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Abstract—License plate (LP) recognition systems often struggle
to accurately recognize images in complex environments. Recent
studies have attempted to improve recognition accuracy by utiliz-
ing super-resolution (SR) technology. However, these approaches
often fall short in terms of generalization performance, as they
rarely consider the various degradations present in real-world
images. In this paper, we propose to generate realistic degraded
LP images by applying a degradation model on a high-resolution
LP dataset, which can cover a wide range of the degradation
variations of real-world LP images flexibly. The SR model trained
with simulated degraded images has better generalization and
robustness on real-world LP images. Experimental evaluations
conducted on LP recognition benchmark datasets demonstrate
that the proposed method not only produces visually superior
results but also effectively improves recognition accuracy.

Index Terms—license plate super-resolution, recognition, real-
world, degradation model, high-resolution dataset

I. INTRODUCTION

License plate recognition (LPR) has attracted significant

interest in computer vision due to its wide range of practical

applications, such as traffic management, security monitor-

ing, and intelligent parking. While LPR systems have made

remarkable progress through deep learning, the recognition

accuracy of these methods rapidly decreases when faced with

low-quality images captured from the real world.

License plate super-resolution (LPSR) was first proposed in

[1] to improve recognition accuracy. However, existing LPSR

methods [2]–[5] still cannot effectively solve real-world LPSR

tasks since they rarely consider the various degradations in

real-world LP images. Recently, the blind SR methods like

BSRGAN [6] and Real-ESRGAN [7] for the general domain

have explored real-world SR and demonstrated their excellent

performance in dealing with low-quality degraded images.

An intuitive idea is adopting the blind SR methods into the

LPSR task. However, there is a severe transferability problem

that the degradation types considered in blind SR methods do

not match the LPSR domain. In order to solve the real-world

LPSR problem, building a low-resolution LP dataset with

domain-specific degradations is a promising method since the

generalization of neural networks in the target domain can be

improved by this dataset. Directly using the camera to capture

low-resolution LP images with various degradation is very

difficult and resource-consuming. So we propose to generate

*Weikai Miao is the corresponding author (wkmiao@sei.ecnu.edu.cn).

a realistic degraded image dataset with a high-resolution LP

image dataset and the LP degradation model.

With respect to the high-resolution LP image dataset, nat-

ural scenes high-resolution datasets (e.g., DIV2K [8] and

Flickr2K [9]) lack unique features of LP shapes, numbers,

and characters. Meanwhile, existing real-world LP datasets

contain various degradations, and there is no correspond-

ing high-resolution LP image with high fidelity. Thus we

build a high-resolution LP dataset termed HRLPD to meet

this requirement. The HRLPD dataset consists of 100 high-

resolution (2K) images, and we expand it to 5,000 by data

augmentation methods such as rotation, cropping, and scaling.

Given the high-resolution image from the HRLPD dataset, the

corresponding degraded image can be generated by the LP

degradation model.

With respect to the LP degradation model, according to the

statistical results of the degradation distribution of the existing

real-world LP datasets, our proposed LP degradation model

consists of motion blur, lighting, Gaussian blur, resizing, and

noise, in which motion blur and lighting commonly exist

in driving scene and have not been considered in general

real-world SR works [6], [7]. Thus we refer to the physical

procedure of motion blur and lighting to effectively simulate

them in the degradation model. Specifically, the motion blur

is achieved by point spread functions with random linear

or non-linear motion trajectories. The lighting is realized by

simulating the rendering of ambient light, parallel light, and

spotlight on the LP image. Considering the uncertainties in the

occurrence of degradation in the real world, we adopt a random

degradation shuffle sequence proposed by BSRGAN [6] and

control the execution of all the degradation by a probabilistic

hyperparameter.

We evaluate the model trained by our self-built datasets

on three other real-world LP datasets, including CCPD [10],

AOLP [11], and RodoSol-ALPR [12]. Meanwhile, we adopt

the LP recognition accuracy metric that is commonly used in

the LPSR methods [2]–[5]. In summary, our contributions can

be summarized in three-fold:

1. To solve the real-world LPSR task, we are the first

to propose a complete and domain-specific LP degradation

simulation model by introducing motion blur and lighting

degradation into the blind SR method.

2. We build a high-resolution LP dataset and combine it with
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Fig. 1. The whole process of data synthesis, the LP degradation model em-
ploys motion blur and light degradation in addition to the general degradation.

the proposed degradation model to generate realistic degraded

LP images.

3. Experiments show that the model trained by the self-

built dataset produces better visual results and can effectively

improve the accuracy of LP recognition in various complex

environments.

II. RELATED WORK

A. Blind Super-Resolution

Blind SR is a challenging task that requires simultaneously

solving image restoration and SR problems without prior

knowledge of the blur kernel. The methods like SRMD [13]

and UDVD [14] use the degradation information and LR image

as input to the SR model, effectively addressing multiple types

of degradation by adapting to the degradation features. How-

ever, incorrect estimation of degradation information can cause

blurring and unnatural texture details in the super-resolved

images. As a remedy, IKC [15] and DAN [16] propose to

correct the kernel estimate in an iterative manner. Similarly,

KMSR [17] and RealSR [18] propose to estimate kernels

from LR images captured in real-world scenes. However,

they fail to produce satisfactory results when dealing with

degraded images not covered by their models, which is far

from generalizing to real-world scenes. To address this issue,

recent research has focused on modeling degradation behavior

to cover most degradation scenarios in real-world images.

For example, BSRGAN [6] proposes a random degradation

shuffle sequence and some practical degradation types. Real-

ESRGAN [7] proposes a higher-order degradation model

to expand the degradation space. Despite their significant

progress in improving the perceptual quality of real-world

images, they are unsuitable for images in some specific fields

(e.g., LP images) since they lack domain-specific degradation

types and fail to capture domain-specific texture features.

B. License Plate Super-Resolution

Early works [1], [19], [20] in LPSR mainly relied on

traditional image processing methods. The LPSR method

has made significant progress benefiting from the develop-

ment of deep learning. For example, Lai et al. [21] uses

generative adversarial networks (GANs) with perceptual loss

to reconstruct the HR LP images. Zou et al. [22] propose

an LPSR algorithm based on character semantics. However,

their method assumes that the LR image is generated by

bicubic interpolation downsampling of the HR image, which

is impractical in real-world images. For realistic scenarios,

Liu et al. [4] propose using GANs to extract complementary

information from multiple images to recover the LP number.

Zhang et al. [5] adopt the prior knowledge of LP to generate

the spatial corresponding HR images. However, they cannot

be generalized to wider real-world scenarios since most of

them do not consider various degradation factors in the real

world. Recently, researchers have started to consider the LP

image degradation issue. For example, Hamdi et al. [2] adopt

a style translation network to distort images. Nascimento et
al. [23] propose to degrade HR images by iteratively applying

random Gaussian noise. However, simple degradation methods

can only cover limited scenarios, and unsuitable degradation

will produce severe artifacts.

III. METHODOLOGY

A. The Real-world License Plate Degradation

Before providing our LP degradation model, we collected

and analyzed degradation types distributed in six real-world

LP datasets. We divide these degradations into the following

four types: Gaussian blur, motion blur, noise, and lighting. The

LPR systems often fail to correctly recognize low-quantity LP

images with these degradation types. The statistical results are

shown in Table I.

TABLE I
DEGRADATIONS IN SIX REAL-WORLD LP DATASETS.

Dataset Gaussian Motion Noise Lighting
EnglishLP [24]
ChineseLP [25]
AOLP [11]
UFPR-ALPR [26]
CCPD [10]
RodoSol-ALPR [12]

Gaussian blur. Blurring in the real world is usually caused

by a variety of factors, such as improper focus, camera lens

distortion, etc. The LP capturing scene also suffered from this

degradation as other common scenes.

Motion blur. Motion blur occurs when an object is moving

too fast or the camera shakes, which commonly exists in the

process of photographing LP images. This degradation causes

numbers and characters to appear ghosting on the LP image,

making edge detail difficult to discern.

Noise. Noise refers to irregular isolated pixels that interfere

with the observable information of an image. Influenced by

camera sensor material, operating environment, etc., various

noises will be introduced during image acquisition. Unpleas-

ant blocking artifacts can also be introduced during image

compression or transmission. This degradation also occurs

frequently in LP images.
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Fig. 2. Top: The visualization of the motion kernel and the corresponding
blurred image. Bottom: The visualization of the light mask image and the
corresponding rendered image.

Lighting. Unsuitable lighting will degrade the quality of LP

images. Specifically, low-contrast scenes result in images with

less detail, which is challenging to analyze and interpret.

Imaging under excessive lighting conditions may result in

a loss of highlight detail. Uneven lighting scenes can cause

shadows and color distortions in LP images. Different types

of lights in the real world produce different color temperatures

and tints, which can also cause color distortion or white

balance problems.

B. The License Plate Degradation Model

Based on the above survey, we propose a complete and

domain-specific LP degradation model. The whole pipeline

of data synthesis is shown in Fig. 1. For the degradation

process, we not only adopt the practical degradation types

(i.e., Gaussian blur, noise, and resizing), but also additionally

employ motion blur and lighting degradation in the LP degra-

dation model. Considering the uncertainties in the occurrence

of degradation in the real world, we control the execution of

all the degradations via a probability hyper-parameter. In the

LR image synthesis procedure, we apply this LP degradation

model on the high-resolution LP dataset proposed in Sec. III-C

to generate realistic degraded images.

Motion blur simulation. The physical modeling of motion

blur can be described by a point spread function (PSF). During

a moving object forms an image on the photosensitive element,

since the object has moved a certain distance before the shutter

closes, the formed pattern appears as one or some tracks. The

spatial distribution of tracks on the photosensitive element is

the PSF. A motion-blurred image can be modeled by

Y = PSF ∗ X + N (1)

where Y is a motion-blurred image, X is the sharp latent

image, ∗ denote the convolution operator, N is additive noise.

The classical motion deblurring work [27]–[29] usually

assumes the PSF is linear motion, which may reduce the

quality of the latent image since the natural motion blur may be

caused by non-linear motion. [30], [31] adopt random motion

trajectories to achieve non-linear motion blur. Since real-world

motion blur parameters are unknown, we model motion blur

as the convolution with a PSF of random linear or non-linear

motion trajectories. A visualization of the motion blur kernel

is shown in Fig 2 (Top).

Lighting simulation. We simulate three light effects with

different properties in the real world, including ambient light,

parallel light, and spotlight. Specifically, ambient light means

that the light intensity is the same everywhere in space,

parallel light refers to multiple light sources illuminating the

same direction in parallel, and the spotlight is a light source

that emanates from a point. Following the fact that the light

intensity will attenuate with the increase of the spatial distance,

we use a Gaussian distribution to simulate the trend of light

attenuation (as shown in Eq. 2). For ambient light, we generate

a completely black or white light mask. For parallel light

or spotlight, we first randomly select the position of the

light source and then generate a light mask according to the

attenuation characteristics (i.e. direction) of the light source.

We randomly select a lighting effect and merge its resulting

light mask with the HSV space of the image with different

weights to simulate real-world lighting. A visualization of the

light mask image is shown in Fig 2 (Bottom).

Li = Lmax · exp
(
− (di − μ)2

σ2

)
(2)

where Li is the brightness value at position i, Lmax is the

maximum value of brightness, di is the distance from the

position of i to the light source, μ and σ are the mean and

variance of the Gaussian distribution, respectively, which are

associated with lighting effect and the size of the image.

C. The High-Resolution License Plate Dataset

Existing public LP datasets (e.g., AOLP [11], CCPD [10])

contain various degradations while lacking corresponding non-

degradation HR images. Thus we can not collect LR-HR image

pairs for LPSR tasks in the real world with them. To fill

this gap, we establish a high-quality (i.e., minor degradation)

and high-resolution LP dataset called HRLPD. We select

100 images with higher quality from 200 captured images

by Laplacian blur detection [32], where each image was

captured by a Canon EOS M100 camera with a resolution

of 2460 × 1680. Specifically, this dataset was shot under

good illumination, and we fixed the camera during imaging to

prevent subtle shakes caused by manual shooting. The HRLPD

dataset contains three types of Chinese LP images, including

new energy vehicles (green), fuel vehicles (blue), and large

vehicles (yellow). A small sample of images from the HRLPD

dataset is shown in Fig. 3. Following the practice in blind

SR work [6], [7], we use data augmentation techniques (e.g.,
flipping, random cropping, and warping) to generate 5,000 HR

patch images with 256 × 256 resolution. The experiments have

proven that training using this dataset can better capture the

texture features of LP images.
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Fig. 3. A small sample of images from the HRLPD dataset.

IV. EXPERIMENTS

A. Training Details and Evaluation

Datasets. We first train the SR model using DIV2K [8] and

Flickr2K [9], which are high-quality (2K resolution) datasets

widely used for image restoration tasks. Then we fine-tune

the model by HRLPD dataset. The training LR patch size

is 64 × 64, and the LR image is generated by the LP

degradation model. We evaluate our method on three real-

world LP datasets with different degradation distributions, in-

cluding AOLP [11], CCPD [10], and RodoSol-ALPR [12]. The

AOLP consists of 2,049 images collected in Taiwan, CCPD

consists of over 250k Chinese blue and green LP images,

RodoSol-ALPR consists of 20,000 Brazilian LP images, where

AOLP contains slight degradation, CCPD and RodoSol-ALPR

include images of different degradation levels and degradation

types. We select all images of AOLP and randomly select

2,000 vehicle images from CCPD and Rodosor-ALPR, respec-

tively, as the testing dataset.

Training details. Our innovation is mainly the LP domain

degradation model, we adopt the widely used ESRGAN [33]

as the SR model. We train it on HR-LR data pairs generated

by applying the LP degradation model on the HRLPD dataset.

Meanwhile, we use data augmentation techniques to expand

the training dataset and remove some plain background images

without characters. The number of training data pairs is 5000,

and the execution probability for each degradation type is set

to 0.5. We conduct experiments with a scale factor of 4 and

performed on two NVIDIA GeForce RTX 3090 GPUs. The

model is trained by Adam optimizer. The learning rate is 10−4,

the batch size is 16, and the total number of iterations is 400K.

Evaluation. The main purpose of image super-resolution is to

improve the accuracy of license plate recognition, so we adopt

recognition accuracy as an evaluation. For the LPR system, we

choose open source one with excellent performance [34].

B. Compared Methods

We compare the proposed method with LPE [35], BSR-

GAN [6], Real-ESRGAN [7], MPRNet [36], DeblurGAN

[31], SCI [37]. Specifically, LPE is an LPSR method that

uses random brightness and noise to degrade the CCPD [10]

dataset for training. BSRGAN employs a random degradation

shuffle strategy, and Real-ESRGAN proposes a high-order

degradation process. The MPRNet, DeblurGAN, and SCI are

used for denoising, deblurring, and low-light enhancement,

respectively.

TABLE II
COMPARISON RESULT OF DIFFERENT IMAGE SR AND RESTORATION

METHODS ON THREE REAL-WORLD LP DATASETS.

Method AOLP CCPD Rodosol-ALPR

Original 0.9853 0.8430 0.9335
LPE [35] 0.9892 0.8516 0.9382

BSRGAN [6] 0.9922 0.8077 0.9104
Real-ESRGAN [7] 0.9925 0.8120 0.9096

MPRnet [36] 0.9860 0.8443 0.9381
DeblurGAN [31] 0.9594 0.8075 0.9104

SCI [37] 0.9630 0.7720 0.8925
Ours 0.9956 0.8965 0.9705

C. Results on Real-World Dataset

Quantitative results. The results of recognition accuracy are

shown in Table II. LPE and MPRNet bring limited improve-

ment. Real-ESRGAN and BSRGAN perform poorly on CCPD

[10] and Rodosol-ALPR [12] datasets, mainly because they

produce severe artifacts and lose original semantic information

when facing unknown degraded inputs. DeblurGAN and SCI

also showed declines due to degradation mismatch. The SR

models trained with our simulated degradation dataset have

better generalization performance on real-world LP datasets.

Specifically, our method improves 1.03% on AOLP, 5.35%
on CCPD, and 3.70% on Rodosol-ALPR.

Qualitative results. The visual results are shown in Fig. 4.

For image restoration methods, MPRNet and DeblurGAN

perform unsatisfactorily on low-resolution LP images, SCI

only increases the brightness. For image SR methods, it

can be observed that LPE fails to remove various blurs and

noises. Real-ESRGAN and BSRGAN produce severe artifacts

when processing LP images of degradation types not covered

in their degradation models. Our model can generate high-

quality images with clearly visible edges when treating LP

images with multiple degradation types, which shows that the

proposed method is robust and effective.

TABLE III
ABLATION STUDY ON THE EFFECTIVENESS OF THE DIFFERENT

COMPONENTS. TDY REPRESENTS THE PROPOSED TWO DEGRADATION

TYPES, AND HRLPD IS THE PROPOSED HIGH-RESOLUTION LP DATASET.

Method AOLP CCPD Rodosol-ALPR
Original 0.9853 0.8430 0.9335

w/ TDY w/o HRLPD 0.9505 0.8125 0.8940
w/o TDY w/ HRLPD 0.9922 0.8075 0.9105
w/ TDY w/ HRLPD 0.9956 0.8965 0.9705

D. Ablation Study

We performed an ablation study on two proposed com-

ponents: a high-resolution LP dataset (HRLPD) and two

degradation types (TDY): illumination and motion blur. We

use the image recognition results of degraded low-resolution

LP images as the original results. The experimental setup and

accuracy results are shown in Table III.
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Fig. 4. Qualitative comparisons of different SR methods on real-world LP images with scale factor 4. Better zoom in for details.

The results show that omitting any method component

seriously affected the recognition performance. Specifically,

the method of not introducing the proposed two degradation

types only improves the recognition accuracy on the slightly

degraded AOLP [11] dataset. Lack of fine-tuning on the

HRLPD dataset leads to a drop in recognition accuracy. The

reason may be that using natural scenes for training cannot

capture the unique texture features of the LP images, resulting

in strange artifacts. This inspires us to design efficient specific

solutions for specific domains, rather than general solutions.

E. Visualization of Recognition Results.
In order to demonstrate the effectiveness of this method

more intuitively, we show samples of the recognition results

of various degraded LP images (all derived from real-world

license plate datasets) corrected by our method. As shown

in Figure 5, the LPR system incorrectly recognized some

characters containing noise and ambiguity, such as ”8” as

”B”, ”E” as ”F”, and the presence of characters that cannot be

recognized in low light conditions. Our method removes noise

and blur in the image and improves the quality of the image,

which can effectively avoid such recognition errors.

V. CONCLUSION

In this paper, we analyze the degradation types present

in real-world LP images and design an LP domain-specific

YB8096

Y88096

OO 769

ODR4769

RF9302

RE9302

PP60829

PPG0829

LR

SR

Fig. 5. The sample of correcting the recognition results by the proposed
method. Error results are marked in red.

degradation model by introducing motion blur and lighting on

traditional degradation types. We applied it to a high-resolution

LP dataset to generate realistic degraded images. Although

there is still a gap between the hand-designed degradation

operator and the real degradation process, the proposed LP

degradation model is sufficient for the LPSR task. Our method

is easy and effective, the SR model trained on synthetic

data has outstanding robustness and generalization on real-

world LP datasets, which can produce better visual results

and improve the recognition accuracy.
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Mishkin, and Jiřı́ Matas, “Deblurgan: Blind motion deblurring using
conditional adversarial networks,” in CVPR, 2018, pp. 8183–8192.

[32] Raghav Bansal, Gaurav Raj, and Tanupriya Choudhury, “Blur image
detection using laplacian operator and open-cv,” in SMART. IEEE, 2016,
pp. 63–67.

[33] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong,
Yu Qiao, and Chen Change Loy, “Esrgan: Enhanced super-resolution
generative adversarial networks,” in ECCV, 2018, pp. 0–0.

[34] Rayson Laroca, Luiz A Zanlorensi, Gabriel R Gonçalves, Eduardo Todt,
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