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Abstract—In the realm of healthcare where decentralized facil-
ities are prevalent, machine learning faces two major challenges
concerning the protection of data and models. The data-level
challenge concerns the data privacy leakage when centralizing
data with sensitive personal information. While the model-
level challenge arises from the heterogeneity of local models,
which need to be collaboratively trained while ensuring their
confidentiality to address intellectual property concerns. To
tackle these challenges, we propose a new framework termed
Abstention-Aware Federated Voting (AAFV) that can collabora-
tively and confidentially train heterogeneous local models while
simultaneously protecting the data privacy. This is achieved by
integrating a novel abstention-aware voting mechanism and a
differential privacy mechanism onto local models’ predictions.
In particular, the proposed abstention-aware voting mechanism
exploits a threshold-based abstention method to select high-
confidence votes from heterogeneous local models, which not
only enhances the learning utility but also protects model con-
fidentiality. Furthermore, we implement AAFV on two practical
prediction tasks of diabetes and in-hospital patient mortality. The
experiments demonstrate the effectiveness and confidentiality of
AAFV in testing accuracy and privacy protection.

Index Terms—federated learning, healthcare data, privacy,
heterogeneous model

I. INTRODUCTION

Machine learning nowadays has achieved tremendous suc-

cess in real-world applications, such as medical image diag-

nose [3], [19], [37], disease risk prediction [27], [33], [35],

and genetic information analyse [1], [20], [28], etc.

In the healthcare industry, an extensive dataset providing a

comprehensive multi-faceted perspective is typically required

to guarantee model utility. However, healthcare data collected

by medical and health institutions across different regions

often have inherent biases. For example, data on cystic fibrosis

in the US and UK might differ due to varying treatment

methods [14]. Similarly, institutions specializing in oncology

and dentistry might record data on diabetic patients with

certain biases in various aspects [24]. These biases could

tremendously reduce the model utility by leading to skewed

or unrepresentative results.

This makes it necessary to integrate more institutions and

to leverage a broader range of data, thereby increasing the

dataset size and mitigating inherent biases in the data sources.

However, collecting the healthcare data faces legal, social,

and privacy challenges. Regulations such as the US Health

Insurance Portability and Accountability Act (HIPAA) and the

EU General Data Protection Regulation (GDPR) [9], which

strictly control the use of personal health information, pose

challenges to data sharing and access in healthcare.

Federated learning enables a group of healthcare facilities to

collaboratively train a machine learning model using data from

various sources, without the need to share sensitive informa-

tion. This approach has been applied in tasks like predicting

Adverse Drug Reactions and differentiating brain cancer MRI

images [10], [29]. Currently, applications of federated learning

in healthcare often utilize an algorithm known as Federated

Averaging (FedAvg) [25]. Within this framework, a central

server distributes a global model to each facility (client),

and aggregates locally trained model parameters to form a

final averaged global model. However, FedAvg struggles with

model heterogeneity, as all models used are distributed by

the central server. Furthermore, some confidential models

cannot be freely distributed to unauthorized facilities, further

restricting the usage of FedAvg.

In many practical collaborative learning scenarios, local

clients/hospitals typically develop their local models using

private resources (e.g. patient medical records) and proprietary

techniques. This leads to heterogeneity among local models

and gives rise to challenges related to data privacy and model

intellectual property concerns. Even though federated learning

offers a distributed scheme where local models can be trained

without sharing their private datasets, it has been demonstrated

that certain attacks, such as membership inference attacks [15],

[38], can infer training data from information like predictions,

gradients, and model parameters.

Differential privacy provides a rigorous mathematical

framework for protecting data privacy in machine learning,

see e.g. [2], [8], [12]. Several methods, including the expo-

nential mechanism [26], objective perturbation [4], [5], and

the piecewise mechanism [34], have been proposed to meet

differential privacy requirements. In the healthcare realm,

differential privacy mechanisms have been implemented to

protect sensitive healthcare datasets against potential attacks

in settings where all clients have the same structure [7], [30].

However, it is still quite challenging to simultaneously deal

with the model heterogeneity and data privacy issues in the

practical healthcare applications.

In this paper, to address these challenges, we propose a

novel framework, termed Abstention-Aware Federated Voting

(AAFV). This framework enables collaborative and confiden-

tial training of heterogeneous local models while protect-

ing data privacy. This is achieved by integrating a novel
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abstention-aware voting mechanism with a local differential

privacy mechanism into collaborative learning. In particular,

the proposed abstention-aware voting mechanism utilizes a

threshold-based abstention method to select high-confidence

votes from heterogeneous local models, which not only en-

hances learning utility but also protects model confidentiality.

In summary, the contributions of this paper are as below:

• We introduce a new Abstention-Aware Federated Vot-

ing (AAFV) framework, designed to enable distributed

healthcare facilities to collaboratively and confidentially

train heterogeneous local models. This framework not

only preserves sensitive patient data privacy but also

protects the model intellectual property.

• Empirical experiments are conducted to evaluate the

performance of the AAFV framework in two critical real-

world healthcare tasks: diabetes prediction and in-hospital

patient mortality prediction. The results demonstrate the

effectiveness and superiority of AAFV in practical ap-

plications, particularly in enhancing model utility while

protecting data privacy and model confidentiality.

II. PRELIMINARIES

A. Problem Formulation

Typically, healthcare risk assessment can be formulated as a

binary classification task: either a patient is positive or negative

to a certain risk. The i-th sample xi in a healthcare dataset is

represented in terms of C features: xi ∈ R
C . The label of xi

is denoted as yi ∈ {0, 1}, where 1 and 0 represent the positive

and negative labels, respectively.

Consider a federated learning system with K distributed

local health entities/clients. The k-th client possesses a private

labeled dataset Dk = {(xi, yi)}Nk
i=1, which contains Nk sam-

ples as well as the corresponding diagnosis/labels. There is a

public unlabeled dataset Du = {xu
i }Nu

i=1 that includes only Nu

samples of features without labels. The public dataset will be

exploited for aggregation and is only accessible for all entities

participated in the federated learning system.

The k-th client owns a local machine learning model

fk : R
C → [0, 1] for healthcare data analysis, which takes

a healthcare data sample x ∈ R
C as the input and outputs

a real number pk = fk(x) ∈ [0, 1] representing the k-th

client’s confidence score on sample x. Note that in practical

applications, local models {fk}Kk=1 are typically developed

using their local resources and proprietary techniques, thereby

incurring the challenges related to model heterogeneity, data

privacy, and the model intellectual property concerns.

B. Federated Voting

FedAvg is a notorious federated learning framework that

collects the model parameters from clients and aggregates

them by averaging. However, FedAvg assumes that all local

models have the same structure and can easily lead to privacy

leakage through the shared local model parameters.

In order to address the model heterogeneity issue and the

data privacy concern simultaneously, we introduce a federated

voting framework that allows local clients to share their votes

Federated VotingFederated Averaging

Server Server

Fig. 1. A comparison between FedAvg and the federated voting.

(instead of model parameters) on an auxiliary unlabeled public

dataset for aggregation. A comparison between this federated

voting framework and FedAvg is illustrated in Figure 1.

This work will exploit a novel abstention-aware federated

voting mechanism, which collects high-confidence local votes

to generate global votes (pseudo labels) for an auxiliary

unlabeled public dataset for collaboration. Specifically, each

client first uses its local private model to make predictions

on unlabeled dataset and then votes using a novel threshold-

based abstention-aware voting mechanism (see Section III). In

particular, the voting mechanism only collects high-confidence

predictions, in the sense that a low-confidence prediction score

leads to an abstention. The central server collects these local

votes and then takes the majority to generate a global vote,

which will be regarded as pseudo labels for the unlabeled

dataset. The consolidated global votes are then distributed to

the clients to proceed on the collaborative learning.

It is worth noting that the proposed federated voting frame-

work resolves the issue of model heterogeneity and does not

require sharing local model parameters, thereby protecting the

intellectual property of local models as well. Furthermore, the

voting mechanism does not share the exact local predictions,

which protects data privacy to a certain degree. By employ-

ing a local differential privacy mechanism as shown in the

following subsection, data privacy protection could be further

strengthened.

C. Local Differential Privacy

Local differential privacy is a mathematical approach for

protecting the privacy of individual clients in a federated

learning framework, see e.g. [8]. In many practical scenarios,

the central server is an untrusted third party. Local differential

privacy refers to that each client perturbs his/her local data

records to satisfy differential privacy, and sends only the

randomized, differentially private version of the data records

to the central server for aggregation.

A randomized algorithm Ak for the k-th client satisfies ε-
local differential privacy (LDP) if and only if for any two

inputs t and t′ in the domain of Ak, and for any output t̃ of

Ak, we have

Pr[Ak(t) = t̃ ] ≤ eε · Pr[Ak(t
′) = t̃ ]
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where ε is a non-negative real number, often called the privacy
budget representing the strength/level of privacy guarantee.

The smaller the privacy budget ε is, the more stringent the

privacy guarantee becomes.

The piecewise mechanism is a simple, high-performance

and less-biased mechanism achieving LDP by virtue of an

ε-based piecewise function [34]. Given a real number t ∈
[−1, 1], the piecewise mechanism outputs a perturbed value

t̃ ∈ [−T, T ], where

T � eε/2 + 1

eε/2 − 1
. (1)

The input t is perturbed to t̃ with a piecewise constant

probability density function (pdf) as

pdf(t̃ = x|t) =
{
ρ, if x ∈ [l(t), r(t)],
ρ
eε , if x ∈ [−T, l(t)) ∪ (r(t), T ]

(2)

where

ρ =
eε − eε/2

2eε/2 + 2
, (3)

l(t) =
T + 1

2
· t− T − 1

2
, (4)

r(t) = l(t) + T − 1. (5)

The piecewise mechanism is illustrated in Algorithm 1,

which will be used as a building block in Section III.

Algorithm 1 Piecewise Mechanism [34].

Input: Real number t ∈ [−1, 1], privacy budget ε
Output: Perturbed real number t̃
1. Uniformly sample α from [0, 1]

2. if α < eε/2

eε/2+1
do

3. Uniformly sample t̃ from [l(t), r(t)]
4. else
5. Uniformly sample t̃ from [−T, l(t)) ∪ (r(t), T ]
6. return: t̃

D. Healthcare Datasets

Disease diagnosis and predicting patient risk of their health

condition are crucial for tailoring appropriate care in hospital

[13]. In this paper, we leverage two real-world healthcare

datasets to evaluate the proposed framework: the diabetes

dataset [31] and the Medical Information Mart for Intensive

Care III (MIMIC-III) dataset [18].

1) For diabetes prediction, we will utilize a popular and

simple diabetes dataset from the National Institute of Diabetes

and Digestive and Kidney Diseases. This dataset contains

768 instances of female patients, all over 21 years old and

of Pima Indian heritage. The primary objective is to predict

whether a patient has diabetes based on various diagnostic

measurements. The diagnoses are categorized as 0 (negative to

diabetes) or 1 (positive to diabetes). Despite its limited number

of features, this dataset offers a straightforward and insightful

basis for evaluating the learning framework in healthcare.

2) For mortality prediction in the intensive care unit (ICU),

we will utilize the MIMIC-III dataset, managed by the MIT

Laboratory for Computational Physiology. This publicly ac-

cessible database contains comprehensive electronic health

records (EHR) covering over 53,000 hospital admissions at

Beth Israel Deaconess Medical Center from 2001 to 2012. It

encompasses detailed records of approximately 40,000 unique

patients aged 16 and above, including 4,579 charted observa-

tions and 380 laboratory tests. This dataset provides extensive

time-series data for each patient, documenting a wide array

of medical interactions such as procedures, medications, and

diagnoses, along with more intricate data like medical notes.

Given its comprehensive nature and larger volume, MIMIC-

III indicates a more complex task compared to the diabetes

dataset. Our experiments aim to predict in-hospital patient

mortality within the first 24 hours of admission, labeling the

outcome as 0 for survival and 1 for mortality.

III. METHODS

A. The Proposed AAFV

To address the model heterogeneity, the model intellectual

property and the data privacy challenges, we introduce an

Abstention-Aware Federated Voting (AAFV) framework, which

integrates the piecewise mechanism and a novel abstention-

aware voting mechanism to simultaneously guarantee the

privacy and confidentiality of local clients. The overall AAFV

framework is illustrated in Algorithm 2. More precisely, we

describe it from the following specific phases.

Pre-train: Since federated learning is a collaborative sys-

tem, free-riders are not tolerated. Therefore, prior to the

communication for collaborative learning, each client pre-

trains their local model fk on device using a private labeled

dataset Dk. This process is conducted as the typical supervised

learning by aligning the prediction for each sample xi ∈ R
C

with its corresponding ground-truth label yi ∈ {0, 1}.

Local vote: An auxiliary public unlabeled dataset Du ⊆ R
C

will be employed to bridge the heterogeneous local models in

collaborative learning. First, each client k generates their pre-

dictions pk = (pk,1, . . . ,pk,Nu
) ∈ [0, 1]Nu for the unlabeled

dataset Du, where pk,i represents the confidence score from

the k-th client for the i-th sample being classified as positive.

Next, to enhance the privacy protection, the local predictions

pk are perturbed to p̃k = (p̃k,1, . . . , p̃k,Nu) ∈ R
Nu using the

piecewise mechanism shown in Algorithm 1.

Then each client casts their local vote vk = (vk,1, . . . ,
vk,Nu

) ∈ {0, 1, ∗}Nu based on p̃k. To mitigate the effects

of perturbation and to select high-confidence predictions from

local votes, we introduce an abstention-aware voting mecha-

nism described as

vk,i =

⎧⎪⎨
⎪⎩
0, p̃k,i ≤ τ

∗, τ < p̃k,i < 1− τ

1, p̃k,i ≥ 1− τ

(6)

where τ ∈ (0, 1) is a predetermined threshold to identify valid

high-confidence predictions and the value of vk,i is the vote
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from client k for the i-th sample. If vk,i = 1 (resp. 0), the

client k asserts that the i-th sample is positive (resp. negative)

with high confidence. If vk,i = ∗, it indicates that client k
does not have enough confidence in the prediction for sample

i, and hence makes an abstention vote to avoid introducing

confusion into the collaborative learning process. Building on

this, the local clients upload their votes to the central server

for further aggregation.

Consolidate: The central server collects all the uploaded

local votes for the unlabeled dataset and then proceeds to

conduct consolidation process. To that end, the server first

counts the total number of positive votes from all clients

for each sample i, denoted as
∑K

k=1 I(vk,i = 1), where

I(vk,i = 1) is an indicator function that equals 1 if vk,i = 1 is

true and equals 0 otherwise. Similarly, the server also counts

the negative votes in the same manner. All the local abstention

votes are regarded invalid and excluded from this count.

Then the central server generates consolidated votes v̄ =
(v̄1, . . . , v̄Nu

) ∈ {0, 1, ∗}Nu by determining the majority from

the local votes as the global votes for the unlabeled dataset.

This is achieved by

v̄i =

⎧⎪⎨
⎪⎩
0,

∑K
k=1 I(vk,i = 0) >

∑K
k=1 I(vk,i = 1)

1,
∑K

k=1 I(vk,i = 1) >
∑K

k=1 I(vk,i = 0)

∗, otherwise

(7)

where v̄i = ∗ indicates an abstention global vote due to the

non-separable local voting results. These consolidated votes,

now serving as pseudo labels for the unlabeled data, will be

sent back to local clients for further learning.

Revisit: Each local client receives consolidated pseudo

labels for the unlabeled data from the central server. By remov-

ing all invalid samples marked with a pseudo label ∗ from Du,

a high-confidence pseudo labeled dataset D̂u can be created.

Accordingly, each client utilizes the combination of D̂u and

their own private dataset to enhance their local model. Again,

the training process here is conducted as supervised learning

by aligning the model predictions with their corresponding

ground-truth or pseudo labels.

This methodology allows local clients to learn from each

other without sharing their private data and the details of local

models, thereby preserving the confidentiality and intellectual

property of heterogeneous models involved. The proposed

AAFV framework is summarized in Algorithm 2.

B. Analysis of AAFV

The proposed AAFV framework provides an efficient and

confidential federated voting scheme that effectively addresses

both model heterogeneity and data privacy challenges. More

precisely, AAFV offers the following advantages.

• Privacy. AAFV does not require clients to share their

private data, thereby preventing direct privacy leakage.

Moreover, AAFV adheres to local differential privacy

principles by implementing the piecewise mechanism,

which further strengthens the privacy protection of private

data against membership inference attacks.

Algorithm 2 The proposed AAFV framework

Input: Public unlabeled dataset Du, local labeled dataset Dk,

heterogeneous local model fk, (k = 1, . . . ,K), communica-

tion epoch number Ecom.

Output: Heterogeneous local models fk, (k = 1, . . . ,K)
1. Pre-train: Each client pre-trains local model fk with private

labeled dataset Dk.

2. for e = 1, . . . , Ecom do
3. for k = 1, . . . ,K do
4. pk ← fk(Du)
5. p̃k ← Piecewise Mechanism(pk) via Alg. 1

6. vk ← Abstention-Aware Voting(p̃k) via (6)

7. Consolidate: The central server counts valid votes from

clients and consolidates them to global votes v̄ via (7).

8. Revisit: Each client k utilizes the combination of the

pseudo labeled public dataset D̂u and their private

dataset Dk to enhance their local model fk.

9. return: fk, (k = 1, . . . ,K)

• Heterogeneity. AAFV employs a novel federated voting

mechanism with an auxiliary unlabeled dataset for aggre-

gation, which does not demand the structure consistency

of local models, making it particularly effective in han-

dling heterogeneous models in the collaborative learning.

• Confidentiality. Throughout the training process of

AAFV, the detailed architectures of local models remain

undisclosed, thereby effectively protecting the confiden-

tiality and intellectual property of these models.

• Effectiveness. The abstention-aware voting mechanism

used in AAFV selects high-confidence predictions from

local clients to improve the effectiveness of collaborative

learning. Additionally, the piecewise mechanism intro-

duces noise with smaller variance, affecting the model

utility less than other LDP algorithms. The real-world

performance of AAFV is referred to Section IV.

• Low-cost. In the learning process, clients only upload

local votes and download global votes, which are all one-

dimensional and much less expensive in communication

compared with sharing model parameters. Hence, AAFV

offers the benefit of low communication cost, in particular

for large-scale models.

IV. EXPERIMENTS

A. Diabetes Prediction

Diabetes, a prevalent disease, significantly increases the risk

of heart disease, eye problems, and other severe health issues.

Machine learning offers a promising solution to the early

diagnosis of diabetes by effectively analyzing hospital medical

records and personal healthcare data. This early detection of

diabetes not only enables potential patients to seek timely

medical treatment but also encourages them to adopt necessary

lifestyle adjustments [22]. We will conduct experiments on

diabetes prediction with the following components.

1) Dataset: As described in Section II-D, the diabetes

dataset comprises 768 samples [31]. We randomly draw 153
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Fig. 2. Accuracy on diabetes prediction across different scenarios when ε = 1.

samples from it as the test dataset, and draw another 126 sam-

ples as the unlabeled dataset. Then we divide the remaining

489 samples into three parts. Each contains 163 samples as

the private labeled datasets.

Each sample consists of 8 features: number of times preg-

nant, plasma glucose concentration at two hours, diastolic

blood pressure, triceps skin fold thickness, 2-hour serum

insulin, BMI, diabetes pedigree function value, and ages. To

avoid numerical instability across the features, we apply a

standard z-score normalization, by subtracting the mean from

each feature and then dividing the feature values by their

standard deviation. Consequently, each feature is transformed

to have a mean of 0 and a standard deviation of 1.

2) Model Architectures: In the diabetes prediction task, we

set up 3 clients with three heterogeneous models according

to the dataset scale. We use three typical machine learning

models in the experiments: a support vector machine (SVM)

[17], a perceptron [23], and a logistic regression [6], for three

different clients, respectively.

3) Implementation: To achieve a comprehensive bench-

mark result, experiments are conducted across three scenarios:

AAFV in a heterogeneous scenario, FedAvg in a homogeneous

scenario, and individual models in a non-federated scenario. In

the heterogeneous scenario, the AAFV framework incorporates

three different models – a SVM, a perceptron, and a logistic

regression – serving as local clients. For the homogeneous

scenario, the FedAvg framework is implemented three times,

each with identical model structures. In the non-federated

scenario, we train each of the three models independently

using their respective local private labeled datasets. In the

experiments, each framework, AAFV or FedAvg, conducts

Ecom = 30 communication epochs. In the non-federated

scenario, each model is trained with 300 epochs.

4) Evaluation: We evaluate the performance using the

average test accuracy of 50 independent experiments with

distinct random seeds to simulate the randomness. To facilitate

a fair comparison, the privacy budget ε is uniformly set at 1.0
for all experiments. In the homogeneous and non-federated

scenarios, we implement a Laplacian mechanism to perturb

the local model parameters to achieve differential privacy.

Fig. 3. Accuracy on MIMIC-III across different scenarios when ε = 1.

5) Results: Figure 2 demonstrates the averaged test accu-

racy of SVM, perceptron, and logistic regression under three

different scenarios. Notably, the proposed AAFV outperforms

FedAvg and non-federated frameworks in all the three models.

B. In-hospital Patient Mortality Prediction

1) Dataset: EHRs offer researchers and healthcare facilities

an opportunity to investigate the in-hospital patient informa-

tion. By exploiting the massive EHRs dataset, hospitals are

able to evaluate the effectiveness of current treatments and to

improve patient healthcare strategies. In this experiment, we

extract the features of MIMIC-III dataset following [36], and

attain an in-hospital mortality dataset with 23, 944 samples

which is composed of 7, 488 features. We divide the dataset

into a test dataset with 4, 789 samples, and training dataset

with 19, 155 samples. The training dataset is further divided

into an unlabeled dataset with 3, 831 samples, and three local

labeled datasets, each containing 5, 108 samples.

2) Model Architectures: Due to the extensive feature space

of MIMIC-III dataset, Multilayer Perceptron (MLP) [16] is

employed. For the in-hospital patient mortality prediction task,

the MLP configuration is a three-layer network comprising:

an input layer matching the dimension of the feature space; a

hidden layer, with a size that is half of the number of features

and output dimension, and an output layer consisting of a

single output for the binary classification task. Each layer is

followed by an activation layer employing the Rectified Linear

Unit (ReLU) function, which contributes to more efficient

computation and better fitting result. In addition to the MLP

model, SVM and logistic regression are also utilized in the

experiments for a comparative analysis.

3) Results: As it is illustrated in Figure 3, the AAFV

framework demonstrates a stable, effective performance with

a privacy budget of ε = 1. The accuracy across all three

models demonstrates a notable improvement of 3% on average.

In particular, the MLP and SVM models within the AAFV

framework significantly surpass the performance of those

trained under the FedAvg framework with p-value averaged

as 0.0025, below the typical significance threshold of 0.05.
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V. CONCLUSION

This paper explored the heterogeneous federated learning

with local differential privacy, introducing a new framework

termed AAFV. This framework is designed to collaboratively

and confidentially train local clients with heterogeneous struc-

tures. AAFV utilizes a novel abstention-aware voting mech-

anism with a threshold-based abstention method that selects

high-confidence votes from local models. Experiments on two

real-world healthcare datasets indicate that AAFV consistently

outperforms the typical FedAvg framework and non-federated

scenarios in test accuracy while preserving the same privacy

level. It is of interest to further verify the performance of

AAFV in more real-world healthcare applications.
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