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Abstract—Privacy-preserving analytics is designed to protect
valuable assets. Commonly, data from the client is inputted into
the model on the analyst’s side. Privacy protection on both sides
is fuelled by legal obligations and intellectual property concerns.
We explore the use case of a model owner’s analytic service for
customer’s private data. The data must not be revealed to the
analyst and the model must not leak to the customer. Current
methods involve costs: accuracy deterioration and computational
complexity. The complexity translates as a longer processing
time, more computing resources, or data communication between
the client and the server. In this work, we show the scenario’s
feasibility on an example of an attack detection system based
on deep Convolutional Neural Networks that we augment with
privacy-preserving technology based on Function Secret Sharing.
We share insights into this implementation.

Index Terms—Internet of Things, Convolutional Neural Net-
works, Privacy-Preserving Analysis, Function Secret Sharing

I. INTRODUCTION

Privacy-preserving technologies gain popularity as the value

of both, the know-how and the data, increases. An interest

around the protection of Artificial Intelligence models con-

cerns multiple points: data used for training, model created

from the data (both, the intellectual property and the traces of

the training data), and data used for inference.

In such a setup, we can discern three roles: Training Data

Owner, Model Owner, Inference Data Owner.

In case of a provision of the model as a service, the Model

Owner must ensure the protection of the assets of Data Owners

against leaks, as well as defend their own model against

exfiltration.

In particular, intrusion detection can benefit from privacy-

preservation mechanisms. This paper’s aim is to illustrate the

feasibility of this connection. We augment the Deep Learning

inference [1] with privacy-preservation techniques according

to the PriMIA framework [2].

We point out important factors for the optimisation of hyper-

parameters, especially the fixed fractional precision that steers

the accuracy of the system compared to unprotected version.

The paper’s section II provides background in Intrusion

Detection on IoT data, and privacy preservation; III compares

current research to our work; IV explains the design of the

solution; V summarises experiments and results, followed by

VI discussing possible evolutions and applications, thereafter

concluded in VII.

II. BACKGROUND

Two topics intersect in this paper: intrusion detection in the

Internet of Things (IoT) based on the actual data readings, and

privacy-preserving technologies. We present the perspective of

a privacy-conscious intrusion detection service provider. Our

goal is to provide a (1) reliable service (2) unaware of the

actual client’s data, while (3) keeping our model secret.

A. Intrusion Detection in IoT

The task of intrusion detection is a prediction of a system

status based on a set of observations in time.

Fig. 1. Example of an encoded 224× 224× 3-channel picture representing
a 224 items long history (vertically) of 17 different sub-sensors (horizontally)
as a sensor provides one or more sub-sensor readings.

In our case, the intrusion detection follows [1]: The analysis

runs Convolutional Neural Networks (CNN) architecture. Its

input is a 2-dimensional picture (shown in Fig. 1) made

of pre-processed IoT sensor readings. It is a slit-view of

chronological sensor readings. The output is one of the

8 classes – a benign state normal, or one of 7 differ-

ent attacks: backdoor, ddos, injection, password,

ransomware, scanning, or xss. These classes are defined

in the TON IoT “TrainTest” dataset [3]. The TrainTest was

pre-processed using TT500n aggregation strategy described in

[1]: TT (standing for “TrainTest”) was partitioned in sequences

of 500 readings, with no aggregation by time. To conserve

temporal patterns, each 500-item long sequence as a whole

went into train or test set. Within their respective sets, these

sequences were concatenated and a sliding window produced

the data for our architecture, i.e., 224 readings.
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The architecture selected for privacy-preserving analytics

was ResNet50 [4]. In the attack classification task, the perfor-

mance of ResNet50 and EfficientNet-B0 was relatively close

[1]. Between them, we chose pragmatically the one sharing

building blocks with the already implemented ResNet18 ar-

chitecture within PriMIA framework [2]. The required modi-

fication is shown in Fig. 3.

The adjustment of the PriMIA framework to our use case

is illustrated in Fig. 2. In simple terms, the TON IoT dataset

was converted into RGB images. The hard-coded 1-channel

greyscale image input was extended to allow for 3-channel

inputs. We completed the implementation of ResNet50 that

reused the blocks available in ResNet18. The number of output

classes was extended from 3 to 8. More details are shared in

section IV.
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Fig. 2. Adjustments of PriMIA to process data from IoT detection use case.
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Fig. 3. Extension of PriMIA to implement ResNet50. Bottleneck had already
been defined as specified in the inner frame. This implementation corresponds
to [4]. The array [3, 4, 6, 3] defines the number of successive Bottleneck
blocks before a change of dimensions.

Given 17 sub-sensor readings, there are 17 columns placed

in the middle and padded with value 0 on the left and right

to fill 224 columns (translated to pixels).

In this work, we focused on a simple and radical strategy

miss3 that replaces actual values by 0 and missing ones by

value 1. As indicated by number “3” in its name, the method

is used to fill all three channels equally to obtain an RGB

picture. An example of a resulting picture after normalisation

is presented in Fig. 1.

B. Privacy-Preserving Technologies

Many ways are being explored [5] in search of privacy-

preserving technology with negligible overhead and optimal

security adapted to requirements. The research falls into the

field of Secure Multi-Party Computation (MPC). And from

our standpoint, we will focus on protecting the assets against

other parties of the computation.

Although the Homomorphic Encryption is a promising

technology that is being actively researched to achieve high

performance [6], Fully Homomorphic Encryption solutions

still incur an unaffordable computational cost, especially in

the case of large neural network architectures. Even VGG9

with only 6 convolutional and 3 fully connected layers, a

single inference takes 30 minutes [7]. This may be improved

by deploying specialised hardware.

Hybrid approaches delegating expensive tasks to the Data

Owner [8] generate high communication costs, undermining

the relevance of the server side altogether.

A common practice is to defend against an honest but
curious adversary (also called semi-honest in [9]). It is the

use case of PriMIA, where several medical establishments

collaborate on a common model, and then share it safely

with a non-participating medical establishment to apply the

know-how but without giving it away. An honest but curious
adversary does not attempt to break the protocol, although

they might extract any information from the available data. In

practice, the common model shared among all participating

medical establishments could be subjected to an inversion

attack. To prevent it, PriMIA employs an optional Differential

Privacy technique.

The FSS paper [10] mentions the query quota as the only

mitigation for model inversion attacks to limit the amount of

information the attacker might obtain to reconstruct the model.

The more complex neural network, the slower the evaluation,

which naturally, provides a quota-like protection.

We can distinguish the MLaaS with training and without

training: We situate our research in the case where we provide

a secure access to a privately trained model without sharing

it. The training is excluded from the problem this paper

addresses.

III. RELATED WORKS

In our specific use-case of Machine Learning as a Service

(MLaaS), we discern several aspects that have been addressed

in the literature. Generally, privacy preserving technologies

protect data in different stages of the computation but also

the computation process itself. We will focus on technologies

that do not rely on the trust amongst different parties of the

computation as defined in section II.

Machine Learning, and in particular, Deep Learning were

objects of privacy-preservation efforts. The most straightfor-

ward way to protect the Training Data Owner is the use of

techniques of input data perturbation while conserving useful

features or properties. In particular, the concept of Differential

Privacy (DP) [11] is becoming popular as the perturbation is

quantified and provides a framework for expressing the privacy

cost in terms of accuracy. DP can improve privacy for Training

Data Owner while producing a model, where it effectively

hides the details from the Model Owner. However, it does
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not provide any advantage to Inference Data Owner, as the

predictions must not be biased.

In order to protect the IDO’s assets, computation using

homomorphic encryption is gaining interest. However, the

current solutions are mostly relevant for simpler Machine

Learning algorithms. For example, CryptoNets [12] operate

on MNIST with dimensions of 28×28 pixels and uses client-

side evaluation of activation functions.

Falcon [13] offers security against a malicious adversary in

a 3-party setup. However, it requires an honest majority, which

is not trivial to achieve in a two parties setup. Any third party

would present a risk of collusion and, thus, breaking down the

trust in the system.

Additionally, methods of model tuning based on user feed-

back [14] address privacy concerns. They have complementary

goals to our research: Updating the model with private data

without disclosing it. These methods might be used to further

extend our current research where we focus only on the

inference provision.

In use cases similar to ours, the service may be Cloud-like

[8], where the service provider offers their infrastructure and

guarantees the privacy of its usage. The client would privately

input data for the training, chooses an architecture, train it, and

obtains inference – all without letting the external observer or

service provider learn anything about the data and the model.

The described mode of operation is suitable for infrastructure

service providers (e.g., Cloud) and may find a practical use in

systems relying on a public blockchain. However, we focus on

providing a private access to the inference service. The Model

Owner will not have any access to the data provided by the

Inference Data Owner. Moreover, the Inference Data Owner

will not be able to reconstruct the model. Thus, we protect not

only the intellectual property of the Model Owner but also the

Training Data Owners against inversion attacks.

IV. DESIGN

The PriMIA framework extends PySyft framework of its

version 0.2.9, in particular its PyGrid component for remote

execution of Machine Learning tasks. We adapt the solution

of intrusion detection [1] to be compatible with PriMIA.

An implementation of ResNet50 is effortless as the basic

building blocks were ready in PriMIA’s implementation of

ResNet18.

A. PriMIA framework

Used as a basis for our contribution, we focus on specific

aspects of the PriMIA framework. The framework is open

source, is interpreted in Python 3.7, and requires CUDA

10.x to enable GPU acceleration for training although in our

experimentation, the GPU was not involved during inference.

In this paper we will look closer at the inference process.

PriMIA’s input data has a format of 224×224×1 tensor, i.e.,

a 1-channel (usually representing a greyscale) square image

with the dimensions 224× 224.

The inference scenario is depicted in Fig. 4 relying on

Function Secret Sharing (FSS) [10]. The client prepares their

raw data, encrypts it using the trusted source of correlated

randomness. Meanwhile, the server prepares shares of the

function that computes the model. This concludes the offline

phase not requiring any communication between parties. In the

online phase, the masked shares are then exchanged to obtain

the encrypted result. The client then uses their secret key to

get the cleartext result.

The correlated randomness is particularly important in the

Secure Multi-Party Computation. PriMIA falls into the cate-

gory of MPC with pre-processing according to definitions in

[15]. This means that a speed-up is achieved by generating

randomness in parallel, independently of actual encryptions.

To secure the computation, additional checks on the quality

of randomness can be performed.

B. Fixed Fractional Precision

Shared secret computation is enabled for integers because

they can be masked with the random strings to obtain additive

secret shares. Not all representations of numbers allow the

exploitation of this property. In particular, a common floating

point implementation breaks these properties. The original

PriMIA implementation uses fixed fractional precision param-

eter to handle the conversion between a decimal value and

its expression in memory as an integer with a given length,

multiples of a pre-defined factor. This conserves additive share

properties equally for very large and small values.

PriMIA, through the underlying PySyft library1, uses inte-

gers 64 or 32 bits long. An integer m represents a decimal

value z, following the equation: m = z × bp, where base

b = 10 and precision p ∈ [[1, 16]]. Therefore, this system can

represent decimal numbers up to p decimal places within the

interval [− 2s−1

bp ; 2s−1−1
bp ], which for long of size s = 64, base

b = 10, and precision p = 4 provides an approximate range

of [−9.22 × 1014; 9.22 × 1014], while a precision p = 16
represents only values between −922 and 922.

These approximate ranges provide an insight why a compu-

tation with high (or low) precision might fail - due to a value

overflow (or underflow). It is especially critical for model

training to avoid exploding (or vanishing) gradients. In our use

case, the inference on the model is also affected. The unwanted

overflow and underflow interfere with additive shared secrets

as well, where an “overflow” is part of the design of the

encryption/decryption as the addition is performed given a

specific modulo.

In order to achieve optimal results (best matching to the

original results on non-encrypted model), we perform an

exhaustive search on the hyperparameter of the fixed fractional
precision. The results are presented in Fig. 5. Note that each of

the three tests (t1, t2, t3) was a single-item inference whose

ground truth is presented in the bottom of the table. Even

though we can see a clear pattern of which values of fixed

fractional precision are optimal for this network and dataset,

it might not be the case for all models and all data.

1PySyft v0.2.9: https://github.com/OpenMined/PySyft/tree/syft 0.2.x
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Fig. 4. Mapping of PriMIA framework to the use case of privacy-preserving analytics
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Fig. 5. Fixed fractional precision hyperparameter search. In the original
PriMIA setting, there are three classes (0, 1, 2). Changing the fixed fractional
precision changes how well the encrypted inference matches the unencrypted
inference results. This table provides evidence that this parameter is crucial
for a reliable inference.

C. Function Secret Sharing

PriMIA’s code2 claims that there are differences between

the Function Secret Sharing defined in the paper [10], although

they are not specified and a detailed analysis might be required

to establish the differences.

The FSS implementation in PriMIA requires three parties,

from which only two are needed when dealing with the actual

inference. The third party, a crypto-provider is the source of

the correlated randomness. It is used to generate masking keys

for the exchanges between the two active parties: the Inference

Data Owner (data owner in PriMIA), and the Model Owner

(also model owner in PriMIA).

The original FSS scheme and the improvements [10] were

evaluated under the assumption of a semi-honest [9] adversary

that is honest but curious. That is, an adversary that has the

interest to follow the protocol but is interested in exploiting

possible leaks to gain an insight in the other party’s data.

2https://github.com/gkaissis/PriMIA

In order to defend against a malicious adversary, the authors

suggest an extension by simple authentication methods.

The FSS is also perfect secret sharing scheme that does not

leak any information about the plaintext from the ciphertext.

The encryption is based on the principle of a one-time pad.

Additive secret sharing protocol generates correlated random-

ness that serves to hide the plaintext.

V. EXPERIMENTS

Experiments were conducted to assess the overhead of

the solution compared to an unencrypted computation. The

inference stage is the focus of our use case of MLaaS.

We monitored the time, memory resources, and exactness

with respect to the unencrypted inference.

A. Configuration

The results were achieved using two configurations M1 for

GPU-enabled training and M2 for inference task:

• M1: Ubuntu 20.04.1 LTS focal: Linux 5.4, 64 GB RAM

- 32 cores - Intel® Xeon® Silver 4215 CPU 2.50Ghz -

NVIDIA-driver 470.161.03; CUDA 10.1.243

• M2: Ubuntu 22.04.1 LTS jammy: Linux 5.15, 64 GB

RAM - 16 cores - Intel® Core™ i7-10700K CPU

3.80GHz - GPU not in use in the inference task

B. Methodology

The departure point was to reproduce the results from [1]

using Deep Learning framework of PyTorch instead of Keras

models that were used in the aforementioned work. ResNet50

model pre-trained on ImageNet was used for the initial training

on M1: 20 epochs on 14,995 images took 1 h 07 min.

Its performance is similar to the original work [1]. Their

comparison is available in Table I and their respective confu-

sion matrices in Fig. 6. The differences between the inference

results of the two Deep Learning frameworks are sufficiently

small to be equivalent for the purpose of this study.

The reason to consider a 5% subset is to obtain results of

the encrypted inference within a reasonable time, given that
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the inference on the full dataset would take approximately 42

days.
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Fig. 6. Confusion matrices of two models: upper table is from [1]; lower
table represents this work.
Both inferences were performed on TON IoT dataset TT500n, with miss3
imputation strategy that fills in missing values with 1 and actual values are
replaced with 0.
More significant differences between normal and attack classes are highlighted
in bold red font.

We possess an unencrypted model that is the property of the

Model Owner and will be protected by the applied technology

according to our use case.

The performance of encrypted inference is measured on M2,

and compared to unencrypted inference. No GPU accelerated

implementation of FSS was available as of June 2023.

C. Results

The presented results were obtained on ResNet50 archi-

tecture implemented in PyTorch. We chose to use TT500n
dataset for comparison to the original TON IoT sensor read-

ings dataset. The imputation strategy miss3 was chosen for

its simplicity and results on par with more complex imputation

strategies. Input for our ResNet50 architecture is an image

224× 224× 3.

Table I compares the binary classification metrics for the

reference model trained in [1] and our re-implementation.

Additionally, we test the same model on a subset of 5%

of the TT500n_miss3 dataset. We note that an incidental

improvement of FPR to 0% and a deterioration of TPR are

visible but irrelevant - as they are due to an implicit bias of

the random sample.

The comparison of unencrypted inference and its encrypted

versions are shown in Table II, and further details of the

inference on 251 items of the 5% TT500n_miss3 dataset in

form of confusion matrices Table III and Table IV. We verified

item by item that the encircled values are the only change in

TABLE I
BINARY CLASSIFICATION METRICS

[1]: Keras This paper: PyTorch

Dataset TT500n miss3 TT500n miss3 5% TT500n miss3∗
Cardinality 5,039 5,039 251

Accuracy 94.4% 96.2% 97.6%
TPR 92.4% 95.6% 93.5%
FPR 0.3% 3.4% 0%

∗ Both, encrypted and unencrypted cases yield the same values.

TABLE II
DURATION AND MATCHING OF ENCRYPTED INFERENCE

Unencrypted Encrypted
CPU Local HTTP

Inference duration
per item

0.15 s
677.31 s

= 11 min 17 s
1,356.15 s

= 22 min 36 s

Matching 100%
99.6%

= 250/251
∗

∗ Same as the Local Encrypted computation because only network
stack differs, the computation algorithm is the same.

predictions: a single was classified as ransomware (an attack
class) instead of originally correct backdoor (also an attack

class in the binary classification). We note that the binary

classification metrics for unencrypted and encrypted inference

have the exact same values and correspond to those reported

in the last column of Table I. The error in encrypted inference

does not translate into any change of binary classification

metrics as it remains within the set of attack classes.

VI. DISCUSSION

During the experimentation with PriMIA framework, the

key parameter to have an immense influence was the fixed
fractional precision. Its adjustment decided whether the re-

TABLE III
UNENCRYPTED INFERENCE – CONFUSION MATRIX

True Label Predicted Label
b d i n p r s x

backdoor b 11 0 0 5 0 0 0 0
ddos d 0 15 0 0 0 0 0 0

injection i 0 0 25 0 0 0 1 0
normal n 0 0 0 159 0 0 0 0

password p 0 0 0 1 19 0 0 0
ransomware r 0 0 0 0 0 9 0 0

scanning s 0 0 0 0 2 0 1 0
xss x 0 0 0 0 0 0 0 3

TABLE IV
ENCRYPTED INFERENCE – CONFUSION MATRIX

True Label Predicted Label
b d i n p r s x

backdoor b 10 0 0 5 0 1 0 0
ddos d 0 15 0 0 0 0 0 0

injection i 0 0 25 0 0 0 1 0
normal n 0 0 0 159 0 0 0 0

password p 0 0 0 1 19 0 0 0
ransomware r 0 0 0 0 0 9 0 0

scanning s 0 0 0 0 2 0 1 0
xss x 0 0 0 0 0 0 0 3
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sulting output ended up the same value or it followed the

unencrypted model. Either underflow or overflow degraded

the performance. An extension of this work can focus on

automation of the optimisation of this process beyond the

naive method of enumeration search that we used in this

paper. Further research can lead to a more comprehensive

optimisation techniques.

Further research can be conducted to compare this approach

to other privacy-preserving technologies. Especially, Fully

Homomorphic Encryption shows substantial improvements in

recent years and the efforts to improve the efficiency using

GPU are under way.

Other Secure Multi-Party Computation protocols (e.g., Fal-

con [13]) are secure against a minority of malicious parties.

Their use in 2-party setting is problematic because both parties

are de facto required to be honest. It is also to be noted that

the FSS implementation has an implicit third party, a trusted

dealer – the source of correlated randomness. The original

paper on secure computation via FSS [10] mentions the

possibility of extension to malicious security model referring

to authentication techniques of [15], [16], the issue can be

mitigated by including tests in the protocol and abort if the

tests show a deviation from the protocol. More insights about

correlated randomness, on which many protocols rely, can be

found in [15].

VII. CONCLUSION

This work applies privacy-preserving technology designed

for medical imaging to intrusion detection.

Through the use case of providing a secured service of

inference on customer’s private data and ensuring the privacy

of our own model, we illustrated different issues and possible

ways forward to solve them. It includes a calibration of fixed

precision to ensure the accuracy.

Following the current state of the art, we show the results

of an application to ResNet50 allow for an inference through

secure channel. The current speed of the inference is suitable

for demonstration purposes using private data rather than a

deployable Machine Learning as a Service solution.

There are remaining issues to be addressed in future re-

search. An automated setting of the fixed precision would

improve developer experience. More deep learning architec-

tures should be implemented. Continuous improvements in

underlying tools should also propagated in the future versions.
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