algorithm. To validate the method's efficacy, it was tested on 
three additional datasets containing signals from 60 or more 
electrodes. The treatment outcome was quantified by 
measuring the pre-minus-post treatment differences in 
Hamilton Rating Scale for Depression (HAMD) [14] scores. 
Alpha waves from the resting eyes open condition 
significantly predicted the observed treatment score changes, 
particularly for sertraline efficacy prediction [13]. Numerous 
studies have examined the classification or prediction 
efficacies in assessing the treatment response across various 
MDD treatments from EEG signals. A random forest classifier 
utilizing features from EEG data collected by 32 electrodes 
achieved a 78% accuracy in predicting antidepressant 
response [15]. 
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TABLE I.  DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF 

TOTAL PATIENTS AT BASELINE

Characteristic Active 
Treatment 

Sham 
Treatment 

Number (Female) 12 (9) 9 (9) 

Age (years) 38.00 ± 9.31 35.88 ±10.64 
Age of onset (years) 18.00 ± 6.07 25.00 ± 9.81 

Previous number of episodes 2.9 ± 3.1 5.4 ± 7.6 

In first episode MDD 3 2 

Clinical ratings   
    HAMD 18.91±1.83 17.88±1.53 

    MADRSa 25.33±3.86 21.88±2.93 

Taking antidepressant medication  7 5 

In individual psychotherapy  0 1 
No other treatment during trial 5 4 

a.
A significant difference between groups was found for MADRS score, p = 0.038.  There were no 

significant differences for any other characteristics. 

Using EEG signals from 16 electrodes selective serotonin 
reuptake inhibitor (SSRI) treatment response is correctly 
predicted with an accuracy of 87.9% in [16].  

Treatment outcome prediction for tDCS using baseline 
EEG and the combination of Support Vector Machine (SVM), 
Linear Discriminant Analysis (LDA), and Extreme Learning 
Machines (ELM) classifiers, treatment response in mood and 
cognition is predicted with accuracies of 71 ± 11% (Tp9) and 
87 ± 5% (Pz), respectively, [17]. Pretrained convolutional 
neural network models through transfer learning achieved a 
96.55% accuracy in classifying responders and non-
responders to SSRI antidepressant treatment in [18]. For 
predicting rTMS treatment outcomes, [19] reported a mean 
accuracy of 92.28%.  

All these studies conducted EEG signal acquisition in 
controlled laboratory environments with multielectrode 
systems, requiring significant time and effort for head 
preparation. In our study, we introduced a novel approach of 
home-based tDCS treatment for MDD  [20, 21]. In addition, 
participants conducted EEG acquisition at their own home 
with real-time guidance from researchers through video calls, 
using a portable wireless 4-dry electrode EEG device. The 
power spectral density (PSD) estimated from the baseline/pre-
treatment EEG signals from 4 electrodes were used as inputs 
to the different deep learning architectures. Electrode 
selection and EEG band selections were performed to improve 
the deep learning model’s classification accuracy. We have 
also proposed a prediction rule to make use of the entire EEG 
signal. We have evaluated the treatment response prediction 
accuracy using a leave-one-subject-out manner. Despite the 
constraints due to remote home based data collection and 
limited number of electrodes, our study achieved a 
comparable treatment outcome prediction accuracy to other 
investigations.  

II. PARTICIPANT RECRUITMENT AND EEG DATA 

COLLECTION 

All participants provided written informed consent for 
participation. Ethical approval was provided by South 
Central-Hampshire B Research Ethics Committee UK. EEG 
data were acquired from a subsample of 21 MDD participants 
(18 women), with a mean of 37.1 years in age, standard 
deviation of 9.7 years. Clinical and demographic data of all 
participants in the study can be found in [21]. Inclusion criteria 
included being aged 18 years or older, a diagnosis of unipolar 
MDD with a current depressive episode as defined by the 
diagnostic criteria in the Diagnostic and statistical manual of 

mental disorders – 5th edition (DSM-V) [1], with a HAMD of 

 16, determined by a structured assessment using the Mini-

International Neuropsychiatric Interview (MINI; Version 
7.0.2) [22]. All participants being medication-free for 6 weeks 
prior to enrolment or taking a stable antidepressant medication 
with a stable medication source and agreeing to continue the 
same regimen throughout study participation, or if in 
psychotherapy, have maintained stable psychotherapy for at 
least 6 weeks prior to enrolment. Exclusion criteria included 
having a history of mania or psychosis, having treatment 
resistant depression, having a neurological disorder or a 
medical disorder that may mimic mood disorders, a history of 
hospital admission for depression or suicidal behaviour, or any 
exclusion criteria for receiving tDCS. Participants were 
recruited from online advertisements and general practitioner 
(GP)  referrals.  

The study was a double-blind, placebo-controlled, 
randomized, superiority, remote trial. During the treatment 
phase, participants were randomized into one of the two arms: 
active and sham tDCS for 10 weeks. The participants were 
divided equally between the arms and were not informed of 
their assignment. The active or sham tDCS sessions were self-
administered by participants in their homes 5 times a week for 
3 weeks and then 3 times a week for 7 weeks, for a total of 36 
sessions. After the completion of the blinded treatment phase 
all participants were offered to continue the treatment. 
Participants in the sham group were offered the active tDCS 
and participants in the active group were offered to continue 
maintenance treatment. Among the 21 MDD participants, 12 
had been randomised to the active tDCS treatment arm, and 9 
had been randomised to the sham treatment group.  

Each participant received real-time guidance by 
videoconference by trained research team members. Four 5-
minute pre-treatment EEG sessions recordings were made for 
each participant at their home. During EEG data collection, 
participants were instructed to sit relaxed without making any 
body movements. Two of the 5-minute recordings were 
performed with the participants' eyes closed, and  two were 
conducted during a resting state with eyes open. EEG 
recordings were obtained using a 4-electrode Muse device 
shown in Fig. 1., with a sampling frequency of 256 Hz. EEG 
data acquisition was performed using a wireless, low-cost, and 
easy-to-wear device equipped with four dry electrodes. The 
frontal electrode positions were AF7 and AF8, while the 
temporoparietal electrode positions were TP9 and TP10. The 
EEG signals were referenced to the FPz electrode. The 
recorded EEG signals were saved in CSV format, containing 
timestamps for each EEG sample, raw EEG signals from each 
electrode, Horse Shoe Indicator (HSI) values for each 
electrode, and other relevant information. The HSI values 
indicate the quality of electrode connectivity.  

III. EEG SIGNAL PRE-PROCESSING 

Treatment remission was defined as HAMD score at week 
10 being less than 8. Participants were divided into two 
groups: remission and non-remission to tDCS treatment based 

 

Fig. 1. MUSE EEG recording device. 
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on their HAMD rating at the end of the RCT at 10 weeks. In 
the active treatment arm, 6 participants achieved remission 
and 6 participants non-remission. In the sham treatment arm, 
1 participants attained remission and 8 participants non-
remission. 

For the deep learning based classification of MDD 
remission versus non-remission, two 5-minute-long EEG 
recordings during eyes closed state were utilized. Each of 
these recordings was divided into 60 non-overlapping EEG 
windows, each spanning 10 seconds. Each EEG sample from 
all electrodes was associated with an HSI value, indicating 
electrode connectivity quality. A value of 1 represented good 
connectivity, 2 denoted average connectivity, and 4 indicated 
poor connectivity. To further process the EEG windows, the 
HSI values were averaged over the samples, and windows 
with an average HSI below 2 were selected. 

For each participant in both groups, PSD is estimated from 
the selected EEG windows. Given the resting-state eyes 
closed paradigm during EEG data collection, where time-
locked evoked potentials were not expected, we focused on 
extracting relevant information in the frequency domain rather 
than the time domain. Each windowed EEG segment was 
transformed into its corresponding PSD vectors using Welch’s 
periodogram method [23]. To estimate the PSD using Welch's 
method, the 10-second EEG windows were further divided 
into 3-second sub-windows with a 2-second overlap. The 
resulting PSD contained half the number of frequency points 
compared to the time domain EEG samples in each window. 
Considering a sampling frequency of 256 Hz, the maximum 
frequency content in the PSD was 128 Hz.  The DC 
component, representing the 0 Hz frequency component in the 
PSD, is constrained to zero to eliminate the impact of baseline 
shifts in the EEG signals. In training the deep learning models, 
power density values associated with different frequency 
bands were extracted from the estimated PSD and employed 
as input vectors. 

IV. DEEP LEARNING MODEL AND PREDICTION RULE 

To predict the treatment outcome of a given participant 
regarding remission status, we employed deep learning 
models using different architectures including one-
dimensional convolutional neural networks (1DCNNs), Long 
Short-Term Memory (LSTM) networks, Gated recurrent units 
(GRU) networks and the hybrid models combining 1DCNN 
and LSTM/GRU architectures. Recurrent Neural Networks 
(RNNs) represent a pivotal class of neural networks tailored 
for sequential data processing. They are designed to retain 
information from preceding inputs and excel in scenarios 
where temporal dependencies matter. Since we provide power 
spectral density vectors as inputs to the neural networks, the 
dependencies between frequencies will be evaluated by 
RNNs. Within the realm of RNNs, Long Short-Term Memory 
(LSTM) networks [24] and Gated Recurrent Units (GRUs) 
[25] emerge as prominent architectures. The designs of LSTM 
and GRU specifically target the challenge of "vanishing 
gradients" encountered in conventional RNNs. Vanishing 
gradients pose a significant hurdle, arising when the gradients 
of the network weights diminish to an extent that impedes 
effective learning. By incorporating memory cells and 
strategically placed gates, LSTMs and GRUs empower the 
network to selectively store and retrieve information, 
facilitating more effective learning and capturing of frequency 
patterns in the PSD inputs. Whereas convolutional neural 
networks were designed to exploit patterns' invariance within 

a given domain [26]. In image processing, spatial invariance 
refers to the invariance of 2-dimensional shapes, while in the 
context of one-dimensional signals such as EEG data or power 
spectral density, it can represent signal-specific patterns like 
an event-related potential (ERP) or a peak within a frequency 
band. In this work 1DCNNs gave highest classification 
accuracy and prediction accuracy compared to other 
architectures. The details of the classification accuracies are 
given in the results and discussion section.  

The 1DCNNs employ one-dimensional convolutional 
filters, which slide along the input sequence, capturing local 
dependencies and hierarchies. Non-linear activation functions 
typically follow the convolutional operation, introducing non-
linearity to the model. Pooling layers can be utilized to reduce 
dimensionality and down sample the feature representations, 
thereby facilitating efficient feature learning. The learned 
features are then fed into fully connected layers, empowering 
the network to learn complex relationships and make 
predictions.  

The number of filters used in the initial layer of the deep 
learning model was adjusted based on the input vector 
dimension. For single electrode EEG, the PSD vector, 
representing all EEG bands (0-60 Hz) including delta (0.5-4 
Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and 
gamma (30-60 Hz), had a dimension of 183. In this case, we 
utilized 27 filters with a kernel size of 3 for 1DCNN models. 
However, when focusing solely on the alpha band, we 
employed only 5 convolutional filters with a kernel size of 3. 
Similarly, when classifying PSD with all EEG bands from all 
4 electrodes, the input vector size was 183x4, while for a 
single electrode classification, it was 183x1. In the utilization 
of LSTM and GRU architectures, the number of LSTM/GRU 
units was adjusted based on the dimension of the input vectors. 
For instance, when dealing with the alpha band PSD having a 
dimension of 12x4, we employed 4 LSTM/GRU units for 
modelling the network. A visual representation of the 1DCNN 
model used to classify the PSD input vector containing full 
EEG bands (0-60 Hz) and 4 electrodes can be found in Fig. 2. 

To assess the effectiveness of deep learning models for 
remission vs. non-remission participant classification, we 
conducted subject independent, leave-one-subject-out 
(LOSO) testing. Out of the 21 participants, one was excluded 
for testing, and from the remaining 20 participants, four (two 
from each class) were used for validation, leaving the data of 
16 participants for training the model. Considering 10 minutes 
of EEG signals for each participant, the estimated PSD vectors 
contributed by each participant were 60, although the actual 

Fig. 2. 1DCNN deep learning architecture for the full-band PSD input 
of 4 electrodes. 
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count might be slightly lower due to the omission of certain 
EEG windows with HSI values greater than 2. In total, there 
were 1235 PSD vectors available from all participants, 
resulting in an average of 58.81 training samples per 
participant. The deep learning model training was halted after 
50 epochs, and the model with the highest validation accuracy 
was selected for testing. This process was repeated for every 
participant, and their corresponding testing accuracies were 
recorded.  

We employed a prediction rule, commonly used in multi-
instance learning, to determine the treatment outcome based 
on the collective classifier outputs for each participant. The 
assignment of a participant to a specific treatment outcome 
depended on the majority class prediction among its samples. 
In essence, a participant was assigned to a class only if more 
than 50% of its samples were classified into that class. 
Complete treatment outcome prediction scheme is depicted in 
Fig. 3. For instance, consider a specific participant (ID 21), , 
where 55% of its samples (PSD vectors) were classified into 
the remission class and 45% into the non-remission class. 
Applying this rule led to the prediction of treatment remission. 
This prediction rule makes use of the entire 10-minute EEG 
signals to predict the treatment outcome.  

V. RESULTS AND DISCUSSION 

Incorporating PSDs from all four electrodes, covering the 
full EEG frequency bands from 0 - 60 Hz, and trained the deep 
learning model, the average classification accuracy obtained 
for the different deep learning models were between 50% to 
60%. Further we trained different deep learning models using 
PSD vectors from all four electrodes for the individual EEG 
bands, i.e., delta, theta, alpha, beta, and gamma bands and the 
corresponding average classification accuracies are presented 
in Table II. Considering the individual band PSD vectors as 
inputs for classification, the highest classification accuracy is 
obtained for alpha band. The CNN, GRU and combined CNN, 
GRU architectures obtained classification accuracies of 
64.62%, 64.87%, and 64.18% respectively. It is essential to 
highlight that these average classification accuracy rates, as 

shown in Table II, represents averaged performances of each 
of the deep learning models in LOSO testing before applying 
the treatment outcome prediction scheme. Notably, the 
classification accuracy rates for the alpha and gamma bands 
were significantly higher compared to the other frequency 
bands.  

We systematically investigated combinations of EEG 
bands. To achieve this, we experimented with all possible 
combinations of 2, 3, and 4 EEG bands extracted from the four 
electrodes. These combinations were then utilized as inputs to 
the model, and the resulting classification accuracies were 
examined. We noted enhanced classification accuracies when 
combining different frequency bands, showcasing the 
effectiveness of diverse EEG band combinations. To delve 
deeper into the analyses, we explored the individual 
contribution of each electrode in achieving these high 
classification accuracies using the bands that surpassed 60% 
accuracy for 1DCNN model with all four electrodes. By 
independently employing PSDs from each electrode for 
classification, we examined the performance. The PSD from 
the alpha band and the combination of theta and alpha bands 
from the TP10 electrode yielded the highest classification 
accuracies, reaching above 70%. Fig. 4. illustrates the 
classification accuracies achieved by various deep learning 
architectures using PSD vectors from the alpha band and the 
combination of theta and alpha bands from the TP10 
electrode. To investigate the influence of frontal and 
temporoparietal hemispherical asymmetry on classification, 
we individually trained the model using PSDs from AF7, AF8 
and TP9, TP10 electrode pairs, specifically for the bands and 
band combinations that achieved more than 60% accuracy 
using all four electrodes. Notably, the TP9, TP10 pair from the 
theta-alpha band combination and the alpha-beta band 
combination achieved classification accuracies close to 
70.34%. From all the band combinations and electrode 
selections, the highest classification accuracies were obtained 
as 70.62% and 70.52% for the 1DCNN with PSD vector inputs 
from alpha band and the combined theta and alpha bands 
respectively. With accuracies around 70% from using only the 
TP10 electrode with the alpha band and the combination of 
theta and alpha bands, we proceeded with these configurations 
to predict treatment remission. 

We selected the bands and band combinations that attained 
classification accuracies close to 70% and applied the 
prediction rule to each participant's classification accuracy. 
The participant-wise classification accuracies of the selected 
bands and band combinations are provided in Table III. 
Specifically, for participant 11, using alpha band PSD from 
the TP10 electrode resulted in a 37% classification accuracy, 
implying that only 37% of the total input PSD vectors were 
correctly classified into the non-remission class. 

TABLE II.   DEEP LEARNING ARCHITECTURE-WISE CLASSIFICATION 

ACCURACY FOR DIFFERENT FREQUENCY BAND INPUT VECTORS FROM 4 

ELECTRODES 

Frequency 
bands 

Classification Accuracies for different architectures 
in % 

CNN LSTM GRU CNN & 
LSTM 

CNN & 
GRU 

Delta 53.76 54.68 59.84 54.75 58.51 

Theta 55.76 53.44 56.92 51.07 55.25 

Alpha 64.62 60.06 64.87 59.54 64.18 

Beta 54.43 57.35 55.84 55.65 53.89 

Gamma 63.14 56.76 54.63 61.32 59.26 

 

Fig. 3. EEG based treatment outcome prediction scheme. 

 

Fig. 4. Classification accuracies obtained for different deep learning 
architectures for the band selected PSD vectors from TP10 electrode. 
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TABLE III.  PARTICIPANT-WISE CLASSIFICATION ACCURACY FOR THE  

ALPHA BAND AND THE COMBINATION OF THETA AND ALPHA BANDS FROM 

TP10 ELECTRODE 

Participa
nt ID 

Active/
Sham 

Treatment 
outcome 

Rounded classification 
accuracies in % 

Alpha 
band 

Theta and 
Alpha bands 

01 Sham Non-remission 95 96 

02 Sham Non-remission 90 82 
03 Active Non-remission 90 91 

04 Sham Non-remission 68 68 

05 Sham Non-remission 69 98 

06 Sham Non-remission 86 70 
07 Sham Non-remission 93 96 

08 Active Non-remission 90 87 

09 Active Non-remission 98 95 

10 Sham Non-remission 96 98 
11 Active Non-remission 37 8 

12 Active Remission 0 10 

13 Active Non-remission 96 82 

14 Active Remission 0 0 
15 Active Non-remission 81 95 

16 Active Remission 54 62 

17 Sham Non-remission 83 89 

18 Active Remission 50 56 
19 Active Remission 96 91 

20 Sham Remission 41 52 

21 Active Remission 70 55 

 

Similarly, the combined theta and alpha band PSD from 
the TP10 electrode achieved a classification accuracy of only 
8%. For treatment remission, using alpha band PSD from the 
TP10 electrode, four out of seven participants had a 
classification accuracy lower than or equal to 50%. 
Conversely, only 2 participants had a classification accuracy 
lower than or equal to 50% for PSD vectors in the combined 
theta and alpha bands from TP10.  

 In the present study, we defined the positive class as the 
non-remission group. We applied the prediction rule to the 
classification accuracies obtained from the alpha band and the 
theta-alpha band combination. Using the alpha band in 
conjunction with the TP10 electrode, we correctly predicted 
the treatment outcomes for 16 out of 21 participants, yielding 
a prediction accuracy of 76.19%. However, employing the 
combined theta and alpha band PSD, we achieved accurate 
predictions for 18 out of 21 participants' treatment outcomes, 
equating to an impressive prediction accuracy of 85.71%. To 
further assess the robustness of the prediction method with an 
accuracy of 85.71%, we calculated the sensitivity and 
specificity. The sensitivity of the devised prediction scheme 
was found to be 92.8%, indicating the ability to correctly 
identify non-remission participants, while the specificity was 
determined to be 71.4%, indicating the capacity to accurately 
recognize remission participants. 

The comparison of the proposed method with other 
existing approaches is presented in Table IV. Notably, all the 
methods that demonstrated higher accuracy than the proposed 
method utilized a larger number of electrodes. Specifically, 
the proposed method exhibited superior accuracy in predicting 
treatment non-remission compared to remission while 
effectively utilizing only one electrode. In comparison to the 
proposed method, both [15] and [17] yielded lower 
classification accuracy. Work [16], which employed 16 
electrodes, achieved a comparable accuracy to the proposed 
method. On the other hand, work [18] and [19] which utilizes 
much higher number of electrodes reported higher 
classification accuracy. 

TABLE IV.  COMPARISON OF THE PROPOSED WORK WITH OTHER 

TREATMENT OUTCOME PREDICTION 

Work Number of 
participants 

Number of 
electrodes Accuracy 

[15] 51 32 78% 

[16] 22 16 87.9% 

[17] 10 1 71% 

[18] 19 30 96.55% 

[19] 19 34 92.28% 

Our work 21 1 85.71% 

 

Moreover, [18] employed 10-fold cross-validation, implying 
that the model was not tested independently for each subject. 
In the case of [19], the training involved 30 subjects, with only 
4 subjects used for testing. As we conducted subject 
independent LOSO testing, the classification accuracy of the 
trained model, and consequently, the lower prediction 
accuracy, may be attributed to the relatively smaller number 
of participant representations in the remission class. To 
address this imbalance, we explored techniques such as 
oversampling the minority class (remission class) features to 
enhance classification accuracy. However, these efforts did 
not yield any significant improvements. 

One potential scope for future research lies in increasing 
the number of participants in each treatment arm and including 
additional measures, such as neuroimaging and clinical 
features, which could potentially enable the deep learning 
model to generalize better and yield improved performance. 
Considering MDD’s intricate nature as a complex mood 
disorder, it is plausible that there may exist subtle EEG 
signatures that specifically represent non-remission states 
[27]. 

VI. CONCLUSION 

In this study, we explored the potential of 1DCNNs for 
predicting treatment remission in MDD following a 10-week 
home-based treatment trial with active or sham tDCS. The 
deep learning model of 1DCNNs were trained on pre-
treatment EEG data acquired using a portable 4-electrode 
EEG device. The outputs of the convolutional models were 
used to make treatment predictions following a proposed 
prediction rule. To evaluate the effectiveness of various 
combinations of EEG bands and electrodes, we adopted a 
subject independent, LOSO testing approach. Our analyses 
revealed that the PSD vectors extracted from the alpha band 
and the combination of theta and alpha bands from EEG 
signals recorded with 4 electrodes, as well as from individual 
electrodes (e.g., PSD of theta and alpha band combination 
from TP10 electrode), exhibited higher prediction accuracy, 
reaching 85.7% accuracy, with sensitivity of 92.8% and 
specificity of 71.4%. These findings underscored the 
discriminatory power of certain frequency bands, notably the 
alpha band and the combination of theta and alpha bands, in 
differentiating between remission and non-remission states. 
Furthermore, we conducted an examination of frontal and 
temporoparietal hemispherical asymmetry's impact on 
classification accuracy and identified specific electrode pairs 
contributing to superior results. While the prediction accuracy 
proved superior for non-remission participants, we 
acknowledged the potential impact of a smaller number of 
participants represented in the remission class, which could 
have influenced the overall performance. Our exploration of 
oversampling techniques did not yield significant 
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improvements. The study has several limitations. Primarily, 
the sample size is modest, encompassing 21 participants, with 
only 12 undergoing active tDCS treatment and 9 receiving a 
placebo. Consequently, the outcomes cannot be conclusively 
attributed to either active tDCS or to sham treatment. 
Additionally, the EEG data acquisition was limited to four 
channels, which restricted the spatial resolution. The 
utilization of portable commercial-grade equipment may not 
match the potential performance of high-resolution 
experimental EEG devices. In future research, a larger dataset 
with an increased number of participants in the remission 
group could enhance model generalization and overall 
prediction performance. Given the intricate nature of MDD, it 
is reasonable to hypothesize that EEG signatures associated 
with non-remission states may manifest as more distinct than 
those indicative of remission. Additionally, considering 
alternative electrode positions that contribute to more 
discriminative EEGs could be a promising avenue for future 
research. 

In conclusion, our study has demonstrated the potential of 
one-dimensional CNNs in predicting treatment outcomes to 
tDCS in MDD based on PSD vectors derived from pre-
treatment EEG data. The identification of specific EEG bands 
and electrodes contributing to higher accuracy provides 
valuable insights for developing targeted treatment decision-
making approaches. Further research and validation with 
larger datasets are essential to establish the reliability and 
generalizability of the proposed method for real-world clinical 
applications [28]. 
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