
Robust Lagrangian and Adversarial Policy Gradient
for Robust Constrained Markov Decision Processes

1st David M. Bossens
IHPC

Agency for Science, Technology and Research
Singapore

CFAR
Agency for Science, Technology and Research

Singapore

bossensdm@cfar.a-star.edu.sg

Abstract—Robustness and safety constraints are key require-
ments for AI systems. The robust constrained Markov decision
process is a recent task-modelling framework that incorporates
behavioural constraints and robustness to reinforcement learning
systems. Earlier work proposed the robust constrained policy
gradient (RCPG) algorithm, which robustifies either the value or
the constraint and updates the worst-case distribution through
constrained optimisation on a sorted value list. Highlighting po-
tential downsides of RCPG such as not robustifying the full con-
strained objective and the lack of incremental learning, this paper
introduces algorithms to robustify the Lagrangian and to learn
incrementally using gradient descent over an adversarial policy.
A theoretical analysis derives the Lagrangian policy gradient for
the policy optimisation and the Lagrangian adversarial policy
gradient for the adversary optimisation. Empirical experiments
injecting perturbations in inventory management and safe nav-
igation tasks demonstrate the benefit of these modifications, and
combining both modifications yields the best overall performance.

Index Terms—robust artificial intelligence, safe reinforcement
learning, policy gradient, constrained Markov decision processes

I. INTRODUCTION

Reinforcement learning (RL) is the standard framework for

interactively learning in a complex environment. By maxim-

ising a long-term utility function, traditional RL does not take

into account various behavioural constraints that would be

desirable for a policy (e.g. to ensure safety or to follow legal

and moral norms). Moreover, RL systems typically assume

that the agent can learn directly in the true transition dynamics

model. This is often not the case: for instance, in applications

such as robotic control and recommendation, one may want

to learn from a simulated environment rather than the true

environment as this will be more safe.

Due to allowing to learn policies that satisfy long-term be-

havioural constraints, constrained Markov decision processes

(CMDPs) [1] have become the de facto standard for safe

reinforcement learning [2]. CMDPs formulate a constraint-

cost function in addition to the reward function and formalise

This work has been supported by the UKRI Trustworthy Autonomous
Systems Hub, EP/V00784X/1, and was part of the Safety and Desirability
Criteria for AI-controlled Aerial Drones on Construction Sites project.

long-term behavioural constraints based on a threshold of the

expected cumulative constraint-cost.

Tied to safety is the concept of robustness, which is the

ability to retain performance even when the true environment

changes or differs from the training environment. Robustness

is represented in RL by robust Markov decision processes

(RMDPs) [3], [4], which conceptualise robustness in terms

of the uncertainty over the transition dynamics model of

the MDP. While there are alternatives for robust RL such

as domain randomisation [5] and meta-learning [6], these

solutions are less theoretically sound.

The recently proposed framework of robust CMDPs (RCM-

DPs) [7] optimises the CMDP with the worst-case dynamics

model in the uncertainty set, effectively combining RMDPs

and CMDPs. To optimise RCMDP policies, the Robust Con-

strained Policy Gradient (RCPG) algorithm [7] combines a

policy gradient algorithm with a Lagrangian relaxation for

constraints and a worst-case dynamics computation for robust-

ness. RCPG regularly recomputes the worst-case dynamics by

sorting the list of values from each state and then performing

constrained minimisation of the value subject to the norm

constraints (i.e. the maximal distance to the expected, or

“nominal”, dynamics). The algorithm may not be optimal

for learning robust policies since a) the algorithm does not

consider the combined objective of rewards and constraint-

costs; b) immediately presenting worst-case dynamics may

prevent learning important and representative patterns; and c)

due to repeatedly performing constrained optimisation over a

sorted value list, the transition distributions of all state-action

pairs can be subject to large changes whenever a state has a

changed value estimate.

To mitigate these three problems, this paper proposes two

algorithms. First, mitigating problem a), a variant of RCPG

is introduced, called RCPG with Robust Lagrangian, which

computes the worst-case over the Lagrangian, which combines

the expected cumulative reward with the expected cumulative

constraint-cost into a single objective. Second, to mitigate

all three problems, an algorithm called Adversarial RCPG is

proposed, which uses an adversary to minimise the Lagrangian

of the current RL policy subject to the constraints of the

1224

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00219

uncertainty set (e.g. the L1 distance to the nominal model).

Adversarial RCPG thereby addresses the above-mentioned

limitations of RCPG by using a worst-case Lagrangian object-

ive and by incrementally updating an adversary that represents

the dynamics directly – rather than updating the dynamics

indirectly and abruptly based on a sorted value list.

II. PRELIMINARIES

The RCMDP framework is defined by a tuple

(S,A, r, c, d, γ, P∗,P), where S is the state space, A is

the action space, r is the reward function, c is the constraint-

cost function, d is the budget of expected cumulative

constraint-cost, γ is the discount factor, P∗ is the unknown

true transition dynamics model, and P is the uncertainty set

which includes many candidate transition dynamics models.

The value of executing a policy from a given state s ∈ S
given a particular transition model P ∈ P is given by the

expected discounted cumulative reward,

Vπ,P (s) = E

[∞∑
t=0

γtr(st)|s0 = s, at ∼ π(st), st+1 ∼ Pst,at

]
.

(1)

Analogously, the expected discounted cumulative constraint-

cost is denoted by

Cπ,P (s) = E

[∞∑
t=0

γtc(st)|s0 = s, at ∼ π(st), st+1 ∼ Pst,at

]
.

(2)

Denoting P+ := minP∈P Vπ,P (s), the objective within the

RCMDP framework is given by

max
π

Vπ,P+(s) s.t. Cπ,P+(s) ≤ d . (3)

Note that instead of the worst-case over the value, P+ may

also be defined as the worst-case over the constraint-cost.

III. RELATED WORK

RCMDPs are a recent field of endeavour with few directly

related works. Below section summarises the directly related

works as well as works combining CMDPs with other notions

of robustness.

A. RCMDP related works

Russel, Benosman, and Van Baar [7], [8] formulate RCM-

DPs as defined in Sec. II, effectively combining distributional

robustness with constrained Markov decision processes. They

propose the Robust Constrained Policy Gradient (RCPG),

which is a policy gradient algorithm that uses L1-norm un-

certainty sets and Lagrange relaxation [9]. While Lagrange

relaxation is common in CMDP works (e.g. [10], [11]),

the algorithm additionally provides worst-case distributional

robustness over the L1-norm uncertainty set. The worst-case

dynamics distribution for a given state-action pair is computed

by first formulating a list of sorted values or constraint-

costs and then applying linear programming or a special-

purpose algorithm to re-assign probabilities subject to the

norm constraints [12]. Lyapunov-based reward shaping has

also been shown to yield convergence to a local optimum,

although its benefits have not been demonstrated in practice

[8]. Adversarial RCPG modifies the RCPG algorithm by

replacing the worst-case value computation with an adversarial

training scheme. In this scheme, the adversary provides trans-

ition dynamics that minimise the Lagrangian of the policy’s

RCMDP objective. The training is incremental, starting from

the nominal model and gradually changing to less represent-

ative and more difficult CMDPs. These features help provide

learning progress as well as robustness to the full constrained

objective.

Other works related to RCMDPs are tailored to somewhat

different purposes. Explicit Explore, Exploit, or Escape (E4)

[13] provides a framework for safe exploration in RCMDPs.

The approach distinguishes between known states, where the

CMDP model and therefore the value function is approxim-

ately correct, and unknown states, where a worst-case assump-

tion is taken on the transitions and the constraint-cost. The ap-

proach yields near-optimal policies for the underlying CMDP

in polynomial time while satisfying the constraint-cost budget

at all times. While the approach has solid theoretical support,

maintaining safety throughout exploration is not always the

primary concern and comes at significant training costs. The

present paper is mainly interested in the final policy being safe

rather than in safe exploration, and assumes an uncertainty set

is available at the start of learning. The R3C objective [14]

combines the worst-case value and the worst-case constraint

over distinct simulators with different parametrisations being

run for one step from the current state. Avoiding to explicitly

compute the transition dynamics matrix makes it applicable to

large scale domains such as control problems. However, the

number of simulators must be limited (e.g. 4 distinct transition

dynamics), thereby reducing the worst-case robustness and

the scope of robustness. The present paper focuses on L1

uncertainty sets derived from state-action trajectories; such

sets include a much wider range of dynamics and do not

require significant prior knowledge of the environment (e.g.

the internal parameters of a simulator).

B. Other approaches to robustifying CMDPs

Other approaches propose techniques other than worst-case

optimisation to robustify CMDPs. Some works assume that

transition dynamics are known but the reward and constraint

functions are not. For instance, Zheng et al. (2020) [15]

have previously used a robust version of LP in the context

of UCRL, which estimates an upper confidence bound on

the cost and the reward. Another approach is to use the

conditional value at risk (CVaR); for instance, PG-CVaR and

AC-CVaR [16] consider a CVaR of the value function (in a

non-constrained approach) and later approaches use the CVaR

for defining a cost critic for the CMDP [17], [18]. Other works

have also explored the use of Lyapunov stability to ensure

safe exploration within CMDPs [19]. Concepts of stability

and safe exploration are complementary to RCMDPs, and

indeed have been investigated in theory but not in practice [8],

[13]. Compared to these exemplary approaches, the RCMDP

1225

framework focuses on the uncertainty in dynamics models,

making it particularly useful when transition dynamics are

estimated from observational data. Other approaches define

robustness guarantees based on an available baseline policy.

For instance, SPIBB considers safe policy improvement across

the uncertainty set in the sense of guaranteeing at least the

performance of a baseline policy [20]; as shown in Satija et

al. [21], this approach can be cast in a CMDP framework.

IV. ADVERSARIAL RCPG

Adversarial RCPG modifies RCPG by using a function

approximator for the worst-case dynamics and by combining

the values and constraints into a single objective. This is

achieved by updating, by policy gradient, an adversary πadv

as the dynamics that minimise the Lagrangian that the policy

π is maximising. Before explaining the details of Adversarial

RCPG, this section first presents the original RCPG algorithm.

A. Robust-Constrained Policy Gradient

RCPG finds the saddle point of the Lagrangian for a given

budget d. Denoting πθ as the policy parametrised by θ, λ as

the Lagrangian multiplier, and P+ as the worst-case transition

dynamics, the objective is given by

min
λ≥0

max
πθ

L(λ, πθ;P
+) = Vπθ,P+(s)− λ

(
Cπθ,P+(s)− d

)
.

(4)

To optimise the above objective, sampling of limited-step

trajectories is repeated for a large number of independent

iterations starting from a random initial state s ∼ P0. Based on

the large number of trajectories collected, one then performs

gradient descent in λ and gradient ascent in θ.

a) Estimating the worst-case distribution: RCPG is

based on L1 uncertainty sets of the type Ps,a = {P ∈ ΔS :
||P−P̂s,a||1 ≤ α}. Computing the worst-case distribution, also

known as the “inner problem”, is equivalent to the constrained

optimisation problem

P+ = argmin
P

V + = P ᵀV̂ s.t. ||P − P̂s,a||1 ≤ α (5)

1ᵀP = 1 .

The solution to the inner problem, P+, is the distribution

that minimises the value subject to the norm constraints.

RCPG solves the innner problem based on linear programming

or related constrained optimisation algorithms (e.g. Petrik et

al. [12] present a special purpose algorithm that solves the

problem with O(S logS) time complexity). These algorithms

require a tabular approximation or (preferably) a critic network

of the quantity to robustify (the expected cumulative reward

or constraint-cost).

b) Learning problems of RCPG: The RCPG algorithm

has several features in its learning that could be improved.

First, the RCPG objective provides robustness to either the

worst-case value or the worst-case constraint-cost but not the

desired Lagrangian objective combining both. Second, RCPG

training results in only training on the worst case, which may

be too challenging at the start of training; a more gradual

training with an incrementally improving adversary could be

beneficial. Third, if the critic estimates the worst-case state

erroneously then the updated worst-case transition dynamics

will sample this state at an excessively high rate as the next

state for all the state-action pairs. This results in many abrupt

changes in the distributions, again making an incremental

learning process difficult.

B. RCPG with Robust Lagrangian

A relatively straightforward way to solve the first learning

problem of RCPG is to directly robustify the Lagrangian Eq. 4.

RCPG with Robust Lagrangian replaces Eq. 5 with

P+ = argmin
P

L+ = P ᵀ
(
V̂ − λĈ

)
s.t. ||P − P̂s,a||1 ≤ α

(6)

1ᵀP = 1 .

As shown in Theorem 1, the same RCPG algorithm can be

used for optimising Eq. 4 when the worst-case distribution

P+ is defined based on Eq. 6.

C. Adversarial RCPG

While RCPG with Robust Lagrangian provides a suitable

objective, it does not address the other learning problems

of RCPG. The Adversarial RCPG algorithm is proposed to

mitigate all three learning problems. It learns an adversarial

policy πadv : S × A → ΔS which approximates the robust

Lagrangian dynamics model P+ from Eq. 4 to robustify the

full constrained objective. The adversarial policy is learned by

gradient descent together with the policy: the adversary starts

from the nominal distribution P̂ and incrementally updates the

dynamics to be more challenging using gradient descent. The

resulting algorithm is shown in Algorithm 1).

As in Lagrangian RCPG, Adversarial RCPG optimises

the Lagrangian in Eq. 4 robustly based on the worst-case

distribution defined in Eq. 6. However, Adversarial RCPG

replaces P+ with an adversarial policy πadv which minimises

the policy’s objective subject to the norm constraints:

πadv =argmin
πadv

L(λ, πθ;πadv) (7)

s.t. ||πadv(s, a)− P̂s,a||1 ≤ α(s, a)∀(s, a) ∈ S ×A .

This leads to a constrained optimisation problem where πadv is

the solution to a different Lagrangian Ladv(λadv, πadv), namely

max
λadv≥0

min
πadv

Ladv(λadv, πadv) = L(λ, πθ;πadv) (8)

+
∑
s,a

λadv

(
||πadv(s, a)− P̂s,a||1 − α(s, a)

)
,

where the multiplier is the same for all state-action pairs to

make the optimisation scalable to large state-action spaces.

The distribution of states depends crucially on the adversary,

and this distribution should be within an L1-norm of α(s, a)
for all (s, a) ∈ S × A. Minimising the L1 norm based on

samples obtained from πadv itself may lead to a system hack,

in the sense that the adversarial policy may learn to sample

1226

states which have minimal L1 norm rather than minimising

the L1 norm independent of the state-action pairs observed.

Therefore, to compute the gradient for the L1 norm (l.20)

for the adversarial policy update, a new random batch with

random state-action samples is used for each gradient such that

overall the norm is being reduced regardless of the state-action

pairs encountered (see Algorithm 2). By contrast, the term ΔP
(l.22) is used for updating the multiplier only, so there is no

risk for such system hacks; therefore, it is based directly based

on the samples from the adversary, which gives more impact

of frequently observed state-action pairs on the multiplier. This

approach empirically satisfies the norm constraints.

Algorithm 1 Offline optimisation with Adversarial RCPG

1: procedure OFFLINE-OPTIMISATION

2: B = S ×A
3: θadv ← argminθadv

MAE
(
πadv(B)− P̂ (B)

)

4: for i = 1, 2, . . . , I do � Independent iterations
5: Random initial state s ∼ P0.
6: for t = 0, 1, . . . , T − 1 do � Simulate trajectory
7: if s is terminal then
8: break
9: Transition (s, a ∼ π(a|s), r(s, a), s′ ∼ πadv(s

′|s, a)).
10: Policy gradient ∇t ← ∇θ log (πθ(a|s)).
11: Adversary gradient ∇adv

t ← ∇θadv
log (πadv).

12: s← s′.
13: Tstop ← t.
14: for t = Tstop − 1, Tstop − 2, . . . , 0 do
15: � Policy update
16: Vt ← Vt − λCt.
17: θ ← θ + η1(k) ∗Vt∇t

18: λ← λ+ η2(k) ∗ (C − d)
19: � Adversary update
20: ∇P ←compute-nominal-deviation-grad()
21: θadv ← θadv − η1(k) ∗

(
Vnext∇adv

t + λadv∇P
)

22: ΔP ← ||πadv(st, at)− P̂st,at ||1.
23: λadv ← λadv + η2(k) ∗ (ΔP − α(st, at))

24: return πθ

Algorithm 2 Computing gradient for deviation from nominal.

1: procedure COMPUTE-NOMINAL-DEVIATION-GRAD(
parameters θadv)

2: � Set batch with small number of samples (Nsamp)
3: B ← random(S ×A, Nsamp)
4: for i ∈ 1, . . . , B do
5: α[i]← α(s[i], a[i]).
6: nom[i]← P̂ (s[i], a[i])
7: y[i]← πadv(: |s[i], a[i]).
8: dev[i] = max (0, ||y[i]− nom[i]||1 − α[i])

9: return ∇θadv
mean(dev)

D. Uncertainty Set and Uncertainty Budget

Uncertainty sets can be constructed in many ways. Methods

of choice include sets based on Hoeffding’s inequality and

Bayesian methods [22]. The experiments select Hoeffding L1

uncertainty sets which have state-action dependent transitions

according to

Ps,a = {P : ||P − P̂s,a|| < α(s, a)} , (9)

where P̂ is the nominal model, and α(s, a) is the uncertainty

budget for state-action pair (s, a). The uncertainty budget is

set according to α(s, a) =

√
2

n(s,a) ln
(

2SSA
δ)

)
, where 1− δ

is the confidence and n(s, a) is the number of visitations of

(s, a). If P ∗ is the true transition dynamics model, then the

Hoeffding set ensures that P ∗
s,a ∈ Ps,a with probability at least

1− δ
SA and by union bound, that P ∗ ∈ P with probability at

least 1− δ [22].

V. LAGRANGIAN POLICY GRADIENT THEOREMS

To prove that the desired objectives are indeed being op-

timised by Adversarial RCPG, two Lagrangian policy gradient

theorems are derived. The first theorem shows that the Lag-

rangian of the policy can indeed be maximised using a simple

policy gradient. The second theorem shows that the chosen

adversary indeed follows the gradient steps to minimise the

Lagrangian of the policy.

A. Deriving the Robust Lagrangian Policy Gradient

The key realisation for optimising the Lagrangian is that in

CMDPs, both the value and the constraint-cost are expected

cumulative quantities with the same discounting factor. This

allows reusing existing results by reformulating the Lagrangian

in terms of rewards and constraint-costs.

Theorem 1. Lagrangian policy gradient theorem. Let π :
S → ΔA be a stochastic policy, let P be the transition
dynamics, let s0 be the starting state, and for any state-action
pair (s, a) ∈ S × A define Qπ(s, a) = Qπ(s, a)− λCπ(s, a)
and Vπ(s) = Ea∼π(·|s) [Qπ(s, a)]. Then it follows that

∇θVπ(s0) ∝ Eπ,P [Qπ(st, at)∇θ log (π(at|st))] . (10)

Proof: The proof (see Appendix A) reformulates the CMDP

as a Lagrangian MDP [23] and then makes analogous steps to

the proof of the policy gradient theorem [24].

As a consequence of this theorem, updating with steps ac-

cording to Qπ(st, at)∇θ log (π(at|st)) will follow the gradi-

ent of the Lagrangian L = Vπ(s0)− λ(Cπ(s0)− d) since the

term λd is a constant. Since P is arbitrarily chosen, this also

holds for P+ as defined in Eq. 6.

B. Deriving the Lagrangian Adversarial Policy Gradient

Theorem 2. Lagrangian adversarial policy gradient theorem.
Let πadv : S ×A → ΔS be the adversary replacing the trans-
ition dynamics of the CMDP, let s0 be the starting state, let T
be the horizon of the decision process, and for any state-action
pair (s, a) ∈ S × A define Qπ(s, a) = Qπ(s, a)− λCπ(s, a)
and Vπ(s) = Ea∼π(·|s) [Qπ(s, a)]. Then it follows that

∇θadvVπ(s0) =

T−1∑
k=0

E [Vπ(sk+1)∇θadv log (πadv(sk+1|sk, ak))] .
(11)

Proof: The proof uses a formalism similar to the previous

proof but this time expands the gradient with respect to θadv.

The full proof is given in Appendix B.

1227

This theorem implies that applying consecutive updates of

Vπ(st+1)∇θadv
log (πadv(st+1|st, at)) for t = 0, . . . , T−1 will

move πadv along the gradient of the objective.

VI. RESULTS

Having introduced Adversarial RCPG and RCPG, the ex-

perimental validation below compares their performance on

the cumulative reward and constraint-cost in perturbed en-

vironments. The experiments are set up in three consecutive

phases. In the model estimation phase, a random uniform

policy is run on a dynamics model Pdata, which represents a

centroid of the test dynamics models. The result of phase 1

is a nominal model P̂ and (if applicable) the Hoeffding L1

uncertainty set P . In the policy training phase, policies are

trained across 5,000 episodes based on either Pdata (non-robust

algorithms) or P . In the policy test phase, the trained policy

is tested by taking greedy actions on a set of test dynamics

that are perturbations of Pdata. To evaluate the training and

test performance, the value and constraint-cost are evaluated

without discounts, and the resulting budget d is corrected

accordingly by a factor T/(
∑T−1

i=0 γi), where T is the maximal

episode length.

The algorithms evaluated are the following: 1) the Ad-
versarial RCPG algorithm implementing the Lagrangian

adversary as described in Algorithm 1 and supported by

Theorem 1–2; 2) RCPG (Robust Lagrangian), the variant

of RCPG formulated in Section IV-B to formulate the worst-

case dynamics as the model that minimises the Lagrangian,

as supported by Theorem 1, which can be seen as an ablation

that removes the adversary but keeps the Lagrangian objective;

3) RCPG (Robust value) [7], which formulates robustness

in terms of the dynamics with worst-case value; 4) RCPG
(Robust constraint), which formulates robustness in terms

of the dynamics with worst-case constraint-cost [7], [13]; 5)

CPG, which uses the nominal transition dynamics instead

of the worst-case transition dynamics, as an ablation without

robustness; and 6) PG, a further ablation condition with no

constraints, which corresponds to REINFORCE [24].

To demonstrate a range of applications, experiments include

an inventory management domain and two safe navigation

tasks, each with a variety of test cases. As a quick overview

of the test results, Tab. I shows that the Adversarial RCPG

is always among the top two performing algorithms on the

penalised return, a performance metric for CMDPs. The reader

may also refer to Appendix C, D, and E of the supplementary

information for additional details and figures of the experi-

ments. The source code used for the experiments is available

at https://github.com/bossdm/RCMDP.

A. Inventory Management

The first domain is the inventory management problem [25],

which has been the test bed of the RCPG algorithm [7].

The task of the agent is to purchase items to make optimal

profits selling the items, balancing supply with demand in the

process. The state is the current inventory while the action

is the purchased number of items from the supplier. States

are integers in {0, 1, . . . , S − 1}, where S is the number

of states. Initially the inventory is empty, corresponding to

initial state s0 = 0, and a full inventory contains S − 1
items. The constraint is that the number of purchased items,

a ∈ A, should not exceed the purchasing limit. Oscillating

behaviours shown by RCPG algorithms (see Appendix E)

are attributed to large abrupt changes in the estimated worst-

case distribution. The policy test phase consists of 9 different

parameters μ and σ for the demand distribution, resulting in

changed transition dynamics. The penalised return scores in

Tab. I demonstrates that RCPG (Robust Lagrangian) has the

highest penalised return. This indicates that robustifying the

Lagrangian is beneficial but also that the abrupt changes in

the estimated worst-case distribution do not appear to hamper

RCPG’s test performance; because any state is reachable from

any other state and the demand is iid, the algorithm is less

sensitive to excessive sampling of a single state and shifting

transition dynamics. Fig. 1 demonstrates the value, which is

proportional to the profit, and the overshoot across the different

demand distributions.

(a) Test value (b) Test overshoot

Figure 1. Test performance metrics of the algorithms on the test set of
perturbed transition dynamics in Inventory Management. For each of 20
training runs, each parameter setting is run 50 times and the plot displays
the mean and standard error over runs. The parameter manipulated is the
mean, μ, and standard deviation, σ, of the demand distribution.

B. Safe Navigation

The second domain and third domain are safe navigation

tasks in a 5-by-5 square grid world, formulated specifically

to highlight the advantages of agents that satisfy constraints

robustly (see Fig. 2).

a) Safe Navigation 1: In Safe Navigation 1 (see Fig. 2a),

the grid contains 6 grey cells that incur constraint-cost of

1.0 and agents should satisfy a budget of d = 3.0. Agents

stay in the grid world for T = 200 time steps if the goal

is not found. Test 1A manipulates Psuccess, the probability

with which the agent successfully moves to the intended

location. Test 1B fixes Psuccess = 0.80 while manipulating

Nε, the number of state-action pairs perturbed by setting

s′ = s + ε(s, a) upon successful action. As shown in Tab. I,

Adversarial RCPG outperforms all other algorithms in both

tests of Safe Navigation 1. In line with the hypothesis that

1228

Table I
COMPARISON OF ALGORITHMS ON ALL TESTS. TO PROVIDE A SINGLE STATISTIC, THE PENALISED RETURN [14] IS DEFINED AS

RPEN = V (s0)− λ̄max (0, (C(s0)− d)). THE EVALUATION WEIGHT IS SET AS λ̄ = 500, WHICH IS EQUAL TO THE MAXIMAL

LAGRANGIAN MULTIPLIER DURING THE CONSTRAINED OPTIMISATION. BOLD HIGHLIGHTS THE TOP TWO SCORES WHILE UNDERLINE

INDICATES THE HIGHEST SCORE.

Adversarial RCPG RCPG
(Robust
Lagrangian)

RCPG
(Robust value)

RCPG
(Robust constraint)

CPG PG

Inventory Management −3058.6± 1341.6 31.8± 26.3 −3843.1±1567.9 −7812.0±2148.4 −3977.0±1243.6 −28092.3±913.1
Safe Navigation 1A −76.7± 20.2 −190.5± 9.2 −4825.8±4537.9 −200.0± 0.0 −133.6± 20.2 −9443.7±6307.1
Safe Navigation 1B −71.9± 18.9 −273.9± 81.7 −4751.3±3965.5 −735.3± 312.2 −123.5± 18.7 −8686.0±5718.3
Safe Navigation 2A −48.1± 9.7 −316.8± 282.0 −275.7± 224.0 −30.6± 8.1 −259.1± 218.3 −512.4± 299.0
Safe Navigation 2B −1437.2± 107.4 −1451.0± 221.9 −1825.0± 391.8 −1259.3± 101.2 −1681.6± 421.2 −2395.5± 546.5

Start

Goal

(a) Safe Navigation 1

Start

Goal

(b) Safe Navigation 2

Figure 2. Illustration of the safe navigation tasks. In Safe Navigation 1, the
constraint is to hit no more than 4 grey cells on average. In Safe Navigation 2,
the constraint is to avoid the red cells and only a limited number of grey cells.
Unconstrained solutions, constrained, and robust-constrained trajectories are
demonstrated in red, orange, and green, respectively. The arrows represent the
worst-case transitions for test Safe Navigation 2B.

Adversarial RCPG provides incremental learning, the training

value and constraint-overshoot develop much more smoothly

in Adversarial RCPG when compared to RCPG variants,

which display oscillating and high-variance scores on these

metrics (see Appendix E). In the test, the RCPG algorithms

do not find paths to the goal location although the RCPG

(Robust constraint) and RCPG (Robust Lagrangian) satisfy the

constraint. As shown in Fig. 3, Adversarial RCPG combines

a high value comparable to PG with a negative overshoot that

is not affected even by severe perturbations. Safe Navigation

1 presents a particular challenge for RCPG; this is attributed

to learning paths that satisfy the constraint (by avoiding grey

cells) but that do not come closer to the goal.

b) Safe Navigation 2: In Safe Navigation 2 (see Fig. 2b),

the grid contains 7 grey cells that incur constraint-cost of

0.1, 4 red cells that incur a cost of 1.0, and agents should

satisfy a budget of d = 0.4. Agents stay in the grid world

for T = 100 time steps if the goal is not found. Test 2A

manipulates Psuccess. Test 2B keeps Psuccess = 0.50 and upon

failure, the agent is moved according to worst-case transitions

as shown in the arrows of Fig. 2b. As shown in Tab. I,

RCPG (Robust constraint) is the top performer followed by

Adversarial RCPG in both tests of Safe Navigation 2. The

tighter uncertainty set and shorter episode leads to a similarly

smooth training for all RCPG variants when compared to

Adversarial RCPG (see Appendix E) as it makes starting from

the worst-case dynamics less challenging. Avoiding constraint-

cost becomes comparably more challenging than eventually

(a) Test A value (b) Test A overshoot

(c) Test B value (d) Test B overshoot

Figure 3. Test performance metrics of the algorithms on the test set of
perturbed transition dynamics in Safe Navigation 1. For each of 20 training
runs, each parameter setting is run 50 times and the plot displays the mean
and standard error over runs. Test A: The parameter manipulated is the move
probability of the actions. Test B: The parameter manipulated is the number
of perturbations, i.e. randomly selected state-action pairs that are perturbed
with a random offset in N (s).

finding the goal; therefore it becomes more important to robus-

tify the constraint-cost compared to the value (see highest rank

of RCPG with Robust constraint). As shown in Fig. 4, Ad-

versarial RCPG does not have the highest value but achieves

a low overshoot comparable to RCPG (Robust constraint);

RCPG (Robust Lagrangian) also performs comparably on the

overshoot on test B.

VII. CONCLUSION AND FUTURE WORK

Providing robustness as well as constraints into policies is of

critical importance for safe reinforcement learning. This paper

proposes a robust Lagrangian objective and an adversarial

1229

(a) Test A value (b) Test A overshoot

(c) Test B value (d) Test B overshoot

Figure 4. Test performance metrics of the algorithms on the test set of
perturbed transition dynamics in Safe Navigation 2. For each of 20 training
runs, each parameter setting is run 50 times and the plot displays the mean
and standard error over runs. Test A: The parameter manipulated is the move
probability of the actions. Test B: The parameter manipulated is the number
of perturbations, i.e. randomly selected states that are perturbed with a worst-
case transition according to the arrows in Fig. 2b.

gradient descent algorithm for a modified robust constrained

policy gradient algorithm with stable and incremental learning

properties. These modifications are empirically demonstrated

to improve reward-based and constraint-based metrics on a

wide range of test perturbations. Adversarial policies have

been of interest in designing realistic attacks on reinforcement

learning policies (e.g. [26], [27]); while these works do not

consider uncertainty sets, an interesting avenue for future

research is to extend Adversarial RCPG with uncertainty sets

that satisfy realism constraints in addition to the current norm

constraints.

REFERENCES

[1] E. Altman, Constrained Markov decision processes. Chapman and
Hall/CRC, 1998.

[2] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, Y. Yang, and
A. Knoll, “A Review of Safe Reinforcement Learning: Methods, Theory
and Applications,” arXiv preprint, pp. 1–89, 2023.

[3] G. N. Iyengar, “Robust dynamic programming,” Mathematics of Oper-
ations Research, vol. 30, no. 2, pp. 257–280, 2005.

[4] A. Nilim and L. E. Ghaoui, “Robust control of Markov decision pro-
cesses with uncertain transition matrices,” Operations Research, vol. 53,
no. 5, pp. 780–798, 2005.

[5] J. Van Baar, A. Sullivan, R. Cordorel, D. Jha, D. Romeres, and
D. Nikovski, “Sim-to-real transfer learning using robustified controllers
in robotic tasks involving complex dynamics,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA
2019), pp. 6001–6007, 2019.

[6] C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic Meta-Learning for
Fast Adaptation of Deep Networks,” in Proceedings of the International
Conference on Machine Learning (ICML 2017), (Sydney, Australia),
pp. 1–10, 2017.

[7] R. H. Russel, M. Benosman, and J. Van Baar, “Robust Constrained-
MDPs: Soft-Constrained Robust Policy Optimization under Model
Uncertainty,” in Advances in Neural Information Processing Systems
workshop (NeurIPS 2021), 2021.

[8] R. H. Russel, M. Benosman, J. van Baar, and R. Corcodel, “Lyapunov
Robust Constrained-MDPs for Sim2Real Transfer Learning,” in Feder-
ated and Transfer Learning, vol. 27, pp. 307–328, 2022.

[9] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 2003.
[10] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy op-

timization,” in Proceedings of the International Conference on Machine
Learning (ICML 2017), vol. 1, pp. 30–47, 2017.

[11] A. Ray, J. Achiam, and D. Amodei, “Benchmarking Safe Exploration
in Deep Reinforcement Learning,” arXiv preprint, pp. 1–6, 2019.

[12] M. Petrik, “RAAM : The Benefits of Robustness in Approximating
Aggregated MDPs in Reinforcement Learning,” in Advances in Neural
Information Processing Systems (NeurIPS 2005), pp. 1–9, 2005.

[13] D. M. Bossens and N. Bishop, “Explicit Explore, Exploit, or Escape
(E4): near-optimal safety-constrained reinforcement learning in poly-
nomial time,” Machine Learning, vol. 112, pp. 817–858, 2023.

[14] D. J. Mankowitz, D. A. Calian, R. Jeong, C. Paduraru, N. Heess,
S. Dathathri, M. Riedmiller, and T. Mann, “Robust Constrained Re-
inforcement Learning for Continuous Control with Model Misspecific-
ation,” arXiv preprint, pp. 1–23, 2020.

[15] L. Zheng and L. J. Ratliff, “Constrained Upper Confidence Reinforce-
ment Learning with Known Dynamics,” in Proceedings of the Annual
Conference on Learning for Dynamics and Control (L4DC 2020), pp. 1–
10, 2020.

[16] Y. Chow and M. Ghavamzadeh, “Algorithms for CVaR optimization
in MDPs,” in Advances in Neural Information Processing Systems
(NeurIPS 2014), pp. 3509–3517, 2014.

[17] Q. Yang, T. D. Simão, S. H. Tindemans, and M. T. J. Spaan, “WCSAC:
Worst-Case Soft Actor Critic for Safety-Constrained Reinforcement
Learning,” in Proceedings of the Association for the Advancement of
Artificial Intelligence (AAAI 2021), vol. 35, pp. 10639–10646, 2021.

[18] R. Zhang and J. Sjölund, “Risk-sensitive Actor-free Policy via Convex
Optimization,” in AISafety and SafeRL Joint Workshop at the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2023), 2023.

[19] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M. Ghavamz-
adeh, “Lyapunov-based Safe Policy Optimization for Continuous Con-
trol,” in Proceedings of the Reinforcement Learning for Real Life
Workshop in the International Conference on Machine Learning (ICML
2019), 2019.

[20] R. Laroche, P. Trichelair, and R. T. Des Combes, “Safe policy improve-
ment with baseline bootstrapping,” in Proceedings of the International
Conference on Machine Learning (ICML 2019), pp. 6487–6520, 2019.

[21] H. Satija, J. Pineau, P. S. Thomas, and R. Laroche, “Multi-Objective
SPIBB: Seldonian Offline Policy Improvement with Safety Constraints
in Finite MDPs,” in Advances in Neural Information Processing Systems
(NeurIPS 2021), pp. 2004–2017, 2021.

[22] R. H. Russel and M. Petrik, “Beyond confidence regions: Tight Bayesian
ambiguity sets for robust MDPs,” in Advances in Neural Information
Processing Systems (NeurIPS 2019), vol. 32, 2019.

[23] M. A. Taleghan and T. G. Dietterich, “Efficient exploration for con-
strained MDPs,” in AAAI Spring Symposium – Technical Report,
pp. 313–319, 2018.

[24] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, second edition ed., 2017.

[25] Puterman, Martin L, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley New York, 2005.

[26] A. Gleave, M. Dennis, C. Wild, N. Kant, S. Levine, and S. Russell,
“Adversarial Policies: Attacking Deep Reinforcement Learning,” in Pro-
ceedings of the International Conference on Learning Representations
(ICLR 2020), pp. 1–16, 2020.

[27] A. Mandlekar, Y. Zhu, A. Garg, L. Fei-Fei, and S. Savarese, “Adversari-
ally Robust Policy Learning: Active construction of physically-plausible
perturbations,” in IEEE International Conference on Intelligent Robots
and Systems (IROS 2017), pp. 3932–3939, 2017.

1230

Supplementary Information for
Robust Lagrangian and Adversarial Policy Gradient
for Robust Constrained Markov Decision Processes

David M. Bossens

APPENDIX A: PROOF OF ROBUST CONSTRAINED POLICY GRADIENT THEOREM

Using the notation r(s, a) = r(s, a)− λc(s, a) to formulate the problem as an MDP, we have

∇θVπ(s) = ∇θ

(∑
a∈A

π(a|s)Qπ(s, a)

)
(definition)

=
∑
a∈A

Qπ(s, a)∇θπ(a|s) + π(a|s)∇θQπ(s, a) (product rule)

=
∑
a∈A

Qπ(s, a)∇θπ(a|s) + π(a|s)∇θ

∑
s′,r

P(s′, r|a, s) (r(s, a) +Vπ(s
′)) (bootstrap from next Q)

=
∑
a∈A

Qπ(s, a)∇θπ(a|s) + π(a|s)∇θ

∑
s′

P (s′|a, s)∇θVπ(s
′)

(noting that (P (s′|a, s) =
∑
r

P(s′, r|a, s))

=
∑
a∈A

Qπ(s, a)∇θπ(a|s) + π(a|s)
∑
s′

P (s′|s, a)
(∑

a′∈A
∇θπ(a

′|s′)Qπ(s
′, a′) + π(a′|s′)

∑
s′′

P (s′′|s′, a′)∇θVπ(s
′′)

)
(unpacking analogously)

=
∑

snext∈S

∞∑
k=0

P(s → snext|k, π)
∑
a

Qπ(snext, a)∇θπ(a|snext) . (repeated unpacking)

To demonstrate the objective is satisfied from t = 0 to t = ∞, the proof continues from the initial state s0. There it is

useful to consider the average number of visitations of s in an episode, n(s) :=
∑∞

k=0 P(s0 → s|k, π), and its relation to the

on-policy distribution μ(s|π), the fraction of time spent in each state when taking actions from π:

∇θVπ(s0) =
∑
s∈S

n(s)
∑
a

Qπ(s, a)∇θπ(a|s)

∝
∑
s∈S

μ(s|π)
∑
a

Qπ(s, a)∇θπ(a|s)

= Eπ,P

[∑
a

∇θQπ(st, a)π(a|st)
]

= Eπ,P

[∑
a

Qπ(st, a)π(a|st)∇θπ(a|st)
π(a|st)

]

= Eπ,P

[
Qπ(st, at)∇θπ(at|st)

π(at|st)
]

= Eπ,P [Qπ(st, at)∇θ log (π(at|st))] .

1231

APPENDIX B: PROOF OF ROBUST CONSTRAINED ADVERSARIAL POLICY GRADIENT THEOREM

First note that the gradient of Vπ(st) of a state st at time t is given by

∇θadv
Vπ(st) = ∇θadv

(∑
a

π(a|st)Qπ(st, a)

)
(definition)

=
∑
a

π(a|st)∇θadv
Qπ(st, a) (π independent of πadv)

=
∑
a

π(a|st)∇θadv

⎛
⎝P(s′, r|st, a)

⎛
⎝∑

r,s′
r(st, a) +Vπ(s

′)

⎞
⎠
⎞
⎠ (expand the Q-value)

=
∑
a

π(a|st)∇θadv

(∑
s′

P(s′|st, a)Vπ(s
′)

)
(reward distribution independent of πadv)

=
∑
a

π(a|st)∇θadv

(∑
s′

πadv(s
′|st, a)Vπ(s

′)

)
(use πadv to generate the next state)

=
∑
a

π(a|st)
(∑

s′
Vπ(s

′)∇θadv
πadv(s

′|st, a) + πadv(s
′|st, a)∇θadv

Vπ(s
′)

)
(product rule)

=
∑
a

π(a|st)
(∑

s′
Vπ(s

′)πadv(s
′|st, a)∇θadv

πadv(s
′|st, a)

πadv(s′|st, a) +∇θadv
Vπ(s

′)

)

(divide and multiply by πadv)

= Eπ,πadv

[
Vπ(st+1)

∇θadv
πadv(st+1|st, at)

πadv(st+1|st, at) +∇θadv
Vπ(st+1)

]
(expectation over π and πadv)

= Eπ,πadv
[Vπ(st+1)∇θadv

log (πadv(st+1|st, at)) +∇θadv
Vπ(st+1)] . (derivative of logarithm)

Therefore, expanding this sum across all times t = 0, . . . , T − 1, were T is the horizon of the decision process, the expression

for t = 0 is given by

∇θadv
Vπ(s0) =

T−1∑
k=0

Eπ,πadv
[Vπ(sk+1)∇θadv

log (πadv(st+1|st, at))] .

1232

Table I
PARAMETER SETTINGS OF THE EXPERIMENTS

Parameter Setting

Discount 0.99
Entropy regularisation for π 5.0
Architecture for π and πadv 100 hidden RELU units,

softmax output
Learning rates for θ,λ,θadv, and λadv 0.001, 0.0001, 0.001, and 0.0001,

multiplier 1
1+n//500

for episode n

Initialisation of λ and λadv both 50 for Inventory Management,
both 1 for Safe Navigation 1 & 2

Critic learning rate 0.001,
100 hidden RELU units,
linear output,
Adam optimisation of MSE,
batch is episode

Uncertainty set Hoeffding-based L1, 1 pseudocount, 90% confidence
interval

APPENDIX C: EXPERIMENT DETAILS

Inventory Management

For each item, the purchasing cost is 2.49, the selling price is 3.99, and the holding cost is 0.03. The reward r(s, a) is

the expected revenue minus the ordering costs and the holding costs. The demand distribution is Gaussian with mean μ
and standard deviation σ. Each episode consists of T = 100 steps and the discount is set to γ = 0.99. The constraint-cost

is c(s, a) = max(0, a − L(s), where the purchasing limit is set to L(s) = μ + σ for s ≤ 2 and L(s) = μ for s > 2. The

constraint-cost budget is set to d = 6.0 ≈ ∑T−1
t=0 γt0.1 which allows the action to exceed the purchasing limit on average

roughly one item every 10 time steps. The constraint-cost function is not adjusted for tests; that is, the original μ and σ are

used in its computation rather than the perturbed parameters.

Safe Navigation

The objective is to move from start, s0 = (0, 0) to goal, (4, 4), as quickly as possible while avoiding areas that incur

constraint-costs. The agent observes its (x, y)-coordinate and outputs an action going one step left, one step right, one step up,

or one step down. The episode is terminated if either the agent arrives at the goal square or if more than T time steps have

passed. Instead of using the full state space as next states in the uncertainty sets, the probability vectors Ps,a consider for

the next state only the 5 states in the Von Neumann neighbourhood N (s) with Manhattan distance of at most 1 from s; this

requires setting α(s, a) =

√
2

n(s,a) ln
(

2S′SA
δ

)
, replacing S by S′ = 5 in the set of outcomes.

APPENDIX D: TRAINING HYPERPARAMETERS

A. Hyperparameters

Hyperparameters are set according to Table I. The discount is common at 0.99 and the architecture was chosen such that it is

large enough for both domains. The entropy regularisation is higher than usual training procedures because of the Lagrangian

yielding larger numbers in the objective. Learning rates were tuned in {0.10, 0.01, 0.001} for policy parameters (θ and θadv)

and in {0.01, 0.001, 0.0001} for Lagrangian multipliers (λ and λadv); the setting shown in the table is the best setting for

Inventory Management and Safe Navigation domains and this loosely corresponds to the two time scale stochastic approximation

criteria [1]. The critic was fixed to 0.001 for both domains as this is a reliable setting for the Adam optimiser. For Inventory

Management, it is possible to satisfy the constraint from the initial stages of learning so the initial Lagrangian multiplier λ is

set to 50. For Safe Navigation domains, the initial λ is set to 1 since it is not immediately possible to satisfy the constraints

without learning viable paths to goal. To encourage stochasticity in case of limited samples, each state-action pair (s, a) is

initialised with a pseudo-count n(s, a) ← 1, representing the uniform distribution as a weak prior belief. The error probability

is δ = 0.10 for a 90% confidence interval.

1233

APPENDIX E: TRAINING AND MODEL ESTIMATION

In Inventory Management, the model estimation phase is based on 100 episodes with μ = S/4 and σ = S/6, yielding

uncertainty sets with budget α ranging in [0.3, 0.9] across the state-action space. The widely varying values and overshoots

during training (see Figure 1) reflect in part a different training environment. Fig. 1 shows the performance in the policy training

phase.

(a) Training value (b) Training overshoot

Figure 1. Training performance metrics of the algorithms over 5,000 episodes on Inventory Management. Note that the training performance corresponds to
the performance on the simulated transition dynamics, which is defined differently for the different algorithms.

In Safe Navigation 1, the model estimation phase is based on 100 episodes with Psuccess = 0.80, which results in the

uncertainty budget α ranging in [0.25, 0.7] across the state-action space. Fig. 2 shows the performance in the policy training

phase.

In Safe Navigation 2, the model estimation phase is based on 10,000 episodes with Psuccess = 1.0. The resulting uncertainty

set has a smaller uncertainty budget, with α ranging in [0.03, 0.085] across the state-action space. Fig. 3 shows the performance

in the policy training phase.

1234

(a) Training value (b) Training overshoot

Figure 2. Training performance metrics of the algorithms over 5,000 episodes on Safe Navigation 1. Note that the training performance corresponds to the
performance on the simulated transition dynamics, which is defined differently for the different algorithms.

(a) Training value (b) Training overshoot

Figure 3. Training performance metrics of the algorithms over 5,000 episodes on Safe Navigation 2. Note that the training performance corresponds to the
performance on the simulated transition dynamics, which is defined differently for the different algorithms.

1235

REFERENCES

[1] V. S. Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint. Springer, second ed., 2022.

1236

