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Abstract—Artificial Intelligence (AI) has been widely used
in manufacturing to detect defects. AI models utilize product
images to distinguish whether a product is normal or abnor-
mal. If attackers use the model inversion attack to attack AI
models, the input images can be roughly restored, resulting
in product information leakage. In this paper, we propose a
Privacy-preserving Industrial Defect Detection System (PIDS),
which includes three image obfuscation methods to hide input
image information and uses them to train the model. Federated
learning and differential privacy are also applied to ensure that
sensitive data remains decentralized and secure, even during
training. Federated learning allows the model to be trained
across multiple local datasets without centralized data collection,
thereby reducing the risk of data exposure. Differential privacy
adds another layer of protection by adding randomness to the
learning process, making it hard for attackers to extract sensitive
information from the trained model. Experiments show that the
proposed system can achieve a high accuracy level of 96.5% in
defect image classification. Therefore, the proposed system can
detect defects accurately and preserve product information in
terms of data and models.

Index Terms—Industrial defect detection, federated learning,
differential privacy, image obfuscation

I. INTRODUCTION

Adopting artificial intelligence (AI) to detect defects is

a trend in manufacturing. Products are captured as images

for training AI models. These training images are closely

related to the products of the production lines and may

contain important business secrets. If an AI model identified

on the production line suffers from the model inversion attack

[1], attackers can roughly restore the input data, leading to

compromised product information and causing considerable

damage to the enterprise, as shown in Fig. 1.

Some researchers proposed image obfuscation techniques to

protect data. In [2], the effectiveness of two obfuscation tech-

niques, “blurring” and “blocking”, was investigated. Blurring,

a conventional method, is often employed to obscure details

like faces in images or license plates in street view photos. In

contrast, blocking achieves obfuscation by overlaying a solid

block over a specific object in an image. However, blurring

images may compromise their quality, and the blurring effect

might be reversible, implying certain limitations in privacy

protection. On the other hand, blocking images in machine

learning may result in less promising training outcomes. [3]

Fig. 1: Model inversion attack.

proposed “Learnable image encryption” to protect data. This

method utilized block-wise image encryption with moderate

strength, making the data indecipherable to humans while re-

maining understandable to machines. Additionally, it leverages

the computational process of deep neural networks, facilitating

robust calculations to boost its efficiency. However, if the

object is sufficiently distinct, the outline of the encrypted

object could still be discerned.

This paper introduces a Privacy-preserving Industrial Defect

Detection System (PIDS) to preserve model and data privacy

while maintaining high accuracy. We design three image ob-

fuscation methods to hide the images’ production information

so the human eye cannot distinguish the content of input

images. Meanwhile, the AI model can still learn the corre-

sponding features and classify them, thereby preventing the

leakage of product information. We also employ a federated

learning framework for model training to avoid data leakage.

Additionally, we use Differentially Private Stochastic Gradient

Descent (DP-SGD) [4] as an optimizer to protect the model.

We conduct three experiments to evaluate PIDS based

on a manufacturing dataset and an open dataset. From the

experiment based on the manufacturing dataset, PIDS can

achieve 96.5% accuracy for image classification and only

drops 0.2% accuracy while applying image obfuscation. From

the experiment based on the open dataset, PIDS only drops 1%

accuracy while applying image obfuscation. The results show

that PIDS can ensure accuracy and privacy at the same time.

Furthermore, PIDS can adjust the methods based on different
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characteristics of datasets while maintaining accuracy. Finally,

we investigate the impact of the noise multiplier of the DP-

SGD optimizer, which is the most important parameter of dif-

ferential privacy (DP). The results show that different models

require a trade-off between privacy protection and accuracy.

Further research can explore alternative privacy protection

methods and optimization strategies to find a better balance,

ensuring the simultaneous consideration of data privacy and

model accuracy.

In this paper, we achieve the following with PIDS:

• PIDS obfuscates images to a greater degree than tradi-

tional methods, such as learnable image encryption [3].

• PIDS achieves a balance between privacy protection and

model performance.

• Although attackers can obtain input data through model

inversion attacks, they still cannot recognize the product’s

data.

II. BACKGROUND

A. Federated Learning

Federated Learning (FL) is a decentralized approach to

machine learning that spreads datasets across multiple users’

local devices, avoiding centralizing data on a single server. In

FL, users preserve data privacy by performing model training

on local devices without sharing the original data. Only the

updated model parameters are sent to the central server for

aggregation to form the global model.

FL has several advantages. First, it is resource-efficient since

the model training process is performed on the local device,

reducing the need for data transfer and saving bandwidth and

computing resources. Second, FL can handle datasets scattered

across different locations or organizations, providing greater

flexibility and scope of application. This makes FL ideal for

machine learning in a decentralized environment. Most impor-

tantly, FL has core strengths in privacy protection. Compared

with traditional centralized machine learning, FL preserves

the privacy of raw data by distributing model training among

multiple users. Only the model parameters are transmitted, and

details of personal data are protected, ensuring data security.

Overall, FL performs well in terms of privacy preservation,

resource efficiency, and handling decentralized datasets. It

introduces innovative approaches to address data privacy and

machine learning challenges in a decentralized environment,

providing safe and efficient solutions for machine learning.

B. Differential Privacy

Differential privacy, as elucidated in studies such as [5]–[7],

constitutes a foundational method for preserving individual

privacy while analyzing personal data. By incorporating slight

perturbations, this approach guarantees that observers cannot

discern precise data modifications before analysis, thus miti-

gating the risk of data leakage. Differential privacy endeavors

to optimize query precision while minimizing the potential for

privacy breaches.

The following formula is the definition of ε-differential
privacy, which is used to measure the privacy protection

strength of data processing algorithms:

• Pr [M (d) ∈ S] indicates the probability that the algo-
rithm’s output M falls in the set S given the data set

d. This probability measures how privacy-preserving the
output of algorithm M is for the dataset d.

• Pr [M (d′) ∈ S] indicates the probability that the algo-
rithm’s output M falls in the set S given the data set

d′ (one data sample difference from d). This probability
measures how privacy-preserving the output of algorithm

M is for the dataset d′.
• ε is a non-negative number and is called the privacy
parameter. It quantifies the difference between the output

of algorithm M for two similar datasets, d and d′. The
smaller the ε, the smaller the impact of the difference
between data sets on the algorithm output, and the higher

the degree of privacy protection.

• δ is a non-negative number known as the failure proba-
bility, which introduces randomness, allowing the ε limit
to be exceeded with a certain probability. A smaller δ
implies a lower probability of failure for the privacy

protection provided by algorithm M .

Pr [M (d) ∈ S] ≤ eεPr [M (d′) ∈ S] + δ (1)

C. Differential Private Stochastic Gradient Descent (DP-
SGD)

Differentially Private Stochastic Gradient Descent (DP-

SGD) [4] is a differential privacy technique based on a variant

of the original definition with the addition of δ, developed
by Dwork et al. [8]. The primary purpose of DP-SGD is

to provide robust protection for sensitive data, ensuring that

their privacy is maintained throughout the training process.

In machine learning, where vast quantities of data are often

required to train models effectively, it becomes crucial to

address the potential inclusion of sensitive information, such as

personal identities, within these datasets. Therefore, DP-SGD

aims to control the impact of the training data on the results

during the training process, ensuring the privacy of sensitive

information. The algorithm mainly restricts gradient updates,

which are different from the original. The gradients are first

clipped, then the noise is added to generate new gradients for

subsequent updates.

III. RELATED WORKS

In terms of image obfuscation technology, some schol-

ars have investigated this field. The author of [9] proposed

the research on “Perceptual Indistinguishability-Net (PI-Net)”,

which explored how to apply differential privacy to facial

image obfuscation. They achieved image obfuscation by intro-

ducing noise and manipulating the semantic attributes of the

face to generate realistic facial images. In the work “Image

Obfuscation for Privacy-Preserving Machine Learning” by

Mathilde Raynal et al. [10], they contributed to quantifying

image privacy through a series of obfuscation techniques
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Fig. 2: The overview of PIDS.

such as Mixing, Pixel Grafting, Pixel Shuffling, adding noise,

and Pixelizing. In [11], image obfuscation techniques (i.e.,

pixelating, blurring, and masking) have been developed to

protect sensitive image information. The authors also im-

plemented the proposed framework to reconstruct obscured

facial images and evaluated the reconstructed images using

structural or identity-based metrics. [12] aimed to enhance

digital image privacy through watermarking and a QR code-

based visual cryptography approach. This method, requiring

no expansion, produces aesthetically pleasing QR codes for

sharing meaningful data. Initially, the original secret image is

watermarked with elements like copyright logos or signatures.

Then, halftoning is applied to control pixel expansion. The

halftoned image is divided into two shares using Visual Cryp-

tography (VC) and combined with a QR code for meaningful

content. [13] introduced a novel image obfuscation technique,

merging a variational autoencoder (VAE) with random non-

bijective pixel intensity mapping to protect medical image

information. This method allowed deep learning models to

be trained on obfuscated images without significant compu-

tational overhead, ensuring defense against visual and AI-

based reconstruction attacks. In [14], we have published image

obfuscation methods for industrial defect detection systems.

However, only image obfuscation methods are not enough

to protect data and AI models. Thus, this paper integrates

federated learning and differential privacy with obfuscation

methods to enhance data and model privacy protection for

industrial defect detection systems. Furthermore, this paper

provides more complete experiments to show the effectiveness

of the proposed method.

IV. PRIVACY-PRESERVING INDUSTRIAL DEFECT

DETECTION SYSTEM

We propose a Privacy-preserving Industrial Defect Detec-

tion System (PIDS), as shown in Fig. 2. First, the input

image is applied to a series of obfuscation operations, i.e.,

average, shuffle, and switch row methods. These procedures

primarily hide image information from human eyes but can

still be recognized by AI models. The obfuscated images are

the training data for the classification model used for defect

classification. To enhance data privacy, PIDS is developed as a

federated learning architecture. Additionally, we use DP-SGD

as an optimizer to preserve model gradients during training.

Fig. 3: An example of the average method.

Fig. 4: An example of the shuffle method.

A. Image Obfuscation Module

1) Average Method: In the average method, a mask of a
specified size moves from top to bottom and left to right.

Each movement will calculate the average value from the

mask pixels. Then, we replace all mask pixels with the average

value. Fig. 3 demonstrates the process of the average method.

The average method can blur images.

2) Shuffle Method: Based on [3], we design the shuffle
method. The shuffle method randomly generates a Shuffle Key

whose length is the area of the mask. Then, it will move

the mask from top to bottom and left to right and sort the

mask pixels according to the value in Shuffle Key. Fig. 4 is

an example of the shuffle method. The shuffle method achieves

image obfuscation.

3) Switch Row Method: The switch row method randomly
generates a Row Key whose length is the height of the image.

Then, it will sort the row of the image according to the value

of Row Key. Fig. 5 is the process of the switch row method.

The switch row method can achieve better image obfuscation.

B. Image Classification Model

For different complex classification tasks, we choose Con-

volutional Neural Network (CNN), ResNet50 [15], and Mo-

bileNetV2 [16] as the classification models. CNN is a basic

classification model. ResNet50 is a complex model that can

handle difficult image classification tasks. MobileNetV2 is a

lightweight model suitable for embedded systems in manufac-

turing environments.

We first perform feature extraction in CNN through mul-

tiple convolutional layers and max pooling layers. Then, the

feature maps are flattened into one-dimensional vectors using

a flattening layer. Finally, we build fully connected layers for

the final classification predictions and employ dropout layers

to reduce overfitting.

In ResNet50 and MobileNetV2, we modify the architecture

to improve the performance. First, we remove the original

classification layers of ResNet50 and MobileNetV2. Next,

we connect the output of ResNet50 and MobileNetV2 to

a GlobalAveragePooling2D layer, which reduces the feature
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Fig. 5: An example of the switch row method.

maps’ spatial dimensions. Subsequently, we add a dense layer

with 128 nodes and ReLU activation to extract higher-level

features. Finally, we replace the original classification layers

with our dense layer, consisting of six nodes and a softmax

activation for generating class probabilities.

C. Federated Learning Model

We develop PIDS as a federated learning architecture to

enhance data privacy. Federated learning consists of a server

and multiple clients. The server aggregates the models while

the clients perform the training. Initially, the clients start

training based on predefined parameters. Once the training

is complete, the trained models are sent to the server for

aggregation, completing one round of federated learning. The

server distributes the aggregated model back to the partici-

pating clients for the next round of training. The iterative

training, aggregation, and redistribution process continues until

the desired model performance is achieved.

We build PIDS based on the Flower framework [17], an

open-source framework for federated learning. Flower pro-

vides tools and APIs to simplify setting up federated learning

systems, managing device communication, and aggregating

model updates. First, we set up a Flower server to manage

the federated learning process. Then, we define the server

configuration, such as the IP address and port to listen to,

and we define the model we will use. Once connected, clients

can train their local models with their data. Flower handles the

aggregation of model updates securely to ensure privacy and

prevent information leakage. Using Flower’s monitoring capa-

bilities, we can monitor metrics, evaluate model performance,

and manage federated learning tasks efficiently. By following

these steps and leveraging Flower’s features, we effectively

implement federated learning in PIDS.

D. Differential Private Stochastic Gradient Descent (DP-
SGD)

To safeguard the confidentiality of sensitive information, we

further integrate differential privacy for PIDS. We employ the

“DPKerasSGDOptimizer” of TensorFlow Privacy to merge dif-

ferential privacy into our optimization process. The optimizer

allows us to set several crucial parameters that control privacy

protection while training our models.

• L2 Norm Clip: The L2 norm clip parameter applies an

upper bound on the L2 norm of individual gradients

during training. Limiting the scale of gradients prevents

large updates that could unintentionally reveal sensitive

information. We set the L2 Norm Clip to 1.0 to balance
model performance and privacy preservation.

• Noise multiplier: Differential privacy relies on adding

carefully calibrated noise to gradient updates. The noise

multiplier parameter determines the scale of this noise,

with higher values enhancing privacy at the cost of

increased randomness in the learning process. To achieve

a balance, we set the noise multiplier to 0.01, ensuring a
reasonable level of privacy without significantly compro-

mising model accuracy.

• Micro batch: Our federated learning approach leverages

micro batches to compute gradients on smaller subsets

of data, reducing the risk of data exposure. We configure

the number of microbatch as 1, optimizing computational
efficiency while maintaining differential privacy.

• Learning rate: The learning rate parameter checks the step

size during gradient descent, influencing the convergence

and stability of our models. We initialize the learning

rate to 0.1, a reasonable value suitable for efficient
optimization without risking divergence.

• Gradient Accumulation Steps: We utilize gradient accu-

mulation steps to manage memory usage and optimize

training with large batch sizes. This parameter determines

the number of gradient accumulation steps before ap-

plying updates. We balance computational resources by

setting gradient accumulation steps to 4 while ensuring
effective model training.

By carefully configuring these differential privacy parameters

within our federated learning setup, we balance privacy pro-

tection and model performance, enabling robust and privacy-

preserving machine learning in distributed environments.

We evaluate PIDS and compare it using CNN, ResNet50,

and MobileNetV2 based on manufacturing and open datasets

in the following experiments. We also analyze the effects of

different noise multipliers since the noise multiplier is a critical

factor in differential privacy.

E. The Experiment based on Manufacturing Dataset

We adopt the “AOI defect classification dataset” provided

by AIdea [18] to evaluate PIDS. There are six classes, “nor-

mal, void, horizontal defect, vertical defect, edge defect, and

particle,” respectively. We resize the defective images from

512x512 to 224x224 to save computing resources.

First, we evaluate the effects of the obfuscation module.

The resized images are applied with the average, shuffle, and

switch row methods, with the average method’s mask 2x2

and the shuffle method’s mask 4x4. Fig. 6 illustrates the AOI

defects before and after the image obfuscation module. The

image obfuscation module achieves better results on the void,

horizontal defect, and particle class. In Fig. 7, we use void

class to compare the proposed obfuscation methods with the

obfuscation method of [3]. Our method achieves a higher

degree of obfuscation in the original images, making it more

challenging for the human eye to identify them as belonging

to the void class.
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Fig. 6: AOI defect image after applied image obfuscation

module.

(a) Original (b) Learnable image
encryption from [3]

(c) Our proposed ob-
fuscation method

Fig. 7: Comparison of obfuscation methods.

Then, we compare the classification performance of CNN,

MobileNetV2, and ResNet50. 80% of the obfuscated dataset

goes into the training set and 20% of the obfuscated dataset

goes into the testing set.

V. EXPERIMENT

According to Table I, when employing image obfuscation,

there is a slight decrease in the accuracy of the three models,

yet the overall impact is deemed insignificant. CNN, in partic-

ular, dropped only 0.2%. That is, PIDS can balance between

privacy protection and model performance.

A. The Experiment based on CIFAR-10

We also conduct experiments on the CIFAR-10 dataset [19].

For the CIFAR-10 experiments, we do not use CNN as the

training model since it does not perform well on CIFAR-10.

Instead, we choose MobileNetV2 and ResNet50 models and

use DP-SGD as the optimizer to protect data privacy. We train

the models using the original image size of 32x32.

Next, we evaluate the effectiveness of the obfuscation mod-

ule. Fig. 8 and Fig. 9 demonstrate the impact of the average

and shuffle methods on CIFAR-10. We can observe that the

obfuscated images are difficult for human eyes to recognize.

Then, we compare the performance of MobileNetV2 and

ResNet50. 80% of the obfuscated dataset is used for training,

and the remaining 20% is used for testing.

The experimental results in Table II indicate that employ-

ing our PIDS system on CIFAR-10 could potentially lead

to a decrease in accuracy when simultaneously utilizing all

three methods (average, shuffle, and switch row). Therefore,

we individually evaluate the accuracy of each method. The

results show that the average and shuffle methods perform the

TABLE I: Accuracy and loss for different models

model and methods accuracy loss
CNN 0.938 0.254
CNN with three methods 0.936 0.270
MobileNetV2 0.946 0.330
MobileNetV2 with three methods 0.936 0.280
ResNet50 0.982 0.072
ResNet50 with three methods 0.965 0.111

Fig. 8: CIFAR-10 images processed by average and shuffle.

best. Hence, we also combine these two methods to evaluate

their accuracy on CIFAR-10. The final results indicate that

combining average and shuffle methods can achieve the best

accuracy. That is, selecting appropriate obfuscation methods

in PIDS can protect data privacy while maintaining reasonable

accuracy in image classification tasks.

B. The Experiment based on Noise multiplier

In addition to testing different datasets, we conduct ex-

periments on the CNN, ResNet50, and MobileNetV2 models

while adjusting the noise multiplier value in the DP-SGD

optimizer. The noise multiplier value affects the level of

privacy protection, with higher values indicating more robust

protection but potentially lower accuracy. These experiments

investigate the impact of different noise multiplier values on

model accuracy.

We perform experiments with varying noise multiplier val-

ues. Initially, we set the noise multiplier value to 0.01, which
is determined to provide higher accuracy in our experiments.

Then, we further increase the noise multiplier value to 0.05 to
test its amplified effect on different models.

According to the results in Table III, the accuracy of

different models decreases to varying degrees as the noise

multiplier value increases. Among them, CNN performs the

best, while MobileNetV2 performs the worst. Selecting an

appropriate noise multiplier value can protect data privacy to

a certain extent while maintaining reasonable model accuracy.

Overall, different models require a trade-off between privacy

protection and accuracy. Further research can explore alterna-

tive privacy protection methods and optimization strategies to

find a better balance, ensuring the simultaneous consideration

of data privacy and model accuracy.

VI. CONCLUSION

In this paper, we investigated the data privacy problem

that came with industrial AI development. We presented a
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Fig. 9: Dog image of CIFAR-10 processed by average and

shuffle.

TABLE II: Experimental results of MobileNetV2 and

ResNet50 on CIFAR-10 dataset

model and methods accuracy loss
MobileNetV2 0.740 0.771
MobileNetV2 with average 0.721 0.832
MobileNetV2 with shuffle 0.706 0.865
MobileNetV2 with switch row 0.473 1.471
MobileNetV2 with three methods 0.463 1.503
MobileNetV2 with average and shuffle 0.710 0.87
ResNet50 0.814 0.825
ResNet50 with average 0.790 0.848
ResNet50 with shuffle 0.803 0.781
ResNet50 with switch row 0.594 0.788
ResNet50 with three methods 0.597 1.369
ResNet50 with average and shuffle 0.801 0.78

Privacy-preserving Industrial Defect Detection System (PIDS),

which integrated image obfuscation, differential privacy, and

federated learning architecture. We also evaluate PIDS on the

manufacturing dataset and CIFAR-10 dataset. Experiments and

analysis showed that PIDS can achieve a high accuracy of

96.5% in defect image classification. PIDS only drops 0.2%

accuracy while applying image obfuscation. That is, PIDS

achieved high accuracy while preserving privacy both model-

wise and data-wise. As a result, PIDS solved the problem of

weak obfuscation and the model inversion attack.
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