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Abstract—The concentration and chemical composition of 
airborne aerosol particles are important indicators of air quality 
and sources of air pollution. The particles’ chemical composition 
reveals probable emission sources, like traffic, biomass burning, 
wildfires, agriculture, or industrial sources. Single-particle mass 
spectrometry (SPMS), combined with rapid spectral 
classification, uniquely enables an in-situ analysis of the 
chemical composition of individual aerosol particles in real-time 
for environmental monitoring and other tasks. Modern SPMS 
devices analyze hundreds of individual particles per minute. 
Rapid and accurate classification of such large amounts of data 
remains challenging. Conventional clustering algorithms 
require tedious manual post-processing. A mass spectrum can 
be understood as a 1D image per analyzed particle. We applied 
CNN-based algorithms to perform a fully automated 
classification. To train the models, usually a large amount of 
labeled data needs to be prepared. With a manually created 
benchmark dataset containing 10,400 samples in 13 classes of 
emission sources (800 samples per class) we achieved an 
accuracy of ~90%. If the models are trained using only 100 
labeled samples per class (1/8 labeled data), the models’ 
accuracy drops significantly to ~75%. We explored suitable 
augmentation methods to improve the reliability and 
performance of multi-class classification for aerosol particle 
mass spectra in case of limited labeled data (1/8 labeled data). 
The results using the augmented data improved from ~75% to 
86.8%. This paves the way to sharply reduce the expensive and 
time-consuming work of expert labeling. Furthermore, we 
verified that converting the 1D mass spectrum into 2D 
representations and classifying them using 2D-CNN is more 
efficient than 1D-CNN networks, whether with or without data 
augmentation. 

Keywords—data augmentation, CNN, mass spectrometry, 
aerosol particles, environmental monitoring, sustainability 

I. INTRODUCTION 

Atmospheric particulate matter refers to fine particles in 
the air, which vary in size and can be categorized as PM10 and 
PM2.5 (particulate matter with 10 resp. 2.5 micrometers or 
smaller in diameter). Natural sources of PM include dust [1], 

pollen [2] and sea salt [3], etc. Anthropogenic sources cover a 
wide range of human activities such as industrial emissions [4], 
transportation [5], combustion emissions [6] and construction 
[7]. Generally, PM from different sources carries unique 
chemical characteristics and often retain these characteristics 
also after long-range transport [8]. Key factors in assessing 
potential health risks of air pollution are the ‘chemical 
footprint’ and concentration of PM. In addition, policy makers 
are given tools to set standards for effective air quality 
management and control strategies, or to demand pollution 
reduction from specific industrial sites. 

Single-particle mass spectrometry (SPMS) (Fig. 1) is a 
powerful real-time tool for particle-by-particle analysis that 
combines two key techniques, laser desorption/ionization 
(LDI) and time-of-flight mass spectrometry (TOF-MS), by 
ionizing individual particles and then separating the charged 
ions [9], [10], [11]. The resulting mass spectra are plots of the 
signal intensity vs. the mass-to-charge ratio (m/z) of the ions 
[12], [13] and can be understood as one-dimensional (1D) 
vectors or 1D images. Analyzing the mass spectra gives 
insight into the molecular composition of particles, and helps 
to identify their sources and estimate the distance to them [8], 
[9]. 

In this study we use quantized mass spectra with m/z from 
-120 to +120, recorded during a month-long measurement 
campaign in a city harbor to monitor ship emissions. Several 
examples of aerosol particle mass spectra representing 
different sources are shown in Fig. 2. The negative mass 
spectra (LDIn, m/z = -120…-1) usually contain information 
about the sulfate, nitrate or carbonaceous components, which 
often reflect the degree of aging or photo-oxidation of the 
particles along the path transported through air. The chemical 
composition in positive spectra (LDIp, m/z = 1...120) 
containing metals, carbon clusters, and organic compounds 
often give hints to identify the type of emission source [9]. 

Traditionally, to classify the SPMS data, clustering 
algorithms such as k-means [14] and ART-2a [8] are used, 
which require significant manual postprocessing to select and 
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merge the generated clusters. In the process of manual 
merging, new structures in mass spectra can be discovered. 
However, since unsupervised clustering does not rely on 
labeled data, there is no way to train a classifier or to decide 
whether the samples are correctly attributed to a specific 
cluster. 

So far, only a few studies [15], [16] have used supervised 
learning methods to automatically classify SPMS data without 
manual postprocessing. In [16], the performance of several 
machine learning (ML) methods, such as k-nearest neighbor, 
decision tree, random forest, support vector machine and 
multilayer perceptron (MLP) was compared. How effective 
these traditional machine learning methods are generally 

depends on data features engineered by human experts [15]. 
In contrast, deep learning (DL) models can automatically 
extract valuable features from the data, thus removing the 
need for feature engineering. Contrary to traditional ML 
algorithms, convolutional operations (1D-CNN, 2D-CNN) 
reveal patterns of specific combinations of characteristic m/z 
peaks in the mass spectra and generally show a superior 
performance [17], [18]. 

Generally, both ML and DL methods require a large 
amount of labeled data for training. Moreover, research [19] 
has shown that increasing the amount and diversity of training 
data not only helps to improve the accuracy of the trained 
model, as well as its robustness in predicting SPMS data from 
different sources (different parameter settings of the SPMS 
instrument, different sampling locations, or different weather 
conditions, etc.). However, for many potential applications of 
SPMS, labeled data are very limited and expensive. Since the 
data collected by a measurement campaign has far fewer 
samples from the particle classes of interest than the common 
background particle classes in the air (hundreds to thousands 
of times the difference), it is more challenging to create a 
class-balanced dataset. Therefore, it becomes essential to 
generate correct and effective augmented data utilizing a small 
amount of labeled data in order to reduce the cost of labeling. 
Classification results with different techniques of data 
augmentation, implemented for the application at hand, will 
be presented here for the first time. 

II. DATA AUGMENTATION 

The concept of data augmentation is to utilize existing data 
to generate synthetic data for the purpose of expanding the 
dataset and improving the training performance [20]. Popular 
augmentation methods for spectral data include baseline 
correction, peak shifting, adding random noise, subsampling, 

 

Fig. 1. Working principle of Single-Particle Mass Spectrometry to analyze 

the chemical composition of aerosol particles in real-time [10]. 

 

Fig. 2. Representative bipolar mass spectra of 10 of the 13 classes defined in the work. The colorized signals are markers to identify the different classes. 

Before being processed in a learning procedure, positive and negative mass spectra were normalized separately according to their highest ion peaks as 

shown. 
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interpolation, and others [21], [22]. In this work, we 
investigated the performance of the following four 
augmentation methods: adding peak noise (APN), square root 
transform (SRT), averaging (AVE), and swapping positive 
and negative mass spectra (SMS) (see Table I). 

We denote the spectrum of a single particle by the vector 
, where each element corresponds to a m/z 

peak, from -120 to +120 excluding 0. For identifying such a 
pattern, both the combination of positions of significant peaks 
in the mass spectrum and their intensities are critical. 
Therefore, data augmentation must not change the peak 
distribution in the mass spectrum, i.e., neither adding nor 
removing peaks. The proposed augmentation methods APN, 
SRT, AVE, and SMS will only change the intensity of peaks 
present in the mass spectra, without changing the composition 
of the original data. Whereas added noise, square root, and 
averaging methods used by APN, SRT, and AVE, 
respectively, are well-established methods commonly used for 
a variety of data augmentations, SMS is proposed here for the 
first time, owing to the characteristics of bipolar SPMS data. 

TABLE I.  DATA AUGMENTATION METHODS 

 

APN: Augmented data  were created by adding 
additive white Gaussian noise (AWGN) with a defined signal-
to-noise ratio (SNR) to original data. The (average) signal and 
noise powers are calculated as: 

� � ����

� � ����

� � ����

where  is a normalized standard distribution with zero mean 
and standard deviation equal to 1. Peaks with negative 
intensities in the generated mass spectra are replaced with 0. 

SRT: The augmented data is calculated by taking the 
square root of each peak in the mass spectra. 

� � ����

AVE: To create augmented data , multiple unique 
mass spectra are randomly selected and their intensities 
averaged. In this study, we use the average of two mass spectra 
to create augmented data (n = 2). 

� � �	��

SMS: To augment the data, the positive (LDIp) and 
negative parts (LDIn) are swapped independently between 
multiple unique mass spectra ( , ). 

� ��
��

Because LDIp are related to the origin of the particles, 
while LDIn generally represent the degree of aging and photo-
oxidation of the particles, swapping the LDIp and LDIn 
between different mass spectra of the same class does not 
affect the determination of the class. 

Based on the properties of the SPMS data, we tested the 
performance of different classifiers with mass spectra from a 
measurement campaign, separately augmented by APN, SRT, 
AVE, and SMS. 

III. METHODOLOGY 

A. Dataset 
The data utilized for this investigation were acquired 

during a measurement campaign conducted between July 1 
and August 3, 2022, close to the harbor of Rostock, a city in 
northern Germany, on the southern coast of the Baltic Sea 
(54°10'14.8''N, 12°06'24.7''E, ~7 m above the sea level, ~1.5 
km north of the port, close to main shipping lanes). The 
purpose of this measurement campaign was to investigate the 
composition of airborne aerosol particles in the region, 
especially those emitted from ship engines. Since the Baltic 
Sea region belongs to the International Maritime Organization 
(IMO) declared Sulfur Emission Control Area (SECA), strict 
requirements are enforced for ship emissions [11]. 

Analyzing the collected data, we manually labeled 10,400 
samples in one of 13 different aerosol particle classes (800 
samples per class), which cover the most frequently observed 
particles in the local area. Table II details the ions that may be 
contained in the different particle classes and Fig. 2 presents 
several examples of mass spectra. 

TABLE II.  OVERVIEW OF THE 13 PARTICLE CLASSES IN THE 

LABELLED DATASET (800 SAMPLES PER CLASS). POSSIBLE EMISSION 

SOURCES AND ION MARKERS OF PARTICLES ARE SUMMARIZED FROM THE 

LITERATURE AND EXPERT EXPERIENCE. 

 

Method Characteristics  
APN Adding peak noise (gaussian noise) of defined SNR 

SRT Square root of mass spectra 

AVE Mean values of n mass spectra 

SMS Separately swappingthe positive and negative part between 
multiple mass spectra 

Particle classes Emission sources Ion markers 
Elemental 
carbon (EC) 

traffic emissions [5], 
[8] 

EC: 12C±, 24C2
±, ..., 

120C10
± 

Organic and 

elemental carbon 
(OC-EC) 

traffic emissions, 

biomass burning [8], 
[23] 

OC: 27[C2H3]
+, 37[C3H]+, 

39[C3H3]
+, 43[C4H7]

+, 
51[C4H3]

+, 63[C5H3]
+, etc; 

EC 

K-rich biomass burning [8] 39/41K+ 

Ca-rich lubricating oil of ship 

engines [8], [11] 

40Ca+, 56[CaO]+, 
57[CaOH]+, 112[CaO]2

+ 

V-rich ship fuel emissions 
[8], [11] 

51V+, 67[VO]+; 54/56Fe+; 
60Ni+ 

Mn-rich industrial emissions 

[24] 

55Mn+ 

Fe-EC ship fuel emissions 

[11], [25] 

Fe: 54/56Fe+, 73[FeOH]+; 

EC 

Fe-Nit ship fuel emissions 

[11], [25] 

Fe; Nitrate: 46[NO2]
-, 

62[NO3]
- 

Fe-Sul-Nit ship fuel emissions 

[11], [25] 

Fe; Sulfate: 80[SO3]
-, 

96[SO4]
-, 97[HSO4]

-; 

Nitrate 

Fe-Nit-EC ship fuel emissions 
[11], [25] 

Fe; Nitrate; EC 

Fe-dominant ship fuel emissions 

[11], [25] 

Fe; negative signals are 

empty or very weak 

Salt-Fe mixed state [25] Fe; Salt 
Sea salt sea salt [8], [25] Salt: 23Na±, 39[NaO]+, 

62[Na2O]+, 63[Na2OH]+, 
35/37Cl-; Sulfate; Nitrate 

1166



Worth noting, we found that the abundance of particles 
from different emission sources varied greatly, posing a 
challenge for creating a class balanced dataset. Whereas more 
abundant particles could be identified within few hours of 
consecutive data, to find enough samples of less abundant 
particles, often precisely the ones sought after (like mass 
spectra with combinations of V+, Fe+ and Ni+ ions that 
characterize particles emitted from ships using highly 
polluting heavy fuel oil [11], we had to search through data 
collected over several days or even a dozen of days. This 
finding is another strong motivation for data augmentation. 

Mass spectra dominated by Fe+ ions are associated with 
emissions from ships using low-sulfur fuel oil [25], which is 
mandatory in SECA and was abundantly found in the 
measured data. We divided these iron-containing particles into 
five different subclasses (Fe-EC, Fe-Sul-Nit, Fe-Nit-EC, Fe-
Nit, Fe-domi.) based on their degree of aging (i.e. components 
in negative mass spectra), giving an indication about the 
distances these particles were transported through air [25], and 
hence facilitating the emission source localization. 

Mass spectra as 1D images can be directly used as input 
for 1D-CNN classifiers. To use 2D-CNN classifiers the 1D 
images have to be transformed into a m × n matrix (2D 
images), where m is the number of rows, n is the number of 
columns: 

� ����

Here, the mass spectra have 240 entries, hence 
m × n = 240. After comprehensive testing, the highest 
classification accuracy was performed with 16 × 15 as inputs. 
In this work, we investigated the performance of various 
networks for the classification of SPMS data using these two 
representations of mass spectrum (1D and 2D, respectively), 
and the impact of different augmentation methods on them. 

B. Experiment design 
The experiment design was split into two parts (see 

flowchart in Fig. 3) to verify if using data augmentation on a 
small amount of manually labeled mass spectra reveals 
reasonable classification results. 

 In Part I (see left-hand side of Fig. 3), the performance of 
several known and proposed architectures is validated with the 
labeled SPMS dataset. We divided this dataset into two parts: 
80% (8,320 samples, 640 samples per class) were used for 
training and the remaining 20% (2,080 samples, 160 samples 
per class) were used as a test set to validate the trained models. 
In a subsequent Part II of the experiment (see right-hand side 
of Fig. 3), the same classification models were retrained using 
only a small subset of labeled data and different augmented 
data. To achieve this goal, 1,300 randomly selected samples 
(100 samples per class) from the training set were used to 
create augmented data with the four augmentation methods 
listed in Table I. With these data (combined original and 
augmented data), we retrained the models using the 
architectures and verified hyperparameters from Part I of the 
experiment. The performances of the retrained models with 
that of the models from Part I were compared using the same 
test set from Part I. 

IV. RESULTS AND DISCUSSION 

In Table III, the results of Part I of the experiment 
investigating 5 classification algorithms with a large amount 
of training data are shown which verify that the advocated 1D-
CNN and 2D-CNN architectures can classify the SPMS data 
of the created dataset well and better than the widely known 
AlexNet [20] and VGG [26] algorithms designed for image 
classification. Traditional ML method like MLP without 
preset features performed significantly worse than deep 
learning models which are able to extract meaningful features 
from the data using all the m/z values as inputs for the models. 

In Table IV, classification results for 1D-CNN and 2D-
CNN are listed, when only 100 samples from each class (1,300 
samples in total) are used as training data. Without 
augmentation, but keeping the architectures and all 
hyperparameters unchanged, this provides to dramatically 
dropped classification accuracies (see second column). The 
remaining columns of Table IV show classification accuracies 
of models trained using a combined dataset of these 1,300 
original samples and different augmented data, respectively. 
As can be seen, the 2D-CNN models trained using 2D 
representation of mass spectra outperform the 1D-CNN 
models trained using the original 1D mass spectra in every 
aspect, with or without data augmentation. This finding 
indicates that a more compact 2D representation of the data 

TABLE III.  5-FOLD CROSS-VALIDATION RESULTS (IN %) OF 5 

DIFFERENT CLASSIFICATION METHODS ON THE TEST SET (2,080 SAMPLES). 

Method Accuracy Recall Precision 
MLP [16] 75.9 ± 1.5 75.5 ± 1.9 74.1 ± 1.2 

AlexNet [20] 82.2 ± 0.5 82.3 ± 0.5 82.5 ± 0.5 

VGG [26] 86.8 ± 0.7 86.8 ± 0.6 87.0 ± 0.5 

1D-CNN [17] 88.6 ± 1.7 87.9 ± 1.8 88.1 ± 1.6 

2D-CNN [18] 90.6 ± 0.3 90.7 ± 0.3 90.7 ± 0.1 

 

Fig. 3. Flowchart of the two-part experiment. Part I: Verification of ML 

classification models (left). Part II: Verfication of augmentation method 
(right). Before feeding the SPMS data into networks, positive and negative 

mass spectra were normalized separately according to their highest peaks. 
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TABLE IV.  CLASSIFICATION ACCURACIES OF 2 CNN MODELS TRAINED WITH DIFFERENT AMOUNTS OF SPMS MASS SPECTRA, ON THE TEST SET. 1,300 

SAMPLES (100 SAMPLES PER CLASS) WERE USED TO TRAIN THE MODELS WITHOUT DATA AUGMENTATION. THE REMAINING RESULTS WERE OBTAINED IF 

THE TRAINING SET COMPRISES THESE 1,300 SAMPLES AND DIFFERENT AMOUNTS OF AUGMENTED DATA. 

 
allows the convolutional layers to extract local and global 
features from the original data more efficiently. 

The results of APN and SRT indicate only a limited 
improvement compared to the classification results achieved 
without augmentation. These two augmentation methods 
modify the intensities of the augmented spectra with respect 
to the original signals, which is prone to alter the original 
‘chemical footprint’ of the spectra. A second reason why the 
improvement in accuracy is limited may be because after 
augmentation with APN or SRT, the training data are still 
small, with the number of augmented data equaling the 
number of original data (here 1,300 samples of augmented 
data). Higher numbers of augmented data  can be 
generated by the AVE or SMS methods: 

 AVE:� � ����

 SMS:� � ���

where c stands for the number of classes, and k refers to the 
number of original samples per class. With c = 13 and k = 100, 
Nnew = 64,350 augmented data can be generated with AVE and 
twice that number with SMS (128,700 samples). 

Both AVE and SMS can generate much larger numbers of 
augmented data than the number of original samples (with n = 
100, maximum 49 and 99 times the number of original 
samples, respectively). As can be seen from the results in 
Table IV, the augmented data generated with AVE improved 
the accuracy of the 1D-CNN and 2D-CNN by ~5% and ~7%, 
respectively. Among the investigated augmentation methods, 
SMS can generate the largest number of augmented data and 
performs best, with both 1D-CNN and 2D-CNN improving 
the classification accuracy of 2,080 samples in the test set by 
about 9% compared to the original training set of 100 samples 
per class. 

However, if very high numbers of augmented data are used 
for training, not only the training time is increased 
significantly, but also the performance of the models would 
not further improve, see the trend in the results displayed in 
Table IV. This is because, in general, the more augmented data 
are generated with AVE or SMS, the more spectra will be 
similar of partially identical to each other. We additionally 
generated augmented data using a larger number of manually 
labeled data (i.e. more than 100 original samples per class), 
but none of the retrained models outperformed the models 
trained with large amounts of manually labeled data (here 640 
samples per class) with respect to classification accuracy 
(Table III). 

From the results displayed in Table IV, the 2D-CNN 
model trained with 1,300 original samples and 39,000 
augmented data generated with SMS method performed best, 
with an accuracy of 86.8%. To validate this result, we 
performed a 5-fold cross-validation with these data to reduce 
the contingency associated with a single training round. Thus, 

TABLE V.  5-FOLD CROSS-VALIDATION RESULTS USING 1,300 TRUE 

SAMPLES AND 39,000 DATA (3,000 PER CLASS) AUGMENTED BY SMS. 
METHOD WITH THE 2D-CNN MODEL (%). 

the dataset was randomly divided into five folds and four folds 
were used for training and one fold for test. Table V shows the 
results of the cross-validation results on the test set and 
demonstrates the stability of the results and the effectiveness 
of the SMS data augmentation approach. 

Fig. 4 shows the normalized confusion matrix for the best 
performing 2D-CNN model. The proportion of true 
classifications (in %) are displayed on the main diagonal. All 
other entries show misclassifications (false positives and false 
negatives). Among the classification accuracies for each of the 
13 classes, the five iron subclasses (Fe-EC, Fe-Sul-Nit, Fe-
Nit-EC, Fe-Nit, Fe-domi) were more difficult to distinguish, 
and these iron subclasses are sometimes also difficult for 
experts to classify. All other classes were correctly recognized 
with rates larger than 87%, up to 98%. 

The results demonstrate that we have significantly 
improved the performance of the models for the classification 
of SPMS data using augmented data with limited labeled data 
(100 samples per class). Although, there is a ~4% difference 
between the best results in Tables III and IV, but the amount 
of manually labeled data used in Table IV is only 15% of that 
in Tables III. This suggests that augmentation on a small 
number of labeled data helps to improve the results. However, 

Augmentation 
Method 

Without 
augmentation 

APN SRT AVE SMS Unit 

No. of samples 1.3 1.3 1.3 6.5 13 26 39 52 6.5 13 26 39 52  103 
1D-CNN [17] 74.6 75.8 75.6 81.4 79.8 79.1 80.0 80.0 82.7 82.3 83.9 83.7 83.9 % 

2D-CNN [18] 78.7 81.1 81.0 84.6 84.6 85.4 85.0 86.0 85.2 85.7 86.6 86.8 85.7 % 

Accuracy Recall Precision 
86.3 ± 0.3 86.2 ± 0.2 86.5 ± 0.3 

 

Fig. 4. Normalized confusion matrix for the best performing model on the 
test set, the model was trained using a 2D-CNN, 1,300 manually labeled 

samples and 3,9000 data (3,000 per class) augmented by the SMS method. 

1168



augmentation-assisted classification does not outperform 
models trained on a lot more (here: 6.4 times) manually 
labeled data. 

V. CONCLUSION 

The labeling process for aerosol mass spectra requires 
expert knowledge, and therefore, the lack of labeled data is a 
major bottleneck in the realization of aerosol particle 
classification using AI techniques. This work presents, for the 
first time, data augmentation techniques to effectively 
improve the classification results of different deep learning 
models on SPMS data in case of low amounts of labeled data. 
Results for the classification of 13 aerosol classes and 100 
samples per class showed a significant improvement of the 
classification accuracy when data augmentation is used. Since 
there are far more aerosol particle classes in the air than the 13 
classes considered in this work, the diversity of the dataset 
must be continually expanded to enable the model to 
recognize more particle classes. Data augmentation 
techniques are a suitable tool to build new benchmark datasets 
in the future, with a comparatively small number of manually 
labeled data, which will save huge time and costs for the 
research. Moreover, in view of great differences in the 
abundance of aerosol particle classes in the air, data 
augmentation simplifies setting up balanced benchmark 
datasets as a prerequisite of a high classification performance 
of deep learning methods models. As a result, the potential for 
real-time air quality monitoring combining highly-selective 
SPMS to analyze the chemical composition of aerosol 
particles and data augmentation-supported deep learning to 
automatically identify these particles has been greatly 
enhanced. 
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