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Abstract—Improving the safety of policies trained by multi-
agent reinforcement learning (MARL) is an essential problem
for practical utilization. Traditional methods for safe MARL
either fail to improve safety during training process, or require
strong prior knowledge about the specific task, such as human
intervention, expert policy, and state transition model. However,
in practical applications, the safety during training process is also
important, and strong prior knowledge of the task is generally
inaccessible. In this paper, we propose a novel algorithm Dynamic
Shielding for MARL (DS-MARL), which utilizes simple prior
knowledge including agents’ own motion model to provide a
dynamic shield for MARL. DS-MARL aims to improve not only
the safety of final policy, but also the safety of training process,
without strong prior knowledge. Experimental results show that
DS-MARL promotes the safety of both training process and final
policy, and also increases success rate of final policy.

Index Terms—safe reinforcement learning, multi-agent system,
shielding

I. INTRODUCTION

Multi-agent reinforcement learning (MARL) has achieved

great success in many multi-agent applications, such as un-

manned aerial vehicles [1], autonomous vehicles [2], and au-

tonomous underwater vehicle [3]. However, traditional MARL

algorithms [4], [5] only focus on maximizing agents’ expected

return, neglecting the safety of their policies, which may cause

severe issues in practical applications.
There are three main approaches for safe reinforcement

learning (RL): constrained RL methods, safety layer methods,

and shielding methods. Constrained RL methods [6], [7] for

single-agent cases define a cost function about safety to set

constraints for training loss, and thus convert safe RL to

constrained RL. Constrained RL methods are also extended to

multi-agent cases [8], [9]. However, constrained RL methods

can not provide sufficient safety during training process.
Safety layer methods [10], [11] rectify the original action

output to the nearest safe action by adding a safety layer to

policy functions, and thus provide a safety guarantee. How-

ever, prior knowledge about state transition model is required

for safe actions but is hard to obtain in most applications.
Shielding methods observe every action generated by an

agent’s policy, and intervene when the action is considered

unsafe by replacing the original action with a safe action.

Traditional shielding methods involve judgment of safety and

intervention with alternative safe action, which are realized by

a human expert [12] or an expert prior policy [13], whereas

both are hard to obtain in many applications. Besides, [14]

utilizes cost-based advantage functions to provide shielding,

which cannot provide sufficient safety guarantee, especially

in training process, as shown in Section III. In addition, some

shielding methods [15]–[18] use prior knowledge to accurately

judge the safety condition after the execution of a certain

action. However, the strong prior knowledge is also hard

to obtain in many complex applications. For example, in a

flocking navigation task [19] shown in Fig. 1(a), each agent has

its own policy and can only sense obstacles by rangefinders.

Therefore, in such a complex environment, the agent can not

accurately judge unsafe conditions including the occurrence

of collision with other agents or with obstacles.

In this paper, we aim to improve not only the safety of the

resulting MARL policies after training but also those during

training. In addition, we expect our algorithm does not require

such strong prior knowledge such as state transition model,

and thus can be applied in a wider range. We propose a

novel algorithm Dynamic Shielding for MARL (DS-MARL),

which provides a dynamic shield for MARL using simple safe

metrics and a backup policy from agents’ own motion model,

rather than strong prior knowledge including state transition

model or accurate judgment of safety conditions. Judgment

of safety and alternation of action are both accomplished

by the shield. The shield is dynamically adjusted according

to the unsafety rate during training process, which controls

the unsafety rate at a low value and gradually reduces the

intervention rate as agents’ policies become safer and better.

We divide the training process into a termination phase and

an intervention phase to train better original policies before

shielding and provide safer shielding. The main contributions

of this paper are listed as follows:

• A novel algorithm DS-MARL is proposed to provide a

dynamic shield to improve the safety of MARL in both

training and execution without strong prior knowledge.

• We conduct experiments to verify the effectiveness of

DS-MARL in increasing safety rate in both training and

execution and success rate of trained policies. Besides, we

show the flexibility in the choice of fundamental MARL

algorithm where DS-MARL builds.

II. METHOD

We use MARL to solve the Markov Games modeled simi-

larly to [4]. At each time step, the global state is denoted as

s. Each agent i chooses an action ai according to its local

observation oi. The joint action a and the joint observation o
are the combinations of ai and oi of every agent i, respectively.
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Agents interact with the environment with a and then each

agent i receives a new local observation o′i and a reward

ri. Each agent i maintains a policy πi(oi) to maximize the

expectation of its return: Ri =
∑∞

t=0 γ
tri,t, where γ is a

discount factor.

A. Formulation for Safety

To improve the safety of MARL algorithms, DS-MARL

uses safety metrics to judge unsafety categories, and a

backup policy to intervene if necessary.

Unsafety Category. To improve the safety of MARL

algorithms in a particular task, first of all, it should be

clearly defined what conditions are unsafe for agents in the

task. Each unsafety category m includes a state set: Um =
{s| unsafety m occurs in s}.

For easier understanding, we exemplify unsafety categories

{Um} in the flocking control task shown as Fig. 1(a). There

are two unsafety categories Ucol and Ucross, representing the

state sets where collisions between obstacles and agents and

collisions among agents occur, respectively.

Safety metric. For each unsafety category Um, a safety

metric Im(oi, ai) is utilized to roughly measure the unsafety

resulting from the action ai taken by agent i. Im(oi, ai) is a

function of local observation and action of agent i, and can

be calculated easily with simple prior knowledge including

agents’ own motion model. By simple prior knowledge, we

mean that Im is not required to be a precise metric to judge

safety, but a rough metric as a reference, unlike strong prior

knowledge such as state transition model.

For example, in the flocking navigation task, the safety

metric for Ucol about collisions with obstacles is designed

as Icol(oi, ai) = mink(dobs(oi, k) − Pr(uk,move)) as

Fig. 1(b), where dobs(oi, k) is the sensed obstacle distance

by rangefinder k, move is the displacement of the agent i if

ai is taken, and Pr(uk,move) represents the projection of the

displacement onto the direction of rangefinder k. Icol roughly

estimates the nearest distance with obstacles if action ai is

taken, without detailed information on obstacles. The safety

metric for Ucross about collisions with other agents is designed

as Icross(oi, ai) = minj(dag(oi, j)−Pr(uj ,move)) as illus-

trated in Fig. 1(c), where dag(oi, j) is the distance between

agent i and j, and Pr(uj ,move) represents the projection of

the displacement of agent i onto the line connecting agent i
and j. Icross roughly estimates the nearest distance with other

agents if action ai is taken, without consideration of other

agents’ movement.

Backup Policy. A backup policy πback can generate an

alternative action if the original action ai is considered unsafe.

Note that πback only functions as a relatively safe action, rather

than an absolutely safe action as in [14] based on strong prior

knowledge. Therefore, it is impossible to guarantee absolute

safety.

In the example of flocking navigation task, the backup pol-

icy πback is a combination of repulsive forces based on artifi-

cial potential field approach [20] to attempt to avoid collisions.

Repulsive force to avoid Ucol is Fcol =
∑

k(
1

dobs(oi,t,k)
−

Target

Agents
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Rangefinde

(a)
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projection Icol

(b)

move

projection Icross

(c)
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Fig. 1. Simplified diagram of navigation flocking task. (a)The environment
of navigation flocking task. Three agents are required to navigate to the target
and maintain the flock without collisions. Observation of each agent consists
of relative positions with the target and other agents, obstacle distance detected
by seven rangefinders, and agent’s own velocity. Action of each agent is the
applied force. (b)Safety metric Icol. (c)Safety metric Icross. (d)Fcol and
Fcross for backup policy.
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Fig. 2. Simplified training process of DS-MARL.

1
dcol

) 1
dobs(oi,t,k)2

, if dobs(oi,t, k) < dcol, and repulsive force to

avoid Ucross is Fcross =
∑

j(
1

dag(oi,t,j)
− 1

dcross
) 1
dag(oi,t,j)2

,

if dag(oi,t, j) < dcross, where dcol and dcross are thresholds.

B. Dynamic Shielding for MARL

In this paper, we propose a novel algorithm Dynamic

Shielding for MARL (DS-MARL) to improve safety of MARL

during both training and execution. Besides, DS-MARL only

requires simple safety metrics and a backup policy from

agents’ own motion model, rather than strong prior knowledge

about tasks, such as state transition model. The training

process of DS-MARL consists of a termination phase and an

intervention phase, as shown in Fig. 2.

In the termination phase, after each agent i chooses an

action ai according to its policy πi(oi), the safety metric

Im(oi, ai) is generated for each unsafety category Um, to be

compared with a corresponding threshold thm. If Im > thm,

then the action ai is considered safe, and the action ai can be

actually implemented. Otherwise, the action ai is considered

unsafe by current threshold thm, and then the task in this

episode will be terminated to prevent potential unsafety. Note

that the measurement of safety is not required to be absolutely

accurate, and thus the judgment of safety is not precise as

described in Subsection II.A. In addition, the initial value

of thm is expected to be high, and thus agents are almost

impossible to encounter unsafety with the initial thm, at the

expense of termination of some tasks where agents are actually

safe.

By the comparison of safety metric Im and corresponding

threshold thm, DS-MARL restricts agents’ action space under

a certain observation, and thus enhances safety of agents.

With this shield, agents with randomly initialized policies are
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supposed to learn preliminary behaviors about how to succeed

in the task. However, a large part of action space is forbidden

by the shield with the initial thm, which limits the policy

performance. Therefore, with the progress of training and

improvement of agents’ policies, the protection of the shield

is expected to be loosened and then agents are allowed to take

more actions under certain observation.

To control the procedure of loosening the shield, we calcu-

late Nunsafe,m to count the occurrence of unsafety belonging

to each category Um in every N episodes. If the unsafety

conditions in Um occur rarely, agents are allowed to take

actions in a larger action space under a smaller threshold to

further elevate their performance. If the unsafety conditions

in Um occur frequently, the training agent policies are not

good enough to act safely with the increased action space, and

then the action space is decreased under a bigger threshold to

protect agents. The detailed adjustment of threshold thm is:

thm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

thm − δ, if
Nunsafe,m

N
≤ Thphase1,lower,

thm + δ, if
Nunsafe,m

N
> Thphase1,upper,

thm, otherwise,

(1)

where δ, Thphase1,lower and Thphase1,upper are three hy-

perparameters. Thphase1,upper is set to be larger than

Thphase1,lower to avoid frequent adjustment of thresholds and

allow agents to gradually improve their performance when the

action space is increased.

In the second phase, known as the intervention phase, safety

metric Im(oi, ai) is also generated after each agent i chooses

its action. However, if Im ≤ thm, which means the action is

considered unsafe by the current threshold thm, the task will

not terminate as in the termination phase. Instead, the agent

will use the alternative action generated by the backup policy

πback, while others whose actions are considered safe still

implement their original actions. The reason why the backup

policy is only used in the second phase of training is that

randomly initialized agents without preliminary training are

likely to depend on the intervention of the backup policy,

which hinders agents from learning their own policies. The

shield controlled by thm is dynamically adjusted in the same

way as (1), except that hyperparameters Thphase1,lower and

Thphase1,upper in (1) are replaced by Thphase2,lower and

Thphase2,upper that are lower than their corresponding ones

to further improve safety.

III. EXPERIMENTS

A. Main Experiments

To verify our algorithm DS-MARL, we conduct experiments

in the flocking navigation task adapted from [19]. We build

our algorithm DS-MARL on a representative MARL algo-

rithm MADDPG [4] to form DS-MADDPG. DS-MADDPG

is contrasted with two baseline algorithms: MADDPG and

SAILR-MADDPG. SAILR-MADDPG is designed for multi-

agent cases based on MADDPG, which utilizes cost-based ad-

vantage functions [14] to provide shielding for safety. SAILR-

0 20000 40000 60000 80000 100000

Episode

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

S
u

cc
es

s 
R

at
e

0 20000 40000 60000 80000 100000

Episode

0.0

0.2

0.4

0.6

0.8

U
n

sa
fe

ty
 R

at
e MADDPG

SAILR-MADDPG

DS-MADDPG (ours)

Fig. 3. Convergence curves of success rate and unsafety rate of main
experiments. The first half of DS-MADDPG is termination phase, while the
rest is intervention phase.

TABLE I
STATISTICAL RESULTS

Algorithm
Final

Success
Rate

Final
Unsafety

Rate

Total
Unsafety

Rate

MADDPG 0.849 0.122 0.246
SAILR-MADDPG 0.902 0.091 0.198
DS-MADDPG (ours) 0.935 0.043 0.064

only phase 1 0.853 0.088 0.084
only phase 2 0.006 0.375 0.201

MATD3 0.781 0.206 0.361
SAILR-MATD3 0.858 0.139 0.243
DS-MATD3 (ours) 0.911 0.070 0.079

MADDPG only requires a backup policy rather than strong

prior knowledge as in [12], [13], [15]–[18], and thus we choose

it as a baseline algorithm. Initial value of thcol and thcross

are 0.8 and 0.5. Hyperparameters δ, N , Thphase1,lower,

Thphase1,upper, Thphase2,lower, and Thphase2,upper are 0.05,

500, 0.03, 0.06, 0.015, and 0.03, respectively. Episodes of

termination phase and intervention phase are both 50000. Each

algorithm is run in 3 seeds.

We plot convergence curves of success rate and unsafety rate

during training process in Fig. 3. It shows that after training,

success rate of DS-MADDPG is higher than MADDPG and

SAILR-MADDPG, and unsafety rate of DS-MADDPG is

lower than baseline algorithms. Besides, unsafety rate of DS-

MADDPG is always low during training and total unsafety

rate of DS-MADDPG is largely reduced in contrast to MAD-

DPG and SAILR-MADDPG. In conclusion, DS-MADDPG

decreases unsafety rate during both training and execution

process, and increases success rate. Detailed statistical results

of all the experiments are shown in Table I.

B. Ablation Experiments

To validate the effectiveness of each phase in DS-MARL,

we design two ablation algorithms that only involve the

termination phase and the intervention phase, respectively.

Convergence curves of success rate and unsafety rate are

plotted in Fig. 4. The performance of the ablation algorithm

with only the intervention phase is largely inferior to DS-
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Fig. 4. Convergence curves of success rate and unsafety rate of ablation
experiments.
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Fig. 5. Convergence curves of success rate and unsafety rate of experiments
with MATD3 as the fundamental MARL.

MADDPG, since randomly initialized agents are likely to

depend on the backup policy and fail to learn their own

policies, as mentioned in Section II. DS-MARL is better than

the ablation algorithm with only the termination phase, with

the help of the backup policy to provide a better shield.

The ablation experiments confirm the effectiveness of the two

phases.

C. Experiments with Another Fundamental MARL

We build our DS-MARL on MADDPG in previous ex-

periments, whereas DS-MARL can be built on any MARL

algorithm. In this subsection, we take MATD3 [5] as the fun-

damental MARL algorithm. SAILR-MATD3 built on MATD3

is designed as another baseline algorithm. Convergence curves

of success rate and unsafety rate are plotted in Fig. 5. Similar

to main experiments, DS-MATD3 also increases success rate

and decreases unsafety rate, and DS-MATD3 maintains a

low unsafety rate during training in comparison with baseline

algorithms.

IV. CONCLUSION

We propose a novel algorithm DS-MARL to provide safety

for MARL algorithms with a dynamic shield consisting of two

phases. DS-MARL provides safety not only during execution

but also during training. Besides, DS-MARL does not require

strong prior knowledge, such as human experts, expert prior

policies, or state transition model. Experimental results vali-

date that DS-MARL can improve safety during both training

and execution, and promote success rate.
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