
Privacy preserving layer partitioning for Deep Neural
Network models

Kishore Rajasekar
ST Engineering

Singapore

Randolph Loh
ST Engineering

Singapore

Kar Wai Fok
ST Engineering

Singapore

Vrizlynn L. L. Thing
ST Engineering

Singapore

Abstract—MLaaS (Machine Learning as a Service) has become
popular in the cloud computing domain, allowing users to
leverage cloud resources for running private inference of ML
models on their data. However, ensuring user input privacy and
secure inference execution is essential. One of the approaches to
protect data privacy and integrity is to use Trusted Execution
Environments (TEEs) by enabling execution of programs in
secure hardware enclave. Using TEEs can introduce significant
performance overhead due to the additional layers of encryption,
decryption, security and integrity checks. This can lead to
slower inference times compared to running on unprotected
hardware. In our work, we enhance the runtime performance
of ML models by introducing layer partitioning technique
and offloading computations to GPU. The technique comprises
two distinct partitions: one executed within the TEE, and the
other carried out using a GPU accelerator. Layer partitioning
exposes intermediate feature maps in the clear which can lead
to reconstruction attacks to recover the input. We conduct
experiments to demonstrate the effectiveness of our approach in
protecting against input reconstruction attacks developed using
trained conditional Generative Adversarial Network(c-GAN). The
evaluation is performed on widely used models such as VGG-16,
ResNet-50, and EfficientNetB0, using two datasets: ImageNet
for Image classification and TON IoT dataset for cybersecurity
attack detection.

Index Terms—enclave, model partition, private inference,
Trusted execution environment, intel sgx, CNN

I. INTRODUCTION

MLaaS (Machine Learning as a Service) has become a

popular approach to deploy trained deep learning models,

provided by cloud service giants like Microsoft Azure, Amazon

AWS, and Google Cloud. Users typically send their data such as

images and text, to cloud-based MLaaS platforms for inference

tasks. Trusted Execution Environments (TEEs) such as Intel®

Software Guard Extensions (Intel SGX) [1] can be used to

preserve the confidentiality of user data. Running full inference

of the complete trained model in Intel SGX on encrypted

user input which makes it invisible for the cloud service

provider. However, the performance gap in running inference

on accelerators like GPU compared to running within TEE

is very high. Hence, we adopt layer partitioning technique

where execution of inference of the trained model is split into

critical and non-critical partitions. Critical model partition is

executed within SGX enclave and non-critical part are the layers

offloaded to GPU. While leveraging the GPU can increase

computational efficiency, exposing intermediate feature maps

in the cloud poses a risk of reconstruction attacks. Our goal

is to identify the optimal layer for partitioning and enhance

privacy protection. The following are the contributions made

by this paper:

1) Analyze the inference runtime performance of three

image classification models, namely VGG-16, ResNet-50,

and EfficientNetB0 using layer partitioning techniques

for Python workloads within the context of TEE.

2) We then measure the efficacy of layer partitioning using

trained conditional Generative Adversarial Network (c-

GAN) models to evaluate the privacy vs efficiency in the

context of the three models. We evaluated ResNet-50 and

EfficientNetB0 on two datasets: the ImageNet Kaggle

ILSVRC 2012-2017 test dataset [2] and the cybersecurity

TON IoT dataset [3].

3) Additionally, we examine whether the choice of dataset

influences the reconstruct-ability of input images and

also determine if the speedups vary for different models

after identifying optimal partitioning points.

II. RELATED WORKS

Different methods can be employed to safeguard data privacy,

including Homomorphic Encryption libraries [4], [5], Secure

Multi-Party Computing [6] , Differential Privacy [7], and the

utilization of TEEs. Each approach offers distinct levels of

privacy protection and incurs varying costs [8].

In the case of TEE-based approaches, the TEE-shielding

approach runs the complete unmodified model inside enclaves,

ensuring both model confidentiality and high accuracy compara-

ble to the original model. The partition-based approach involves

manually selecting sensitive model layers to execute within an

enclave, while allocating the remaining layers to an untrusted

GPU for acceleration. This strategy results in reduced inference

latency compared to TEE-shielding approaches. Some prior

works include eNNclave [9] and AegisDNN [10]. eNNclave

replaces partitioned operators’ parameters with pre-trained

parameters from other publicly available models, which can

lead to a loss in inference accuracy. AegisDNN uses dynamic

programming to identify partitioning point to learn each layer’s

criticality, and partitions uncritical (plaintext) layers to GPU

to meet the user argument deadline.

Slalom [11] provides an inference framework that uses TEE-

GPU collaboration to protect data privacy and integrity. It

offloads computational intensive convolutions to GPU, and

preserves data privacy of the offloaded computations using

1126

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00202

cryptographic blinding technique. Origami inference [12] uses

a combination of model partitioning, computational offloading

and eliminates data blinding in second tier of inference to

provide fast and private inference by protecting input privacy

against a trained c-GAN adversary [13].

We aim to evaluate our layer partitioning approach on three

models. To protect exposed intermediate feature maps from

input reconstruction attacks, we adopt the method outlined in

[12]. This involves performing reconstruction attacks using c-

GAN models at each partition point. We use the trained model

with its original parameters and execute non-critical layers of

the model in plaintext on GPU. Existing approaches depend

on the Intel SGX SDK and lack direct support for Python

deep learning frameworks like PyTorch or TensorFlow. The

process of porting Python applications to SGX enclave involves

overcoming technical hurdles related to memory constraints,

compatibility, security, and performance optimization. Porting

Python applications to SGX enclave faces challenges due to:

(i) complex dependencies among modules, making it difficult

to ensure integrity; (ii) spawning new processes, requiring

separate handling of file access permissions [14]. Gramine [15],

[16], on the other hand, enables the execution of unmodified

applications within SGX enclaves, eliminating the need for

manual porting.

III. RESEARCH PROBLEM

A. Intel SGX

Intel SGX a technology developed by Intel that provides

a secure hardware enclave for protecting sensitive data and

computations. By running trained models within an SGX

enclave, user data can be encrypted, decrypted, and processed

securely, protecting it from potential threats in untrusted cloud

environments. Use of Intel SGX can enhance the privacy

and security of machine learning services, enabling users

to safely utilize cloud-based inference while preserving the

confidentiality of their data.

B. Model Partitioning

Layer partitioning is a technique that allows for the efficient

execution of machine learning model inference by dividing

the computational workload between an SGX enclave and

a GPU. When running the entire model inference within an

SGX enclave, limitations such as memory constraints and

performance overhead can arise, especially for large models.

To address these challenges, layer partitioning divides the model

into two partitions. The first partition consists of the initial

layers of the model, which are executed within the SGX enclave.

These layers typically contain the majority of the sensitive

information that could potentially lead to input reconstruction

attacks. User input privacy evaluation is done based on the

insight that only the first few layers of the model contain most

of the information required for input reconstruction compared

to the output from deeper layers of the model. Within the

SGX enclave, the input data is decrypted and processed. The

intermediate feature maps resulting from this computation are

then offloaded to an untrusted GPU for further processing. The

second partition, comprising the remaining layers of the model,

can be executed on the GPU for faster execution. This approach

optimizes the utilization of resources by leveraging the security

of SGX for the critical layers while taking advantage of the

computational power of the GPU for the non-critical layers.

C. Threat model

We define the adversary as an agent that tries to use observed

intermediate feature maps of model to reconstruct input in

the untrusted cloud environment. The term ‘untrusted cloud’

refers to cloud environments where the presence of third-party

adversaries poses a risk of unauthorized access or observation,

potentially enabling them to intercept or monitor sensitive data.

We use trained c-GAN adversary models for the reconstruction

attack evaluation, as outlined in Origami Inference [12], to

assess the reconstruct-ability of input images. The architecture

of the c-GAN model contains a Generator and Discriminator.

The generator follows an encoder-decoder architecture with

two residual blocks. The discriminator architecture consists

of two parts: a down-sampler and a series of convolutional

blocks. During training, the adversarial BCELoss loss is used

to measure the difference between predicted and target labels.

The training is done for 200 epochs. The reconstructed images

are of dimension 3× 224× 244.

IV. PROPOSED SOLUTION FRAMEWORK

The framework of our solution is shown in Fig. 1. The

steps for performing private inference using our solution are

as follows:

1) The user aims to utilize resources in an untrusted cloud

for running their model and performing model inference

on input data, all while ensuring the privacy of both the

model and the data.

2) The model and data are decrypted within the secure

and private TEE which is hosted on the cloud. The

information within the TEE cannot be exposed to the

untrusted cloud environment.

3) The model is split into critical and non-critical partitions

within the TEE, based on the architecture of the CNN

model and the optimal partitioning point.

4) The execution of the critical model partition on the input

data is performed within the secure TEE.

5) The output of the critical model partition which is

saved and sent out into the untrusted cloud for further

processing.

6) The intermediate feature maps and non-critical model

partition can be loaded and executed in a cloud-based

GPU for optimized runtime performance.

In this work, we aim to explore the performance improve-

ments and trade-off using model partitioning technique. This

section consists of four parts: Neural network models, Datasets,

Runtime performance evaluation and Privacy evaluation.

A. Neural Network Models

1) VGG-16: The architecture of VGG-16 [17] is shown

in Fig. 2a. The model consists of 16 layers in total, which

1127

Fig. 1: Secure system framework to perform private inference

includes 13 convolutional layers and 3 fully connected (FC)

layers.

2) ResNet-50: ResNet-50 is a CNN architecture [18] com-

posed of 50 layers, with its 16 residual blocks divided into four

stages comprising 3, 4, 6 and 3 blocks as shown in Fig. 2b. Skip

connections between blocks are used to mitigate the vanishing

gradient problem.

3) EfficientNetB0: The EfficientNetB0 architecture [19], as

illustrated in Fig. 2c, is composed of 16 Mobile Inverted

Bottleneck Convolution (MBConv) layers divided into seven

stages composed of varying number of layers and one FC layer.

B. Datasets

1) ImageNet: The ImageNet ILSVRC dataset [2] is a widely

used collection of images belonging to 1000 classes for image

classification tasks.

2) TON IoT Dataset converted to Images: In 2019,

TON IoT Dataset [3] was created based on a testbed envi-

ronment at the Cyber Range and IoT Labs at the University of

New South Wales (UNSW) Canberra, Australia. The TON IoT

dataset is converted to images by a processing method proposed

in [20] converting the time-based one-dimensional data in the

original dataset [3] into tensors that are accepted by CNNs.

The total number of classes are 8 attack types. For clarity, we

will refer to the TON IoT Dataset converted to images as the

”TON IoT image dataset”.

C. Runtime Performance Evaluation

In this study, we compared the runtimes of three models

when offloading different layers to the GPU. The partitioning

approach is used to help strike a balance between privacy

preservation and computational efficiency, utilizing the func-

tions of both Intel SGX and GPU acceleration. Gramine cannot

directly access to the GPU from within the enclave. To address

this limitation, we create a separate PyTorch process outside

(a) VGG-16 (b) ResNet-50 (c) EfficientNetB0

Fig. 2: Model architectures

1128

the enclave. This external process is responsible for offloading

computations to the GPU. The kernel switch occurs only once

during the offloading process and is measured as the time taken

to save the feature map and load it onto the GPU. This operation

typically takes between 0.02 to 0.1 seconds depending on the

feature map size.

1) Experimental Setup: Our experiments measure the run-

time for inference of the three aforementioned models offload-

ing the intermediate feature maps at different partition points.

The inference within the TEE was done using Gramine library

to run secure model inference within Intel SGX. The dataset

used was a subset of 100 samples from the Imagenet dataset to

measure the average inference runtimes of models partitioned

at each layer. The runtimes measured are in seconds. The

baseline used for each of the models is its runtime performance

in Full-Enclave setting. The code to run inference, for critical

layers in TEE and non-critical layers in GPU, was written

in Python 3.8. We conducted our evaluations on a desktop

machine comprising an Intel® Core™ i7-9700K CPU with

SGX capability, 8 threads and 64 GB of memory. We used an

NVIDIA GeForce RTX 2070 Ti GPU as the accelerator. The

operating system used is Ubuntu 22.04.2 LTS.

2) Analysis:
a) VGG-16: In Fig. 3a, we present the average inference

runtime of the VGG-16 model for different layer partitions.

The x-axis represents the partitioning points. For instance,

the x-axis label Layer 5 denotes the partitioning point at

the 5th convolutional layer of the model from the input

side which corresponds to the 3x3 Conv, 256 in VGG-

16 architecture shown in Fig. 2a. The partitioning is done after

the convolutional layer in each instance. In Fig. 3a, it can be

observed that there is a steady increase in runtime with the

increase in the number of layers executed in SGX enclave.

b) ResNet-50: In the case of ResNet-50, we observe the

same trend of increased inference runtime when the model is

partitioned at later layers, resulting in offloading execution of

fewer layers to the GPU, as illustrated in Fig. 3b. The four

stages in ResNet-50 contain various number of residual blocks,

and each residual block contains 3 convolutional layers. For

instance, the first stage contains 3 residual blocks, second stage

contains 4 residual blocks. The partition is done at the end of

each stage. Table I shows the number of convolutional layers

executed within the SGX enclave and GPU at different layer

partitioning points.

TABLE I: ResNet-50 Layer partitions

Environment Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
SGX enclave 1 conv layer 10 conv layers 22 conv layers 40 conv layers 49 conv layers

GPU 48 conv +
1 FC layers

39 conv +
1 FC layers

27 conv +
1 FC layers

9 conv +
1 FC layers

1 FC layer

c) EfficientNetB0: The runtime performance of inference

for each of these partition points shown in Fig. 3c indicates

a steady upward trend as the number of layers executed in

GPU decreases. Table II shows the number of MBConv blocks

executed within the SGX enclave and GPU at different layer

partitioning points.

(a) VGG-16

(b) ResNet-50

(c) EfficientNetB0

Fig. 3: Average inference runtime of DNN models for different

layer partitions.

D. Privacy Evaluation: Measuring reconstruct-ability of inter-
mediate feature maps

After analyzing the runtime performance, we evaluate the

privacy of the offloaded feature maps at different partition

points determining the optimal layer partition for each model

that balances speed-up and privacy. This is done by assessing

the degree to which input images can be reconstructed from

intermediate feature maps. Offloading more layers to the GPU

speeds up inference but increases the risk of compromising

input privacy. Striking the right balance is crucial to ensure

privacy is not compromised. In order to evaluate the privacy,

we adopt the use of a c-GAN adversary model to reconstruct

input images from the intermediate feature maps from different

layer partitions. We evaluate all three models on ImageNet, and

two models ResNet-50, EfficientB0 (top performing models

based on accuracy as per [20]) on the TON IoT image dataset.

These models were chosen to represent different architectural

characteristics and complexity levels.

1129

TABLE II: EfficientNetB0 Layer partitions

Environment Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

SGX enclave 1 conv layer
1 conv +

1 MBConv
layers

1 conv +
3 MBConv

layers

1 conv +
5 MBConv

layers

1 conv +
8 MBConv

layers

1 conv +
11 MBConv

layers

1 conv +
15 MBConv

layers

1 conv +
16 MBConv +
1 conv layers

GPU
16 MBConv
+ 1 conv +
1 FC layers

15 MBConv
+ 1 conv +
1 FC layers

13 MBConv
+ 1 conv +
1 FC layers

11 MBConv
+ 1 conv +
1 FC layers

8 MBConv
+ 1 conv +
1 FC layers

5 MBConv
+ 1 conv +
1 FC layers

1 MBConv
+ 1 conv +
1 FC layers

1 FC Layer

1) Experimental Setup: To reconstruct the input images, we

trained c-GAN models that takes the feature maps as input

and generates corresponding image samples. By training the

c-GAN on a dataset with 1000 images and their corresponding

intermediate feature maps for 200 epochs, we aimed to achieve

realistic and accurate image reconstructions. We used Python

3.8 for all our experiments to train c-GAN models and perform

model partitioning using PyTorch deep learning framework,

version 1.9.1. The training was conducted on the same desktop

machine with specifications identical to those mentioned in

Section IV-C1. We quantitatively evaluated the privacy of

the models by computing the Structural Similarity Index

Measure (SSIM) scores between the original images and their

reconstructed versions from the feature maps of different layers.

The SSIM metric provides a measure of structural similarity

and perceptual quality between two images. It ranges from

0 to 1. A higher SSIM value indicates a high similarity, in

terms of structural information, between the original image

and the reconstructed image. We selected the threshold SSIM

score of 0.2 to achieve the goal of safeguarding input privacy

considering the perceptual quality of the reconstructed image.

Subsequently, we determined the optimal layer for partitioning

to be the point at which the SSIM score falls below this

threshold and consistently remains low thereafter.

2) Analysis of models on ImageNet dataset: The summary

results can be seen in Table III.

TABLE III: Summary analysis results of model speedups on

ImageNet dataset

DNN Model Total
Partition Points

Optimal Partitioning
Point

Full-Enclave Inference
Runtime (Avg)

Partitioned Inference
Runtime (Avg)

Performance
Speedup (%)

VGG-16 13 Layer 8 4.2 sec 1.4 sec 66.6%

ResNet-50 5 Layer 4 4.02 sec 3.6 sec 10.4%

EfficientNetB0 8 Layer 4 3.7 sec 2.5 sec 32.4%

a) VGG-16: Fig. 7a depicts the SSIM metric values for

the similarity between the original and the reconstructed images

obtained form c-GAN model Generator using the feature maps

obtained from the respective layers. It can be observed that there

is a steady drop in the SSIM scores indicating that it becomes

progressively more challenging to reconstruct the original

images from the feature maps of the deeper layers. The SSIM

score after Layer 7 remains below 0.2 and the reconstructed

images can be seen in Fig. 4 for further visual inspection. We

can visually observe that the quality of reconstructed images

from Layer 2 feature maps is superior to those from Layer 7 and

Layer 8, indicating that it becomes increasingly challenging to

reconstruct input images from deeper layers. Layers with higher

spatial resolution feature maps (e.g., early convolutional layers)

are typically more vulnerable to reconstruction attacks. This

vulnerability arises because the spatial information retained in

these layers makes it easier to reconstruct the original input.

As the network progresses deeper into the architecture, we

observe a decrease in spatial resolution and an increase in the

abstraction of feature maps with the presence of convolutional

and pooling layers. These deeper layers contain less spatial and

fine-grained information about the input images, making them

less susceptible to reconstruction attacks. This trend is reflected

in the overall decrease in SSIM scores for reconstructed images.

The SSIM score stays below 0.2 after Layer 8, indicating that

(a) Reconstructed images from Layer 2 feature maps

(b) Reconstructed images from Layer 7 feature maps

(c) Reconstructed images from Layer 8 feature maps

Fig. 4: Reconstructed images from intermediate feature maps

of different layer partitions in VGG-16

Layer 8 is the optimal partitioning point. This decision is

based on both the SSIM score metric and visual inspection

of the reconstructed images. The average inference runtime is

1.4 seconds partitioned at Layer 8 compared to 4.2 seconds

for Full-Enclave execution as shown in Fig. 3a. Hence, the

speedup observed is 66.6% compared to Full-Enclave inference.

Prior works [11] and [12], they both achieve a speedup

of 10.1x to 12.7x for VGG-16, utilizing the Eigen library,

a high-performance C++ based linear algebra library that

enables outsourcing linear layers to hardware GPU. Due to

limitations in running unmodified PyTorch applications within

Intel SGX, Gramine is currently unable to directly utilize the

GPU. However, this functionality is planned for future releases,

1130

potentially resulting in higher speed-ups [21]. We aimed

to assess Python PyTorch workloads for a fair comparison.

Therefore, we present the results comparing the speedup against

Full-Enclave inference using the Gramine library. As far as we

know, our work is among the first to evaluate the performance

of Python PyTorch application workloads for privacy-preserving

inference utilizing both TEE and GPU acceleration.

b) ResNet-50: ResNet-50 also follows the similar trend

where it gets progressively harder to reconstruct images from

feature maps of deeper layers. Here the SSIM score remains

below 0.2 past Layer 3 as depicted in Fig. 7b. Hence, Layer

4 is identified as the optimal layer to partition for ResNet-50

model inference based on SSIM score and visual inspection of

Fig. 5 for the reconstructed images of ImageNet dataset. The

(a) Original images

(b) Reconstructed images from Layer 3 feature maps

(c) Reconstructed images from Layer 4 feature maps

Fig. 5: Reconstructed images from intermediate feature maps

of different layer partitions in ResNet-50.

average inference runtime is 3.6 seconds for model partitioned

at Layer 4 compared to 4.02 seconds for Full-Enclave execution.

Resulting in a speedup of 10.4% compared to Full-Enclave

inference.

c) EfficientNetB0: In the Fig. 7c, it can be observed that

there is a steady drop in the SSIM scores until Layer 4 and

slight increase in the scores until Layer 6 of EfficientNetB0.

However, it hovers around 0.2, which shows limited effec-

tiveness of the reconstructed images from deeper layers. The

reconstructed images can be seen in Fig. 6 for further visual

inspection. The SSIM score from Layer 4 onwards remains

around or below 0.2. Hence the optimal layer to partition will be

Layer 4. The average runtime for inference partitioning at Layer

4 of EfficientNetB0 is 2.5 seconds compared to 3.7 seconds

for Full-Enclave execution. Hence, the speedup observed is

32.4% compared to Full-Enclave inference.

3) Analysis of models on TON IoT image dataset:
a) ResNet-50: The SSIM scores, in Fig. 8a show a

decreasing trend until Layer 4, followed by an increase at

Layer 5 when evaluated on the TON IoT image dataset. It

was observed that the reconstructions contain high noise from

Layer 3 onwards. Hence, the optimal layer to partition the

model for use with TON IoT image dataset is Layer 3 whereas

(a) Original images

(b) Reconstructed images from Layer 3 feature maps

(c) Reconstructed images from Layer 4 feature maps

Fig. 6: Reconstructed images from intermediate feature maps

of different layer partitions in EfficientB0.

(a) VGG-16

(b) ResNet-50

(c) EfficientNetB0

Fig. 7: SSIM scores for reconstruction for different layer

partitions of DNN models evaluated on ImageNet dataset.

1131

the optimal partition point for evaluation on ImageNet was

identified to be Layer 4. The average inference runtime is

3.04 seconds for model partitioned at Layer 3 compared 4.02

seconds in Full-Enclave setting, resulting in a speedup of 24.3%

compared to Full-Enclave inference.

b) EfficientNetB0: SSIM scores measured for the layers

of EfficientNetB0 model for TON IoT image data can be

seen in Fig. 8b. The SSIM score for Layer 1, Layer 2 and

Layer 3 was observed to be higher than that of SSIM scores

for reconstruction based on the ImageNet dataset. However,

the optimal layer to partition remains the same as Layer 4

as in the case with the ImageNet dataset where the average

runtime is 2.5 seconds compared to 3.7 seconds for Full-

Enclave execution. Hence, the speedup observed is 32.4%

compared to Full-Enclave inference.

(a) ResNet-50

(b) EfficientNetB0

Fig. 8: SSIM scores for reconstruction for different layer

partitions of ResNet-50 and EfficientNetB0 evaluated on

TON IoT dataset.

V. CONCLUSION

Overall, our study showcases the potential of leveraging Intel

SGX and GPU acceleration for privacy-preserving inference

with deep learning models such as VGG-16, ResNet-50 and

EfficientNetB0. We have conducted runtime performance

analysis and assessed input privacy by measuring the input

reconstruct-ability using trained c-GAN adversary models for

each layer partition. The speedup rates differed among models,

depending on their architecture and the choice of the optimal

partition point. The majority of ML solutions and libraries

are written in Python. To facilitate library efficient adoption,

hence, we leverage Gramine as a Python package with seamless

support for both Tensorflow and PyTorch. While Gramine

allows running whole applications unmodified, it incurs high

runtime costs for full execution of inference in SGX enclave. To

address this, we use layer partitioning approach that improves

performance while executing inference in TEE for critical layers

and offloading rest of the computation for non-critical layers

to a co-located GPU. As a future work, we plan to explore

additional optimizations in performance for computationally

intensive convolutional layers in the critical model partition to

further improve the inference runtime for models.

REFERENCES

[1] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” Hasp@ isca, vol. 10, no. 1, 2013.

[2] W. K. Addison Howard, Eunbyung Park, “Imagenet
object localization challenge,” 2018. [Online]. Available:
https://kaggle.com/competitions/imagenet-object-localization-challenge

[3] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar, “Ton iot
telemetry dataset: A new generation dataset of iot and iiot for data-driven
intrusion detection systems,” Ieee Access, vol. 8, pp. 165 130–165 150,
2020.

[4] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International conference on
machine learning. PMLR, 2016, pp. 201–210.

[5] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference system for neural networks,” in
Proceedings of the 2020 Workshop on Privacy-Preserving Machine
Learning in Practice, 2020, pp. 27–30.

[6] S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure
computation for neural network training.” Proc. Priv. Enhancing Technol.,
vol. 2019, no. 3, pp. 26–49, 2019.

[7] A. Team et al., “Learning with privacy at scale,” Apple Mach. Learn. J,
vol. 1, no. 8, pp. 1–25, 2017.

[8] F. Mireshghallah, M. Taram, P. Vepakomma, A. Singh, R. Raskar, and
H. Esmaeilzadeh, “Privacy in deep learning: A survey,” arXiv preprint
arXiv:2004.12254, 2020.

[9] A. Schlögl and R. Böhme, “ennclave: offline inference with model
confidentiality,” in Proceedings of the 13th ACM Workshop on Artificial
Intelligence and Security, 2020, pp. 93–104.

[10] Y. Xiang, Y. Wang, H. Choi, M. Karimi, and H. Kim, “Aegisdnn:
Dependable and timely execution of dnn tasks with sgx,” in 2021 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2021, pp. 68–81.

[11] F. Tramr and D. Boneh, “Slalom: Fast verifiable and private execution
of neural networks in trusted hardwarem,” ICLR 2019, 2019.

[12] K. G. Narra, Z. Lin, Y. Wang, K. Balasubramanian, and M. Annavaram,
“Origami inference: private inference using hardware enclaves,” in 2021
IEEE 14th International Conference on Cloud Computing (CLOUD).
IEEE, 2021, pp. 78–84.

[13] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[14] D. Zhang, G. Wang, W. Xu, and K. Gao, “Sgxpy: Protecting integrity of
python applications with intel sgx,” in 2019 26th Asia-Pacific Software
Engineering Conference (APSEC), 2019, pp. 418–425.

[15] C.-C. Tsai, D. E. Porter, and M. Vij, “{Graphene-SGX}: A practical
library {OS} for unmodified applications on {SGX},” in 2017 USENIX
Annual Technical Conference (USENIX ATC 17), 2017, pp. 645–658.

[16] “Gramine library,” 2021. [Online]. Available:
https://github.com/gramineproject/gramine

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[19] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolu-
tional neural networks,” in International conference on machine learning.
PMLR, 2019, pp. 6105–6114.

[20] M. Kodyš, Z. Lu, K. W. Fok, and V. L. Thing, “Intrusion detection in
internet of things using convolutional neural networks,” in 2021 18th
International Conference on Privacy, Security and Trust (PST). IEEE,
2021, pp. 1–10.

[21] D. Kuvaiskii, G. Kumar, and M. Vij, “Computation offloading to hardware
accelerators in intel sgx and gramine library os,” 2022.

1132

