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Abstract—Transformers have recently gained prominence in
long time series forecasting by elevating accuracies in a variety
of use cases. Regrettably, in the race for better predictive
performance the overhead of model architectures has grown
onerous, leading to models with computational demand infeasible
for most practical applications. To bridge the gap between high
method complexity and realistic computational resources, we
introduce the Residual Cyclic Transformer, ReCycle. ReCycle
utilizes primary cycle compression to address the computational
complexity of the attention mechanism in long time series. By
learning residuals from refined smoothing average techniques,
ReCycle surpasses state-of-the-art accuracy in a variety of
application use cases. The reliable and explainable fallback
behavior ensured by simple, yet robust, smoothing average
techniques additionally lowers the barrier for user acceptance.
At the same time, our approach reduces the run time and
energy consumption by more than an order of magnitude,
making both training and inference feasible on low-performance,
low-power and edge computing devices. Code is available at
https://github.com/Helmholtz-AI-Energy/ReCycle

Index Terms—time-series, neural networks, transformer, en-
ergy efficiency

I. INTRODUCTION

Among the different applications of machine learning (ML)

methods, time series forecasting is one of the most widely

encountered and most complex tasks. While for a long time,

traditional statistical methods, such as smoothing averages or
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HAICORE@KIT partition and by the German Federal Ministry of Education
and Research under the 01IS22068 - EQUIPE grant. The authors gratefully
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performance computer HoreKa at the NHR Center KIT. This center is jointly
supported by the Federal Ministry of Education and Research and the state
governments participating in the NHR (www.nhr-verein.de/unsere-partner).

auto-regressive moving averages, dominated the algorithmic

landscape for analysis and prediction of temporal behavior,

recent advances in deep learning (DL), and natural language

processing (NLP) in particular, have paved the way for neural

network-based approaches [1]. The introduction of the Trans-

former architecture [2] has preluded significant breakthroughs

in sequence processing, making it a natural candidate for state-

of-the-art (SOTA) time series forecasting. However, adaptation

to time series applications poses a mayor challenge: The cal-

culation and memory complexity of the attention mechanism

for a sequence of length L is O(L2), making the forecasting of
long time series exceptionally compute intensive. For real-time

deployment on hardware with limited memory and computa-

tion capabilities, this computational footprint is prohibitive.

Moreover, dot-product attention was originally designed for

multi-feature tokens, complicating the method transfer to uni-

variate time-series.

Several authors have put forward approaches for general

Transformer-based time series forecasting problems that at-

tempt to tackle the computational complexity of the attention

mechanism [3]–[5]. However, while they theoretically reduce

the complexity to logarithmic or even linear, practical imple-

mentations do not yield significant computational performance

increase, as shown by our experiments. The increased compu-

tational overheads and complex model structures ultimately

yield longer run times and consequently, higher energy con-

sumption. This renders them infeasible for typical deployment

hardware, such as on-board systems, embedded devices, or

low-power hardware in sensors. But more importantly, it con-

tributes to the steadily increasing environmental footprint of

AI methods that has accompanied the drive for more accurate

models, a trend which has been termed Red AI [6].
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In this work, we present ReCycle: Residual Cyclic Trans-

formers, a method for fast and energy efficient time series

forecasting. Our contributions include a rigorous mathematical

discussion of the attention mechanism for single-feature se-

quences, leading to something that we term scalar breakdown
of dot-product attention. The corresponding incapability of the
attention mechanism to capture relational properties between

single-featured tokens has direct implications for univariate

time series forecasting, which adds to our motivation for this

work.

We propose two conceptual changes in representing tem-

porally resolved data, to tackle the growing computational

demand in long-time series forecasting with Transformer-

based architectures:

1) Primary Cycle Compression (PCC): Real-world time se-

ries applications often exhibit distinct patterns and char-

acteristics, such as daily, weekly, and seasonal cycles. We

use this fact to our advantage, converting univariate time

series into multivariate time series over these cycles. PCC

addresses the scalar breakdown of dot-product attention

in an easy and intuitive way. Furthermore, it naturally by-

passes the memory and computation bottleneck, leading

to simpler, yet computationally faster and more energy

efficient time series forecasting.

2) Residual Learning: We leverage prior knowledge on pe-
riodicity and underlying temporal profiles, and accounts

for temporal locality such as concept drift through recent
historic profiles, a new form of smoothing average naive

forecast. By learning only differences to these RHP, i.e.,

residuals, we achieve improved prediction accuracy as the

model can focus specifically on these modulations instead

of the often predominant but already known periodicity.

We evaluate our proposed method on two representatives

SOTA Transformer-based architectures for a number of differ-

ent datasets, demonstrating that ReCycle can be easily inte-

grated with existing Transformer-based architectures, leading

to superior forecasting while requiring a fraction of their run

time and energy consumption. We further show, that with

usage of ReCycle, Transformer-based architectures clearly

outperform current non-Transformer models.

II. RELATED WORK

Neural methods for long time series forecasting have un-

dergone massive development since the publication of the

Transformer architecture [2]. A comprehensive review can be

found in [7]. LogTrans [8] was the first notable adaptation

of the Transformer specifically for time series forecasting. To

address the issue of local context insensitivity of the self-

attention mechanism, the authors substituted the point-wise

dot-product with causal convolutions. A sparse bias in form

of a LogSparse mask was used to reduce computational com-

plexity to O(L logL). Informer [3] focuses on dimensionality
reduction via random subsampling of attention queries. A

metadata input representation related to positional encoding is

used to transform univariate time-series into multivariate ones.

Autoformer [4] introduced a local mean-based decomposition

method and replaces the dot product attention with an auto-

correlation mechanism based on Fourier transforms for lower

complexity. FEDformer [5] combines these ideas by selecting

a fixed number of Fourier modes for auto-correlation and intro-

ducing a decomposition scheme using multiple filter lengths.

Pyraformer [9] proposed the pyramidal attention module that

uses inter-scale tree structures and intra-scale neighboring

connections to leverage multi-resolution representations of

time series. The recently introduced Crossformer [10] focuses

on multivariate time-series, leveraging cross-dimension de-

pendencies through dimension-segment-wise embedding and

a two-stage attention layer.

Recent work on Transformer-based architectures for long

time series forecasting has investigated approaches that are

similar to individual components of ReCycle. The ETS-

Former [11] exploits exponential smoothing attention and

frequency attention to replace the self-attention mechanism in

vanilla Transformers, thus improving both accuracy and effi-

ciency. PatchTST [12] proposes an approach not too different

from our PCC, by segmenting the time series into subseries-

level patches which are used as input tokens to Transformer.

Furthermore, PatchTST promotes channel-independence for

multivariate time-series, attributing the same embedding and

Transformer-weights to each channel.

While these models address many of the inherent chal-

lenges for the application of Transformers to time series,

their approaches are designed for generic time series and thus

do not leverage any problem-specific features or properties.

Moreover, their typically highly complex architectures, used

to make the model generalize better, introduce significant

practical implementation overhead and higher demand for

computational resources. A recent study questions the feasibil-

ity and efficiency of Transformers for time series forecasting,

indicating that linear models might yield better predictive

performances [13]. In response to the excessive demand in

computational resources, researchers have turned to model

approaches based on multi-layer perceptrons (MLP), such as

NBEATS [14] or NHiTS [15], showing on-par and even im-

proved accuracy compared to Transformer-based approaches.

III. NOTATION

Let x(t) be a time-dependent, continuous variable with f
features at a point in time t. A time series X is a sequence

of N measurements of x over a time span T , taken at times
t0, t1, ..., tN with a temporal resolution of Δt = T/N . We
consider the time series forecasting problem as finding a

mapping M, such that

M (x(ti−H), . . . ,x(ti−1),x(ti)) → x(ti+1, . . . , ti+F )

for every x(ti) ∈ X. For simplicity, we will abbreviate
x(ti) := xi moving forward. H is the historic window length
and F is the forecast window length.

IV. SCALAR BREAKDOWN OF DOT-PRODUCT ATTENTION

The success of the canonical Transformer is founded in

the capabilities to relate individual sequence elements with
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Fig. 1. The concepts of primary cycle compression (PCC) and learning residuals. First, the original univariate time series (left) is rearranged according to its
primary cycles, yielding a 2D data matrix (middle). Due to the similarity in primary cycles, we can compute recent history profiles (RHP) and subtract them
from the original data, resulting in residuals that the model is trained to learn (right).

one another through the dot-product self-attention mechanism

spanning the attention matrix. However, we conjecture that

this does not hold for single-valued sequence elements, i.e.

univariate time series. Thus, for single-feature sequences,

the attention matrix does not contain meaningful similarity

information. We refer to this as the scalar breakdown of dot-
product attention.
Let X be a sequences with feature dimension f = 1, σ be

an activation function, and Q and K be the matrices used to

map to query and key respectively. Then, the attention matrix

element aij associated with two arbitrary sequence elements

xi,xj ∈ X, before the softmax, is calculated as

aij =
σ (Qxi)σ (Kxj)

T

√
dk

, (1)

where dk is the dimension of the query and key vectors.

Since dk is only introduced to keep the results in a value

range where the gradient of softmax is sufficient for effective

backpropagation, it can be disregarded. Yet, it also indicates

that the values of query and key will generally be small. In this

range most common activation functions, excluding ReLU, can

be approximated as linear, and since xi,xj are scalar we obtain

aij ∝ σ (Qxi)σ (Kxj)
T ≈ xixjσ (Q)σ (K)

T

∝ xixj

(
Q∗K∗T

) ∝ xixj .
(2)

Hence, we argue that the product of two scalars does not con-

tain meaningful information about their similarity as intended

by the approach.
As mentioned, the ReLU activation function cannot be

approximated linearly around zero. However, it is explicitly

linear on R+ and zero on R−. Therefore, the above calculation
can be performed similarly by considering the four possible

sign combinations of xi and xj , resulting in four different

proportionality factors but leading to the same conclusion.
In the argument above the weight-biases bQ,bK were

neglected for clarity. However, they can be easily reinserted

into Eq. 2:

aij ∝σ (Qxi + bQ)σ (Kxj + bK)
T

≈xixjσ (Q)σ
(
KT

)
+ xiσ (Q)σ (bK)

+ xjσ (K)σ (bQ) + σ (bQ)σ (bQ) .

(3)

None of the three additional terms contain both xi and xj and

therefore cannot contribute to the similarity measure.

We hypothesize, that the authors of previous Transformer

architectures for time series forecasting were implicitly aware

of problems in applying dot-product attention to univariate

time series, hence enriching the data through feature enhance-

ment and positional encoding [3], [4], altering the attention

mechanism e.g. convolutional attention [8] or simply focusing

on multivariate time series. However, to the best of our knowl-

edge, the deduction above is the first explicit reasoning for the

scalar breakdown of dot-product attention, and it motivates our

introducing the primary cycle compression.

V. METHODOLOGY

To tackle the scalar break-down of dot-product attention

for univariate time-series and to bring computational demand,

runtime and energy consumption of Transformer-based archi-

tectures for long-term forecasting to a feasible level while

improving forecast accuracy, we propose ReCycle, which is

based on two novel concepts.

A. Primary Cycle Compression (PCC)

Transformer architectures for time series forecasting usually

employ a sliding window that is applied to every time step.

While this creates a flexible model with respect to the starting

point of the forecast, it also introduces two problems. Firstly,

it causes data redundancy: depending on the length of historic

and forecast windows a data point will be used tens or

hundreds of times in each model training pass, i.e. epoch.

Secondly, Transformers work by determining the similarity of

sequence elements by comparing elements primarily based on

their absolute magnitude. In time series forecasting, it is more

relevant to know whether a sequence element is located in an

ascending or descending slope, a peak, or a minimum.

We address both these shortcomings using what we coin

primary cycle compression (PCC). The reason behind this is
as simple as it is intuitive: in many time series one can observe

periodicity in the data, a pronounced and stable primary
cycle (see Fig. 1). This cycle is often, but not necessarily,
the day-night cycle. For example, road traffic or demand

for resource, such as electricity or water, align with daily
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Fig. 2. Schematic overview of the data flow in ReCycle. Boxes represent building blocks, edges information flow, and tensor shapes are denoted at the bottom
of each box.

activity of the population and industry, and hence exhibit

a clear 1 h cycle. Similar daily profiles can be observed in

certain climate or weather data, like temperature or solar

irradiation. Our approach uses this primary cycle as sequence

granularity, expressing each step in the form of a vector with

D entries, where D is the primary cycle length. PCC enforces

a fixed cycle start, however in practical applications long term

forecasts are typically not performed every time step, but at

the scale of the primary cycle. Furthermore, it allows the

dot product attention to compare the overall shapes of daily

profiles, providing more relevant similarity measures. Addi-

tionally, PCC reduces both sequence length, N , and number
of samples by a factor of D while still utilizing the entire data

content, thus mitigating many practical limitations originating

from the O(N2) memory and computational complexity of
the attention mechanism. Finally, PCC allows for natural

inclusion of metadata M available only on a whole-day basis,

e.g. holiday vs. non-holiday; daily minimums, averages, or

maximums; weather forecasts; etc.

B. Recent Historic Profiles and Residuals

PCC allows us to incorporate knowledge about predominat-

ing patterns in the data, focusing the model on learning more

difficult to capture temporal dependencies beyond the trivial

periodic patterns, as illustrated in Figure 1.

Recurring patterns may be captured by averaging several

past instances of the data, resulting in so-called historic
profiles (HP). There are different ways for averaging historic
data and typically each application use-case necessitates a

custom combination of measurements. The simplest form of

a historic profile is persistence, where data from the last time

step i is used to forecast the next one, i + 1. Following
empirical evaluation of different averaging techniques, we

identify recent history profiles (RHP) as an innovative and
precise technique for a wide range of use cases. However,

all further model derivations can be easily translated to other

averaging techniques. For calculation of RHP we distinguish

between K different types, which enabled incorporation of

prior knowledge. A typical example for different categories

would be workdays, saturdays and sun-/holidays, since many

datasets exhibit distinct patterns in these categories. Instead

of considering all past data we only consider the last k days
in the appropriate category. That way, the profiles naturally

account for current circumstances (like weather), seasonality,

behavior change and concept drift.

Historic profiles capture the general time course of the

primary cycle rather well, but smooth out faster, more erratic

components. To let the model focus on these hard-to-predict

modulations rather than the already known predominant gen-

eral time course, we propose a residual forecasting approach,

were input and target of the network are the difference between

the RHP and the actual time curve, i.e. the residual (see Fig. 1).
Since the overall magnitude of the time series influences the

forecast of residuals, we provide the RHP as decoder input. In

addition to providing a baseline, this also means the decoder

input is shorter than in previous approaches [3], resulting in a

trivial reduction of computations. With the residual approach,

the network can easily learn to return zero if it is unable to find

further patterns on top of the RHP, ensuring a robust fallback

behavior of the prediction.

C. ReCycle

Our approach ReCycle combines PCC and residual fore-

casting based on RHP into one stand-alone preprocessing step

that can be applied to any kind of Transformer-based model

architecture, and in fact any time-series forecasting model.

ReCycle works as follows: Time-series data is normalized to

the interval [0, 1]. PCC is then performed on the whole dataset,
i.e. a univariate time series with N time steps is rearranged

into a 2D data matrix of size L × D, with L = N/D and

D being the length of the primary cycle. D is an application-

specific parameter. Metadata, such as weekday and holiday

information extracted from time stamps of each sample, is

then concatenated as additional features. RHPs are calculated

for each sample in the dataset, regarding the last k days of
category K. Residuals are then determined by subtracting the

respective RHP from the original data for each time step.

The resulting dataset is then fed to the actual model, which

can be any kind of encoder-decoder architecture for sequence-

to-sequence modeling. We will elucidate the process on the

example of the vanilla Transformer architecture, depicted in

Fig. 2: The model takes the sequence of historic residuals of
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size H × (D + M) as input, where H is the length of the

historic window. Residuals are encoded through one multi-

head attention layer into the hidden state and passed to the

decoder. The decoder takes the hidden state and the forecast

RHP of size F × (D + M) as input and outputs forecast
residuals.

Since the output length of the prediction sequence is known

a-priori in time series forecasting, we use single pass decod-
ing (SPD) in both training and inference, i.e. predicting all
sequence elements at once instead of one sequence element

after another, as is common for Transformers in NLP. This

approach has been widely adopted since its introduction in [3].

SPD comes with two advantages: For one, it reduces computa-

tional complexity, since it allows leveraging the natural vector

processing capabilities of the attention mechanism. It further

grants better information utilization [4], [5] and provides a

significant contribution to performance improvements [13]. We

also use it to forego masking, allowing the model to use the

known RHP predictions of future time steps.

VI. EXPERIMENTAL EVALUATION

We evaluate ReCycle as an extension to three current

SOTA Transformer-based models on a number of time series

forecasting problems. Results were compared in terms of

prediction accuracy, training time and energy consumption for

training and inference.

A. Benchmarks

The evaluation task is defined as predicting values of the

next F = 7 days (168 hours), based on data from the last

H = 21 days (504 hours). Three representative Transformer-
based architectures were chosen: the vanilla Transformer,

FEDformer and PatchTST. While originally developed for

NLP sequence prediction, the Vanilla Transformer as described
by [2] can be used to directly encode historic data and forecast

future temporal behavior. FEDformer [5] and PatchTST mark
current state-of-the-art Transformer variants for long time

series forecasting. For Transformer and FEDformer we use

the implementations provided by [5]1. For PatchTST we use

the original implementation provided by the authors2. All

three Transformer-based models were trained with and without

ReCycle.

We further include the NHiTS model [15] into our experi-

mental evaluation. NHiTS is a non-Transformer approach that

utilizes hierarchical interpolation and multi-rate data sampling

to improve prediction accuracy and reduce training time. We

use the implementation provided by the authors 3 and train

it with the standard setup. For reference, we report predictive

performance of the RHP we use to calculate residuals.

a) Hyperparameters: Hyperparameters of the FED-

former, PatchTST and NHiTS were set according to the origi-

nal publications. Since Transformer was originally designed

1https://github.com/MAZiqing/FEDformer
2https://github.com/yuqinie98/PatchTST
3https://github.com/cchallu/n-hits

for sequence processing, we conducted a hyperparameter-

search using Propulate [16]. Training with and without Re-

Cycle was conducted using the same set of hyperparameters

for each model.

b) Setup: For application of ReCycle, PCC is performed
as described above. We consider the primary cycle to be the

daily one, i.e. we fix D = 24h. Recent historic profiles are
extracted by categorizing each sample into one of K = 3
categories: Weekday; Saturday; Sun- or Holiday. The RHP

for each sample is then calculated by averaging the last k = 3
samples prior to the sample date in a given category. This

implies that at least three weeks of data have to be available

before a prediction can be made. Furthermore we use weekday

and holiday information, extracted from time stamps of each

as metadata features, such that weekday information is one-hot

encoded and holiday information for the current and following

day is binary encoded. Thus, there is a total of M = 9
metadata features. Models are then trained using the Adam

optimizer, without an additional learning rate schedule. Since

ReCycle is trained to predict residuals, which intrinsically

are more noisy compared to the original data, we optimize

for mean absolute error (MAE) loss, which provides higher

resilience to outliers than mean square error (MSE) loss.

B. Datasets

Five representative time series from different datasets were

chosen for experimental evaluation. Electricity Load Dia-
grams4 (ELD) contains electricity consumption of 370 house-
hold consumers in Portugal, taken between January 2011 and

December 2014 at a temporal resolution of 15min. Following
the approach first used in [3] for univariate forecasting we only

use the column ’MT 320’. Western European Power Con-
sumption5 (ENTSO-E) contains time-resolved measurements
of total electricity consumption of Germany, collected by the

ENTSO-E, taken between January 2015 and August 2020 at

a temporal resolution of 15min. Water Demand6 (Water)
contains time-resolved measurements of water consumption

in a water supply network, taken between January 2016 and

March 2021 at a temporal resolution of 1 h. Measurements
of water consumption were collected at a pumping station

in a regional water supply network in Germany for both

household and industrial consumers. Traffic7 (Traffic) contains
time-resolved measurements of water consumption in a water

supply network, taken between January 2016 and March

2021 at a temporal resolution of 1 h. It can be found on
https://pems.dot.ca.gov under Freeways → I280-N → Perfor-

mance→ Aggregates→ Time Series. Electricity Transformer
Temperature (ETT)8 contains measurements of power load
features and oil temperature of two electricity transformers in

4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
5https://www.kaggle.com/datasets/francoisraucent/

western-europe-power-consumption
6This dataset was provided by Siemens AG and can be found at

https://doi.org/10.5281/zenodo.11045013
7https://pems.dot.ca.gov/?dnode=Freeway&content=loops&tab=det

timeseries&fwy=280&dir=N
8https://github.com/zhouhaoyi/ETDataset
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Fig. 3. Exemplary plots of target and predicted residuals (top) and full sample (bottom), for the two datasets ENTSO-E (left) and Water (right).

China, taken between July 2016 and June 2018. We use the

dataset of the second transformer with a temporal resolution

of 1 h (ETTh2). Where necessary datasets are downsampled
to 1 h. Missing values are filled in with the average of the
two neighboring values since this trivially generalizes to any

resolution. Each dataset is separated into training, validation

and test set in the ratio 6:2:2 along the temporal axis.

C. Compute Infrastructure

All models were run on a single node of a supercomputing

cluster, equipped with two Intel Xeon “Ice Lake” processor

cores and 4 NVIDIA A100 Tensor Core GPUs. The system

allows for measurements of whole-node energy consumption

via sensors of Lenovo’s XClarity Controller (XCC), which can

be read via IPMI and SLURM. Models were implemented

in Python 3.9.2 using the PyTorch framework [17] versioned

1.13.1+cu116 with CUDA version 11.6. Runs were performed

using a single NVIDIA A100-40 GPU for each model.

D. Results

Table I summarizes the predictive performance of training

runs of all studied approaches.

We report mean square error (MSE) as well as mean

absolute percentage Error (MAPE), which is the mean absolute

error (MAE) normalized to the original value. In addition to

prediction accuracy metrics, we measure run time as well as

total energy consumption of model training for model archi-

tectures, as they are known to be computationally complex

and are thus energy-hungry. Towards this end, each model is

evaluated three times and the average time provided, while

energy consumption is measured as the total consumption of

all three evaluations.

Throughout all datasets, the naive approach of using plain

RHP yields predictive performance competitive with the eval-

uated DL-models. Nonetheless, training a Transformer-based

model architecture on RHP residuals always yields improved

forecasting, demonstrating the benefit of these models of

simple statistical methods.

Results show, that no clearly superior model can be iden-

tified and that in fact, depending on the datasets, different

approaches yield the best prediction accuracy. Furthermore, the

model yielding lowest MSE differs from the model yielding

lowest MAPE in almost all cases. For the ENTSO-E and

Traffic datasets, adding ReCycle improves both MSE and

MAPE for all Transformer-based approaches. For Water and

ELD datasets, plain FEDformer yields lowest MSE values, but

not lowest MAPE values. On those two datasets, adding Re-

Cycle to the vanilla Transformer and PatchTST also improves

MSE and MAPE. Further investigation showed, that these two

datasets consist of very noisy time series. Hence, only few

patterns remain in the residuals and the model detects almost

exclusively noise, a illustrated in Fig. 3. In that case, ReCycle

provides a reliable fallback behavior, where the model returns

the RHP prediction, if it cannot identify recurring patterns.

Thus, the simple nature of the RHP provides a worst case

scenario that is both explainable and robust. The ETTh2

datasets constitutes a special case, as application of ReCycle

clearly improves MAPE values, but not MSE values. This

is likely caused by the fact that models with ReCycle were

trained on optimizing MAE, whereas the vanilla versions are

trained on MSE loss. Table II shows ablation with respect to

forecast window length on two datasets, which demonstrates

consistent behavior across for the different forecast window

lengths.

The true benefit of using ReCycle becomes evident when
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TABLE I
FORECASTING PERFORMANCE OF TRANSFORMER-BASED MODELS WITH

AND WITHOUT USAGE OF RECYCLE ON FIVE DATASETS FOR A FORECAST

WINDOW OF ONE WEEK. BEST RESULTS ARE HIGHLIGHTED IN ITALICS.
MAPE IS PROVIDED IN PERCENT. MSE IS RESCALED PER DATASET FOR

READABILITY, THE RESPECTIVE ORDERS OF MAGNITUDE ARE NOTED IN

SQUARE BRACKETS NEXT TO THE DATASET.

MSE MAPE

E
N
T
S
O
-E
[1
0
6
]

Transformer 8.53±0.31 3.59±0.14
+ ReCycle 5.80±0.58 3.19±0.17
FEDformer 11.5±0.14 4.03±0.03
+ ReCycle 6.36±0.22 3.25±0.05
PatchTST 14.5±0.13 4.54±0.02
+ ReCycle 7.97±0.10 3.49±0.02
NHiTS 7.90±0.01 3.19±0.01
RHP 8.85 3.89

E
L
D
[1
0
1
]

Transformer 11.30±0.27 11.30±0.44
+ ReCycle 9.60±0.29 6.25±0.27
FEDformer 8.34±0.01 9.14±0.03
+ ReCycle 11.70±1.85 7.37±0.84
PatchTST 7940.0±152.0 5.52±0.05
+ ReCycle 8.88±0.04 5.71±0.01
NHiTS 9.86±0.23 6.66±0.16
RHP 9.44 6.52

W
at
er
[1
0
4
]

Transformer 16.3±0.2 15.1±0.1
+ ReCycle 17.4±0.6 14.3±0.1
FEDformer 14.3±0.1 15.6±0.1
+ ReCycle 17.6±0.3 15.0±0.2
PatchTST 27.9±1.4 19.8±0.4
+ ReCycle 14.9±0.1 13.8±0.1
NHiTS 163.9±0.3 61.5±0.1
RHP 14.5 13.9

T
ra
ffi
c
[1
0
8
]

Transformer 2.77±0.14 16.1±2.1
+ ReCycle 1.43±0.04 10.7±1.4
FEDformer 2.41±0.03 15.2±0.1
+ ReCycle 1.28±0.08 9.0±0.9
PatchTST 2.17±0.04 12.8±0.5
+ ReCycle 1.23±0.01 7.3±0.1
NHiTS 2.46±0.01 9.3±0.2
RHP 2.02 9.7

E
T
T
h
2
[1
0
1
]

Transformer 4.00±0.25 37.1±1.1
+ ReCycle 3.64±0.18 17.7±0.3
FEDformer 4.11±0.04 28.4±1.5
+ ReCycle 4.37±0.17 18.7±0.4
PatchTST 2.15±0.01 139.0±0.6
+ ReCycle 4.33±0.01 18.9±0.1
NHiTS 4.39±0.05 17.3±0.1
RHP 5.03 20.99

considering training time and energy consumption, which is

shown in Table III. Results clearly demonstrate, that ReCycle

helps to drastically reduce both compute time and energy

consumption for training Transformer-based approaches. No-

tably, the reduction in energy consumption does not stem

solely from shorter training times. For the vanilla Transformer,

using ReCycle achieves a training speed-up of three to five,

while reducing energy consumption by a factor of up to

≈ 20 (Water dataset). The biggest improvements can be

observed for FEDFormer, where usage of ReCycle yields up

to ≈ 18 times faster training (ETTh2 dataset) and up to

TABLE II
FORECAST WINDOW LENGTH ABLATION STUDY OF TRANSFORMER-BASED
MODELS WITH AND WITHOUT USAGE OF RECYCLE ON TWO DATASETS.

Seq. Length = 96 Seq. Length = 336
MSE MAPE MSE MAPE

E
N
T
S
O
-E
[1
0
6
] Transformer 7.86±0.44 3.32±0.11 8.92±0.07 3.63±0.04

+ ReCycle 5.69±0.23 3.17±0.09 5.86±0.33 3.19±0.03
FEDformer 9.85±0.11 6.69±0.01 13.2±0.67 4.44±0.18
+ ReCycle 6.23±0.46 3.29±0.11 6.12±0.23 3.26±0.04
PatchTST 13.6±0.46 4.34±0.06 13.9±.043 4.65±0.09
+ ReCycle 7.97±0.13 3.50±0.02 8.03±0.08 3.51±0.02
NHiTS 7.41±0.07 2.93±0.02 6.92±0.40 3.14±0.07

E
T
T
h
2
[1
0
1
]

Transformer 38.8±0.9 43.3±3.8 40.8±0.4 31.8±0.4
+ ReCycle 40.5±3.2 18.3±0.1 38.4±3.3 18.0±0.5
FEDformer 35.1±0.1 30.8±0.9 46.2±1.1 26.9±1.1
+ ReCycle 44.7±0.6 19.1±0.1 46.7±2.5 19.4±0.5
PatchTST 17.2±0.1 119.0±3.13 24.9±0.2 168.0±2.2
+ ReCycle 43.5±0.1 18.8±0.1 43.4±0.4 18.8±0.1
NHiTS 37.9±0.3 16.9±0.2 31.9±0.2 12.4±0.1

≈ 35 times lower energy consumption (ELD dataset). In those
cases, where FEDformer yields the best forecasting accuracy

in terms of MSE, the decrease of ≈ 30% (ELD) and ≈
14% (Water) in MSE is to be gauged against a factor of

≈ 13 − 15 longer training time and ≈ 22 − 35 higher energy
consumption. The same holds for PatchTST in the ETTh2

dataset, where conceding a two times higher MSE can reduce

training time by a factor of ≈ 10 and energy consumption by
a factor of ≈ 16. NHiTS yields low training times and energy
consumption throughout all datasets, however, Transformer-

based approaches with ReCycle provide even lower values.

For the ENTSO-E and the ETTh2 datasets, the difference

between the best MAPE achieved by NHiTS and the runner up

Transformer + ReCycle is almost negligible, while the latter

runs at ≈ 50-75% shorter training and corresponding lower

energy.

VII. CONCLUSION

Attributing to its central role in many real world applica-

tions, time series forecasting has received a lot of attention

in recent years. A plethora of approaches have been pub-

lished, many of them relying of the Transformer architecture.

However, in the thrive for ever better prediction accuracy,

the demand in computational resources of current models has

far outgrown anything feasible for practical deployment. The

steadily increasing energy consumption required to (re)train

and run these models not only limits their application e.g.

on embedded or edge devices, it also constitutes a further

step along the unsustainable path that AI research is cur-

rently on. In response to that, we present ReCycle, a method

for reducing runtime and energy consumption in long time

series forecasting with Transformer-based architectures. Re-

Cycle introduces the concepts of primary cycle compression

(PCC) and learning residuals derived from simple smoothing

average techniques. The former addresses the issue of scalar

breakdown of dot-product attention and bypasses the high

computational complexity of Transformer-based architectures,

while the latter helps to incorporate prior knowledge and thus
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TABLE III
AVERAGE RUN TIME, ENERGY CONSUMPTION AND REDUCTION FACTORS

ACHIEVED THROUGH RECYCLE OF TRANSFORMER-BASED MODELS WITH

AND WITHOUT USAGE OF RECYCLE ON FIVE DATASETS FOR A FORECAST

WINDOW OF ONE WEEK. LOWEST ABSOLUTE VALUES ARE HIGHLIGHTED
IN BOLD.

Time Energy
[s] [Wh]

E
N
T
S
O
-E

Transformer 161.09 ×2.8
111.0 ×9.0

+ ReCycle 56.96 12.3
FEDformer 1242.81 ×10.1

723.0 ×23.8
+ ReCycle 123.61 30.4
PatchTST 315.62 ×3.7

164.0 ×10.1
+ ReCycle 85.71 16.2
NHiTS 86.71 19.0

E
L
D

Transformer 105.99 ×4.5
74.2 ×12.5

+ ReCycle 23.62 5.92
FEDformer 977.55 ×15.4

560.0 ×34.4
+ ReCycle 63.30 16.3
PatchTST 221.05 ×4.4

115.0 ×9.8
+ ReCycle 50.64 11.7
NHiTS 81.98 17.9

W
at
er

Transformer 250.97 ×5.6
169.0 ×17.8

+ ReCycle 44.71 9.5
FEDformer 1243.55 ×13.3

712.0 ×32.2
+ ReCycle 93.34 22.1
PatchTST 331.55 ×7.5

173.0 ×16.0
+ ReCycle 44.23 10.8
NHiTS 85.8 20.4

T
ra
ffi
c

Transformer 111.54 ×2.9
79.0 ×6.4

+ ReCycle 38.91 12.3
FEDformer 1108.96 ×10.3

646.0 ×24.6
+ ReCycle 107.56 26.3
PatchTST 319.91 ×7.9

164.0 ×19.8
+ ReCycle 40.33 8.28
NHiTS 86.61 18.7

E
T
T
h
2

Transformer 73.11 ×5.0
50.4 ×12.3

+ ReCycle 14.54 4.1
FEDformer 369.74 ×17.9

216.0 ×28.8
+ ReCycle 20.71 7.5
PatchTST 152.41 ×9.6

80.6 ×16.4
+ ReCycle 15.87 4.9
NHiTS 77.65 16.1

improves prediction accuracy. ReCycle allows models to natu-

rally adapt to concept drift and provides robust and explainable

fallback behavior to statistical methods, both of which are

highly desirable characteristics for real-world application in

critical infrastructure systems.

ReCycle can substantially improve current state-of-the-art

Transformer-based models for time series forecasting. We

perform extensive evaluation of our approach on three rep-

resentative model architectures on a variety of of datasets.

While our experiments focus mainly on Transformer-based

architectures, ReCycle in principle be easily incorporated as

add-on into any kind of deep-learning based models.

In our results, we cannot confirm the superiority of neither

one of the current SOTA Transformer-based architectures, nor

of MLP-based approaches such as NHiTS, that were designed

to overcome the drawbacks in computational demand of

Transformers. We hypothesize that published results showing

a clear advantage of any of these approaches originate from

extensive hyperparameter tuning specific to the respective

datasets. Contrary to that, when used in practice, the choice

of best model varies. Our results demonstrate that regardless

of the choice of model architecture, ReCycle can significantly

improve forecasting accuracy. But more importantly, it dras-

tically reduces demand in compute resources with respect to

training time and energy consumption, thus providing a viable

and useful approach to bringing state-of-the-art time series

forecasting from theoretical studies into practical application.
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