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Abstract—In industrial machine learning applications, insuf-
ficient data, lack of labeling, distribution shift between subsets,
varying operational conditions, etc. result in poor generalizing
performance by pre-trained neural network models across do-
mains. In contrast to image detection tasks, time series dataset
contain critical domain-specific characteristics that must be
learned by the corresponding networks. Naively aligning the
learned representations during the adaptation process increases
the risk of losing these key information, thus resulting in poor
performance. This paper proposes a lightweight domain adap-
tation method involving representation learning and knowledge
distillation (RepLKD). A separate network is pre-trained to learn
valuable information from the target data in its latent space
with the help of a reconstructor. In the adaptation stage, we use
maximum mean discrepancy to minimize the difference in distri-
butions between the source and target latent space. Additionally,
we implement knowledge distillation to encourage the target
network to generate source-like latent embedding and penalize
only when an upper-bound condition is not fulfilled to prevent
over-regularization and loss of domain-specific features. Finally,
we test our proposed method on 12 cross-domain scenarios with
the C-MAPSS dataset and compare the efficacy of our method
against existing literature methods.

Index Terms—Unsupervised domain adaptation, maximum
mean discrepancy, knowledge distillation, representation learn-
ing, remaining useful lifetime estimation, C-MAPSS.

I. INTRODUCTION

The transferability of learned representations across multi-

ple tasks is an advantage yielded by deep neural networks.

However, inherent dataset bias or domain drift can hinder the

performance of a neural network model when generalizing

across datasets even originating from similar tasks. In a

real-world scenario, maintaining a homogeneous distribution

across data from the same system but with slightly different

operational conditions is hardly possible. Moreover, supervised

learning heavily relies on sufficient labeled data with i.i.d

(independent and identically distributed) characteristics, thus

becoming infeasible for inadequately-sized dataset without

labels. One way to mitigate this is the unsupervised domain

adaptation (UDA) approach, where a target domain network is

trained in an unsupervised manner with the aid of a pretrained

source domain network, already containing valuable informa-

tion from an almost identical task encoded in its parameters.

Domain adaptation research has made significant progress

in the field of computer vision [1] in recent years. In contrast,

the progress in industrial application fields with multivariate

time series sensor data has been very slow. In an industrial

process, operational parameters, machinery conditions, system

run-time, external environment, raw material quality, final

product requirements etc. keep changing on a frequent basis

resulting in distribution shifts across multiple data subsets [2],

[3]. Moreover, freshly setting up a prediction model on a new

system or a plant can be impractical due to the lack of labeled

data from that system. Acquiring enough data points, manually

labeling them and learning a new model can be both cost and

time expensive. Hence, domain adaptation can play a vital

role in bridging the gap across multiple domains within an

industrial process. Notable domain adaptation methodologies

involve adversarial techniques [4]–[8], representation learning

via additional regularizers [9]–[11] or both. Although these

frameworks have seen significant success in the recent years,

they predominantly focus on image classification tasks and not

on time series predictions. Time series datasets contain valu-

able information regarding degradation patterns, anomalies or

failure modes within the raw signals. While optimizing the

mapping function between the source and target networks to

minimize distribution drift, the target network at the same time

must not deviate from its original characteristics and signal

patterns which are of high importance in fault predictions or

forecasting tasks.

In this paper, we propose an unsupervised domain adapta-

tion framework combining representation learning and knowl-

edge distillation (RepLKD) for domain alignment. Maximum

mean discrepancy (MMD) is deployed to reduce the distances

between domain representations embedded in a reproducing

kernel Hilbert Space [12]. Knowledge distillation is addition-

ally deployed as an upper bound condition-based regularizer

to penalize the target network only when deviation from soft

source predictions occur beyond a certain margin. Further-

more, to retain inherent degradation patterns in the target

domain, we separately perform unsupervised reconstruction

using target training data prior to the adaptation phase. The

methodology is tested on the C-MAPSS Turbofan engine

dataset containing four subsets with varying operational char-

acteristics and the objective is to predict the remaining useful

lifetime (RUL) of these engines. Although these datasets are

provided with RUL labels, we refrain from using the target

labels to imitate an unsupervised adaptation scenario. Finally,

we compare our results with existing methodologies and
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demonstrate the effectiveness of our approach in a regression-

based industrial application scenario.

The contributions of this paper are as follow:

• We propose a light-weight unsupervised domain adap-

tation technique by combining MMD and a condi-

tional knowledge distillation function, focused mainly on

regression-based remaining useful life estimation.

• We deploy a reconstruction stage for the target domain

prior to adaptation to allow the network to learn valuable

data information in the latent embedding space.

• Our method outperforms existing literature with similar

methods by achieving the best or second best scores in 10

out of 12 cross-domain scenarios with C-MAPSS dataset.

II. RELATED WORK

Domain adaptation has been widely researched in the past

decades for reducing target domain drift in both supervised and

unsupervised scenarios, with minimization of domain invariant

feature space distribution being the primary focus [1], [4],

[9], [10], [13]. The gradient reversal layer introduced in [4],

[14] optimizes the mapping between the source and target

representations by maximizing the loss of a discriminator

layer. This work is extended in [15] where the source classifier

from the former work is replaced by a regressor layer and

LSTM is used as a shared feature extractor. However, such

approaches carry a risk of early discriminator convergence

and non convergence of the shared feature extractor. The

adversarial framework proposed in [5] deploys a secondary

network for the target domain while freezing the source

domain. This allows independent domain specific mappings

and retention of domain-specific features by and restrains pre-

mature convergence of the discriminator network. The use of

multiple discriminators to alleviate under- or negative-transfer

of complex domain invariant knowledge is presented in [6].

Cycle consistency approaches aim to learn mappings that

enable forward and backward translations of the original data,

thus allowing more domain-specific features to be retained by

the translators [7], [8]. Source domain data reweighting for

distribution shift reduction and optimizing a classifier on the

reweighted data is introduced in [16]. The method also uses

Maximum Mean Discrepancy (MMD) to minimize drifts in

feature representations from both domains. The same regular-

izer is used in [11] to minimize the distribution shift between

two hidden layers and improve the discriminative capability of

deep neural networks. Multi-kernel MMD is proposed in [10]

where a part of the network is shared across domains and the

representations from subsequent task-specific hidden layers are

aligned via maximum mean discrepancy. An additional MMD

loss along with task-specific and domain discrepancy losses is

implemented in [17] whereas, the framework in [9] exploits

MMD as a guiding mechanism to determine the placement

and dimension of an adaptation layer while jointly training

both the source and target network streams. The progressive

adaptation approach in [18] introduces intra- and inter-class

domain discrepancy minimization to improve the adaptation

capability via class-aware sampling. The deep reconstruction-

classification network framework in [19] performs multi-task

learning of a shared deep convolutional encoder, a source

label classifier and a convolutional reconstructor for the target

domain. The approach in [20] includes a reconstructor layer

in addition to a domain discriminator and a label classifier to

neutralize the effects due to possible outliers in a time series

prediction task. To minimize domain drifts in a remaining

useful lifetime prediction task, the MDAN method in [21]

merges MMD and correlation alignment losses to learn domain

invariant features from domain-specific features extractors,

which are forwarded to domain regressors penalized by an

additional loss. The LAMA-Net architecture in [22] learns

domain representations in RUL tasks with MMD loss and

performs manifold learning with autoencoders and smoothing

constraints. Retraining scale factor and offset parameters of

adaptive batch normalization layers in a pretrained deep con-

volutional network in freeze mode is proposed in [2] for pre-

dicting RULs. Our proposed RepLKD approach differs from

the existing methods with the inclusion of a pre-reconstruction

stage for learning feature representations in the embedding

space and conditional knowledge distillation for retention of

domain-specific information in the target network along with

MMD loss for aligning domain-invariant features between the

source and target encoders.

III. THEORETICAL BACKGROUND

In this section, we briefly reintroduce the two methods

applied in this paper for domain alignment namely, maximum

mean discrepancy (MMD) and knowledge distillation (KD).

A. Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) is a non-parametric

criterion used to determine the marginal difference in the

distribution between two datasets. Given labeled source dataset

s and unlabeled target dataset t, xs
i and ysi are the i-th source

input sample and corresponding labels and xt
j is the j-th target

input sample respectively. The total number of samples for s
and t are given by M and N respectively. The MMD between

these two domain datasets is shown as follows,

MMD(s, t;F) = sup
‖f‖H≤1

∥∥Exs∼s[f(x
s)]− Ext∼t[f(x

t)]
∥∥H

(1)

where, a set of functions in the unit ball of a reproducing

kernel Hilbert space is given by ‖f‖H ≤ 1. According to the

two sample statistical MMD test, MMD(s, t) = 0 if and only

if there exists no distribution shift between the two datasets i.e.

s = t. The empirical estimation of MMD for the two samples

can also be stated as the representation loss between latent

embedding of two domains LMMD(s, t) as follows,
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B. Knowledge Distillation

One of the effective ways of transferring knowledge from

a pretrained neural network model to a secondary model with

low computational footprint is knowledge distillation. This

technique can be applied in domain adaptation whereby a

source or the teacher network transfers earned representations

or ”knowledge” to a target or the student network to mimic the

behaviour of the former model, eventually guiding the student

to perform better generalizations and improved predictions

in an unlabeled dataset. The student network is trained to

generate the same predictions as the teacher model predictions.

However, naively replicating the teacher outputs can mislead

the target network since, the time series datasets may contain

degradation patterns that are unique across multiple domains

and cannot be forcefully aligned. These patterns are significant

in identifying the points of deterioration in an engine’s life

cycle. To tackle this, we deploy the teacher bounded regression

loss as proposed in [23], where the teacher predictions are used

as an upper bound for the student to achieve and the student

network is only penalized by it when the student prediction

loss is higher than the teacher loss by a minimum margin. For

predictions X̂s
s and X̂s

t by the source and target networks for

the source input sample Xs, the conditions apply as below,

Lb =

⎧⎪⎪⎨
⎪⎪⎩
LMSE(X̂

s
t , X

s), if LMSE(X̂
s
t , X

s) +m >

LMSE(X̂
s
s , X

s)

0 otherwise

(3)

The final regression loss Lreg is the sum of the bounded loss

Lb and the source reconstruction loss by the target network

Lt
rec as follows,

Lreg = Lt
rec(X̂

s
t , X

s) + vLb (4)

where, LMSE denotes the mean squared error between the

predicted and ground truth signals and m is the error margin.

Lrec is the smooth mean absolute error similar to [23] and v
is the weight for the bounded loss.

IV. METHODOLOGY

In this section, we present the proposed methodology of

representation learning and knowledge distillation (RepLKD)

for domain alignment in a remaining useful lifetime estimation

task. The steps involved are discussed as follows.

A. Pre-training

The source domain network is designed in an encoder-

decoder format where, the encoder compresses the input data

into learned latent representations (see Fig. 1(a)). The RUL

predictor Srul decodes these embedding into remaining life

cycles via supervised learning. In the next steps, the learned

knowledge from the source encoder Senc will be distilled into

a target encoder Tenc. After successful adaptation, the target

encoder will be connected to the pretrained RUL predictor

to predict RULs for the target test samples. The objective

function for the pretraining stage is given as follows,

min
Senc,Srul

Lpretrain =

√√√√ 1

N

N∑
i=1

(Y s
i − Ŷ s

i ) (5)

where, Lpretrain is the root mean squared error (RMSE), Y s
i

and Ŷ s
i are the source ground truth and predicted RUL labels

respectively for the i-th sample and N is the total number of

samples in the source domain.

B. Learning Latent Embedding via Reconstruction

In this step, we introduce two reconstructor networks as

shown in Fig. 1(b)- one for the source and the other for

the target domain. This stage is divided into two sub-steps

with separate objectives. In the source domain, Senc is kept

frozen while the reconstructor Srec trains with the aim to

recreating the input data using the latent representations from

the pretraining stage. Srec is further used in the adaptation

stage for knowledge distillation. Hence, this step acts as a

warmup training phase where the network is allowed to be

optimized on the source domain knowledge. In the target

domain, the encoder Tenc is initialized with the learnable

parameters of the pretrained encoder Senc, and consequently

trained with a reconstructor network Trec to recreate the target

training samples. By mapping the input data into learned

representations by Tenc for further reconstruction, we attempt

to preserve the degradation patterns or domain-specific fea-

tures in the network since, these will be vital to predict the

critical failure points in a system’s life cycle. The optimization

functions for this step is given as,

min
Srec

LSreconstruction
=

1

N

N∑
i=1

(Xs
i − X̂s

i ) (6)

min
Tenc,Trec

LTreconstruction =
1

N

N∑
i=1

(Xt
i − X̂t

i ) (7)

where, LDreconstruction
is the MSE loss, XD

i and X̂D
i are

the i-th input and reconstructed samples for any domain D
where, D ∈ {S, T}.
C. RepLKD - Domain Adaptation by Representation Learning
ad Knowledge Distillation

In this stage, we incorporate the pretrained source encoder

Senc, the target encoder Tenc and the source reconstructor Srec

networks and utilize knowledge distillation with representation
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learning for domain adaptation from the source to the target

domain. The process is illustrated in Fig. 1(c). Firstly, we

freeze the networks Senc and Srec from further training and

only train the target encoder Tenc. The encoders Senc and

Tenc are allowed to generate latent space mappings from

their respective domain data independently, which are then

compared using the MMD loss LMMD. The latent embedding

from both domains are consecutively passed forward to the

reconstructor Srec, to reconstruct the source input data. X̂s
t

and X̂s
s represent the reconstructed data when the mapped

encoding originate from the target encoder Tenc and the source

encoder Senc respectively. We perform knowledge distillation

(KD) with these reconstructed outputs and encourage the target

encoder to approximate its latent space embeddings as close

to that of the source encoder as possible. The reconstruction

errors are calculated for each domain encoder independently,

and Tenc is only penalized by this loss when the upper bound

conditions are not met, as shown previously in (3). This is done

to prevent over-penalization of Tenc so that it eventually retains

some, if not all of its inherent domain-specific characteristics.

The optimization function corresponding to our proposed

method can thus be written as follows,

min
Tenc

Ladaptation =λrepLMMD(Es, Et)

+ λkd(Lt
rec(X̂

s
t , X

s) + vLb)
(8)

where, Es and Et denote mapped embeddings from the

source and target encoders respectively, λrep and λkd are con-

trolling weights for the representation and distillation losses

respectively. These weights are tuned as hyperparameters

during adaptation training.

V. EXPERIMENTS

A. Dataset

The C-MAPSS turbofan engine dataset [3] is used for

evaluating the performance of our proposed framework. The

C-MAPSS dataset is a multivariate time series regression

dataset consisting of four individual subsets. Each subset

comprises of simulated degradation data of multiple engines.

The sensor readings for each engine start from a healthy

condition, slowly progressing to the end-of-life cycle. It is

evident from Table I that each of the four sub-datasets operate

with dissimilar fault modes and operational conditions. This

provides us with the ideal scenario of time series datasets

originating from the task but with possible domain drift. We

randomly choose sensor channels and validate this shift with

the help of Kernel Density Estimation (KDE) plots, which

allow us to understand the inherent features of a data by

estimating the probability density function and can be used to

compare feature distribution of two datasets. The bandwidth

for distribution smoothing is kept constant at 0.05. Between

subsets FD001 and FD002, it is observable in Fig. 2(a) that

FD002 engines contain more feature variance than FD001 for

the sensor Total Temperature at LPT outlet. A similar pattern

can be observed between subsets FD003 and FD004 for the

TABLE I
OPERATIONAL INFORMATION OF C-MAPSS DATASET [3]

Subset Operational
Settings

Operating
Conditions

Degradation
Fault Modes

Train
Engines

FD001 Sea Level 1 HPC 100

FD002
Altitude

Mach
Throttle Resolver Angle

6 HPC 260

FD003 Sea Level 1 HPC, Fan 100

FD004
Altitude

Mach
Throttle Resolver Angle

6 HPC, Fan 249

sensor Total Temperature at LPT Outlet. in Fig. 2(b). The

architectures are optimized to predict the RUL of the engines

and analyze the performace based on the scoring functions

provided in the original literature [3] as follows,

si =

{
exp(−di/a1)− 1, di < 0

exp(di/a2)− 1, di ≥ 0
(9)

S =

N∑
i=1

si (10)

where, a1 = 13, a2 = 10, di = Predicted RUL - Actual RUL
for the i-th testing engine, si is the score of the i-th engine,

N is the total number of engines and S is the sum of scores

of all engines in a subset. The scoring function is designed to

penalize delayed fault predictions.

B. Experiments and Results

Our experiments begin with the supervised training of the

source domain network. We use the encoder layer from the

vanilla Transformer architecture proposed in [24] due to its

self-attention mechanism, coupled with a projection layer as

our encoder. The RUL predictor is a multi-layered fully con-

nected network with LeakyReLU activation after each layer.

The projection layer involves an adaptive average pooling layer

followed by a flatten and a fully connected layer. This layer

prevents the shape mismatch due to varying window length in

time series data across multiple domains. The hyperparameters

(see Table II) are optimized using the Optuna package with

early pruning activated. A total of 150 trials are run with 125

epochs each. The dataset was scaled with min-max scaling

with (-1, 1) range. The mini-batch size was fixed at 1024

and ADAM optimizer function was used. Furthermore, we

implement a new learning rate scheduler as a function of the

encoder hidden size dmodel and the number of warmup steps

stepswarmup from the total iterations, which is shown below,

lr =0.125 · d−0.5
model ·min(step num · steps−1.5

warmup,

stepswarmup · steps−1.5
warmup)

(11)

The supervised training results from the source domain w.r.t

scoring function and RMSE loss are presented in Table III.
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Fig. 1. An illustration of the proposed RepLKD approach (Dashed line represents non-training mode of a network). (a) Pretraining of source domain network
with an RUL task. (b) Learning latent embeddings via reconstruction in both source and target domains. (c) Domain adaptation by comparing latent mappings
from source and target encoders with MMD loss and reconstructing source input data from domain encoder mappings for further knowledge distillation.

Fig. 2. Kernel Density Estimation Plots for inspecting dataset drift: (a) FD001
vs FD002 for sensor Total Temperature at HPC Outlet. (b) FD003 vs FD004
for sensor Total Temperature at LPT Outlet.

TABLE II
HYPERPARAMETER SEARCH SPACE FOR SOURCE PRETRAINING

Stage Hyperparameter [Categorical Values] /
Range (Low, High, Step)

Training LR Warmup Ratio (0.1, 0.4, 0.05)

Encoder

Layers (1, 3, 1)

dmodel [64, 128, 256]

Attention Heads [2, 4, 8, 16]

Dropout (0.0, 0.4, 0.1)

Decoder Hidden Size [32, 64, 128]

In the warmup reconstruction stage, we deploy two ran-

domly initialized Transformer encoder layers as the source

and target reconstructors. The number of layers for these

networks are fixed at 1 however, the number of attention heads

and the dmodel size are kept similar to the fine-tuned source

TABLE III
HYPERPARAMETER SEARCH SPACE FOR SOURCE PRETRAINING

Subdataset
FD001 FD002 FD003 FD004

Score 184 1497 240 1946

RMSE 13.96 15.91 12.84 17.81

encoder network. Using the transformer encoder layer as a

reconstructor allows us to use the internal residual connections

and self-attention technique to decode the learned embeddings

and recreate the original input data. In this stage, we also

introduced the target feature extractor initialized with the

trainable parameters of the source encoder.

The networks in the adaptation phase are the source encoder

and reconstructor in frozen state and the target encoder in

training mode as shown in Fig. 1(c). The network hyperparam-

eters are fixed by this point and the tunable hyperparameters

are presented in Table IV. Cosine annealing learning rate

scheduler is used in both the warmup and adaptation stages

along with ADAM optimizer. This scheduler allows to grad-

ually increase the learning rate and subsequently cool down

to zero, thus facilitating a more stable gradient descent. We

performed hyperparameter optimization study for 150 trials

with 150 epochs each. The first 50 epochs were set as warmup

and the rest as adaptation training epochs. Optuna median

pruning was activated after the first 75 epochs to prune non-

converging trials w.r.t the scores.

The results obtained are presented in Table V. We com-

pare our proposed approach with four existing methodologies

namely, LSTM-DANN [15], DDC [9], AdaBN-DCNN [2] and

LAMA [22]. With FD001 as the source domain, we achieved

the best score with FD004 and second best with FD003 as

targets. With FD002 as target, DDC performs best while our

approach is closer to the second best score by AdaBN-DCNN.

This is significant due to the fact that, FD002 and FD004

are relatively more complex with higher fault modes, more

engines and varying feature distributions than FD001 (see

Table I). This can also be said with FD003 as source, since

RepLKD performed best with FD001 and FD002 and second

best with FD004, falling short to AdaBN-DCNN by a small

margin. With FD002 as source, RepLKD performed best with

FD003 overall and second best by a very small margin with

FD004 against AdaBN-DCNN. Our approach lags behind both

DDC and AdaBN-DCNN for the FD002-FD001 scenario. We

obtained second best results when using FD004 as source for

all three targets. Only FD001 provided a slightly declining

score whereas, the difference in both FD002 and FD003 as

targets are high. To summarize, out of twelve cross-domain
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TABLE IV
HYPERPARAMETER SEARCH SPACE FOR ADAPTATION STAGE

Hyperparameter [Categorical Values] /
Range (Low, High, Step)

Learning Rate (1e-3, 1e-2, log uniform)

ν (0.1, 0.9, 0.05)

λkd (0.5, 1, 0.05)

λdist (0.5, 1, 0.05)

TABLE V
ADAPTATION SCORES COMPARISON

Source Target
LSTM
-DANN

[15]

DDC
[9]

AdaBN
-DCNN

[2]

LAMA
[22]

RepL
KD

FD001

FD002 93841 5958 13400 923000 15823

FD003 27005 288061 1680 22400 2368

FD004 57044 156224 100000 999000 14875

FD002

FD001 8411 640 1010 20700 1305

FD003 17406 62823 7000 23000 2158
FD004 66305 44872 14100 151000 14618

FD003

FD001 5113 25826 1920 151000 1336
FD002 37297 1012978 78500 8620000 16690
FD004 141117 275665 13400 5900000 14721

FD004

FD001 7586 162100 1580 31700 1638

FD002 17001 179243 4760 61400 16084

FD003 5941 1623 17700 31400 2556

scenarios in the C-MAPSS dataset, our proposed RepLKD

method achieved the best scores in four and second best scores

in six scenarios, generated scores almost as good as the top two

methods in five and under-performed in only three scenarios.

VI. CONCLUSION

In this paper, we propose a light-weight domain adaptation

method RepLKD, designed specifically for time series pre-

diction purposes. Our framework utilizes MMD function to

align the domain invariant features in the source and target

latent space. As an additional regularizer, we use knowledge

distillation with an upper-bound condition with the help of a

pretrained reconstructor layer. Furthermore, the target network

is pretrained prior to the adaptation stage to learn critical

domain-specific features in the encoded embedding. We com-

pare our results with existing methods from the literature and

present the efficacy of our approach.
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