
Scanning Electron Microscope Image Segmentation
with Foundation AI Vision Model for Nanoparticles

in Autonomous Materials Explorations

Timothy B. Gaines
Elect. Engineering & Computer Science

University of Missouri
Columbia, Missouri, USA

Matthew R. Maschmann

Mech. & Aerospace Engineering
University of Missouri

Columbia, Missouri, USA

Camden Boyle
Mech. & Aerospace Engineering

University of Missouri
Columbia, Missouri, USA

Stanton Price

Geotechnical and Structures Lab
Engr. Research & Dev. Center
Vicksburg, Mississippi, USA

James M. Keller
Elect. Engineering & Computer Science

University of Missouri
Columbia, Missouri, USA

Grant J. Scott

Elect. Engineering & Computer Science
University of Missouri

Columbia, Missouri, USA

Abstract—The role of scientists and engineers is being signif-
icantly reshaped by the increased role of artificial intelligence
(AI) across various science domains. Materials science is a
field that is well-positioned to benefit from the integration of
AI in the design of automated experimental systems. This is
especially true for systems that are collecting and analyzing
massive quantities of data from scanning electron microscopes
(SEM). The associated SEM imagery is on the nanoscale, offering
unprecedented fidelity to analyze materials in their most basic
and simple structures. However, the richness and potential vol-
ume of this data necessitate human-machine teaming, specifically
AI tools to accelerate scientific discovery. This paper details how
the foundation AI vision Segment Anything Model (SAM) is
leveraged within an experimental workflow. Specifically, SAM’s
basic use requires significant human-in-the-loop effort to mark
relevant areas. Herein, we detail how SAM creates excessive
segmentation masks and describe the necessary post-processing
to refine and filter outputs to be suitable for an autonomous
materials experimentation pipeline. Our vision system design that
leverages SAM coupled with classical computer vision as a post-
processing stage achieves 98–100% precision isolating Aluminum
nanoparticles within SEM images.

I. INTRODUCTION

The role of scientists and engineers is being significantly

reshaped by the increased role of machine learning (ML) and

artificial intelligence (AI) across a variety of science domains.

AI/ML is drastically impacting and disrupting the scientific

community, ranging from materials science and computational

chemistry to biotechnology (e.g., protein structure prediction).

New AI/ML tools and approaches can enhance the speed of

research, expand the scope of inquiry, and generate ever-

greater volumes of data. Autonomously operating research

systems that plan, conduct, and analyze experiments already

exist and will become increasingly pervasive [1]. This trend

increasingly frees the researcher from the mundane tasks

within scientific experimentation, allowing them to focus on

advanced analytical analysis and bringing creative thinking

into the research space. All the while, this human-machine

teaming for scientific discovery is generating more, higher-

quality data.

Energetic material particles are solid-state grains that release

significant energy when undergoing an oxidative reaction. The

reaction mechanisms of isolated aluminum nanoparticles (AL

NPs) and nanoparticle clusters remain poorly defined. These

mechanisms are expected to change as a function of their di-

ameter, temperature, and heating rate. One promising method-

ology to interrogate the reaction mechanisms of isolated AL

NP clusters is by using laser-induced photothermal heating.

In this study, 80 nm diameter AL NPs were dispersed on an

optical grating substrate to isolate and react small clusters of

AL NPs. The particles are then irradiated under the microscope

using a focused laser. Identifying and characterizing the pre-

and post-reaction particle morphologies using conventional

optical microscopy is difficult given the limited resolution of

optical imagery.

Scanning electron microscopy (SEM) imaging of AL NPs

provides image resolution at the nanometer scale compared to

the optical diffraction limit of optical microscopy. SEM anal-

ysis may also provide energy-dispersive X-ray spectroscopy

(EDS) that can provide a spatial map of chemical compo-

sition to better inform experiments. However, SEM analysis

is typically more expensive and time-consuming than optical

microscopy while also reducing the field of view in each

image. Image segmentation may be used to rapidly extract

the location and size of all particles in an image.

Experimental setup, planning, and characterization may be

greatly accelerated if high-quality SEM images could be

rapidly and automatically segmented. For example, if the

location and size of each AL NP on a substrate could be

determined from an SEM image or image sequence before ex-

perimentation, a scientist could plan investigational campaigns

and target AL NPs with desired attributes without having to
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slowly search for appropriate AL NPs using inferior imaging

capability of an optical microscope. Similarly, rapid analysis

of pre- and post-reaction particle image pairs would benefit

experimentalists as they try to determine how reaction condi-

tions influence reaction mechanisms. Ultimately, robust image

segmentation and analysis, coupled with computer-controlled

experimental control, could ultimately lead to autonomous

investigations in which the human experimenter is over the

loop, instead of being human-in-the-loop.

In [2], the authors show that optical microscopy before
and after images at 100× can be leveraged for automated

characterization of AL NP reactions. However, SEM imagery

offers much higher magnification which allows for better

texture analysis and can image smaller particle clusters or even

single particles. This level of detail provides significantly more

visual details and potential for the development of automated

AL NP reaction analysis. This contrastive resolution of optical

microscopy and SEM images is shown in Fig. 1.

Recently, the Segment Anything Model (SAM) [3] has been

released as an open-source foundation AI model with robust

image segmentation capabilities. However, SAM’s basic use

requires significant human-in-the-loop effort to mark relevant

areas as “foreground”. Alternatively, in an automated mode,

“segment everything”, a grid of seed points is used to generate

a robust, full image segmentation. The full image segmentation

results, however, include excessive segmentation masks that

must be properly filtered if this model is to be leveraged in an

automated system and take human intervention out of the loop.

Therefore, we describe the necessary post-processing to refine

and filter outputs to be suitable for an autonomous materials

experimentation pipeline.

This work, to the best of our knowledge, is the first

exploration of using foundation AI computer vision models

to perform automated analysis of AL NPs captured with an

SEM. In fact, the materials science efforts for imaging and

analysis of AL NPs are not well studied in the literature.

Our integration of foundation AI into an automated analysis

pipeline for materials science research is a novel enabler of

future advances.

II. SEM IMAGES OF ALUMINUM NANOPARTICLES

Aluminum particles are dispersed in ethanol to create a

stock solution with a concentration of 1 mg/mL and bath

sonicated for 1 hour. From this stock solution, 1 mL is diluted

with 9mL of ethanol to create a solution with a concentration

of 0.1 mg/mL and once again bath sonicated for 1 hour. This

solution is further diluted to 0.01 mg/mL before bath sonicat-

ing for a final 1 hour. 2 μL of this solution is drop cast onto a

substrate and allowed to dry on a hot plate for 30 seconds at

400◦ C. The substrates are a plasmonic grating or a flat silver

substrate capped with 10 nm of alumina. The photothermal

heating of aluminum particles follows procedures similar to

previous works [4]–[6].

SEM images are acquired using a ThermoFisher Phenom

Pharos microscope. Images are acquired at 10 kV acceleration

Fig. 1. Single Particle Reaction Image Modality Comparison: Optical - 100x
magnification polarization based scattering optical microscopy images, SEM
- 100,000x magnification secondary electron microscopy images. It can be
observed that significantly more structural detail is visible in the SEM versus
the Optical images. Additionally, the true result of the laser irradiation is
discernible in the After SEM image versus appearing as though the AL NP
is gone in the Optical After image.

Fig. 2. Example SEM image of AL NPs on an optical grating. We can see
a variety of AL NP cluster sizes.

voltage using a secondary electron detector. The image reso-

lution is 1920×1200 pixels. Optical microscope images are

acquired using an Olympus BX51W fluorescence microscope

and a 32 MP Teledyne Infinity x32 color microscope camera.

SEM images are acquired as 16-bit grayscale Tiff images.

These images are converted to 3-channel images, with each

channel having identical values as the original grayscale

image.

A map of the randomly dispersed aluminum particles, and

associated details of the particles (diameter, circularity, etc.)

are foundational to later reaction experiments in which parti-

cles that meet specific physical criteria are selected for laser

irradiation. Images acquired from optical microscopy alone are

inadequate to measure the morphology of particles or count

the number of particles comprising a particle cluster; however,

SEM readily resolves the detail of particles with nanoscale
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resolution, as demonstrated in Figure 1. The limited field of

view of an individual SEM image necessitates the acquisition

of many images to traverse a substrate of interest. At a

modest magnification, dozens of particles may populate the

field of view (Figure 2). By acquiring numerous SEM images

dispersed across a substrate, a robust AL NP segmentation

pipeline can rapidly segment the particles from the background

substrate and provide their spatial coordinates and critical

information for later particle testing. Herein lies a critical

opportunity to leverage a foundation AI that can accurately

segment SEM images within this complex visual modality.

III. SEGMENT ANYTHING

Segment Anything [3] is a transformer-based segmentation

model created by Meta AI. Their publicly available pre-trained

models were trained on 11 million high-resolution images, in

which there are 1.1 billion training segmentation masks. The

large volume of highly diverse training samples is why they

claim the model has the capability to segment anything – that

is, it is a foundation AI model for image segmentation. If

this model can segment our SEM imagery, we could then use

the masks to extract cluster centers. Due to space constraints

and the primary focus of this paper, interested readers are

encouraged to review [3] for architectural and related details

of Segment Anything.

Segment Anything performs its segmentation in two steps.

It first runs the input image through an image encoder to create

its embedding. This embedding is then run through a decoder

with additional information, an encoded prompt, to create its

masks. It should be noted that these masks do not provide any

semantic meaning from the model, they are simply layers of

a segmentation.

Segment Anything requires prompts through one of two

different methods, points or bounding boxes. A user can add

points on an image denoting foreground and/or background,

and then Segment Anything will segment the image with this

added context. Additionally, users can supply bounding boxes

signifying foreground areas. Bounding boxes and points may

be used in conjunction. The result of the model processing is a

collection of segmentation masks. However, in the case of our

SEM images of AL NP as detailed above, the need for human-

in-the-loop seeding of segmentation is viable for our target of

autonomous AL NP identification. Instead of providing the

information about where the clusters exist as a prompt, we

seek to automatically extract this with the aid of the model.

Segment Anything does have a prompting formula for

autonomous use, a grid of foreground points. By laying a grid

of foreground points equally over the image, a majority of the

image is sampled and one might assume you hit all targets.

However, an issue that arises is that the number of sample

points to lay out into the grid becomes a new human-controlled

parameter. The grid of these seeded foreground points may

miss some of the key image contents, particularly the small

ones, that are desired from the segmentation. Specifically, if

you look at Fig. 2, you can see a variety of AL NP cluster

sizes, and to ensure we get small particles like the one about

Fig. 3. Segment Anything Prediction of Figure 2

Fig. 4. Segment Anything Prediction with Grating Imperfections

midway down on the left requires a very high number of

segmentation seed points in the grid. Otherwise, particles that

do not contain a gridded seed point are not marked as a

segmentation target and will not be extracted as a segmented

cluster.

Figure 3 shows how applying a grid of points over an image

yields many erroneous mask regions relative to our use case.

In the rendering, each mask is a semi-transparent color that is

overlayed on the original image. Specifically, we desire to ex-

tract each AL NP cluster as a mask layer, and the background

substrate as a separate mask layer. We can see that the substrate

becomes multiple masks (rainbow striping). Additionally, we

see that some AL NP clusters are over-segmented (lower-left

quadrant of Fig. 3). These various erroneous mask regions

necessitate post-processing combined with appropriate grid

seeding in order to incorporate the Segment Anything model

into an autonomous experimentation workflow. Fig. 5 shows

the processing pipeline, and the subsequent techniques to filter

and select only relevant AL NP cluster regions. We can see

that the Segment Anything model is a first step that expands

the SEM image into a deep band of mask layers, and all the

subsequent steps in the pipeline are detailed in Sects. IV and V.

IV. MASK FILTERING

For mask predictions from Segment Anything to be useful,

the false positive (FP) regions need to be removed. The ex-

ample in Fig. 3 shows background substrate mask regions that
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Fig. 5. Autonomous Region Selection Pipeline. SAM produces layers of segmentation masks, which are recombined with the input (Image Region Masker)
to generate isolated SEM image regions as separate images. These are then fed into LBP Texture Analysis and then classified (SEM Region Classifier).

are long and easily filterable through eccentricity thresholding.

Alternatively, the regions shown in Fig. 4 cannot be filtered

in this way. The FP regions shown there are much more

circular, versus elongated, and therefore another method for

mask filtering must be determined. Because this process is

being developed for autonomous laser targeting, we are much

more concerned with recognizing the erroneous mask regions,

i.e., false positives, rather than any clusters Segment Anything

has missed, i.e., false negatives (FN). The laser irradiation

process and stage movement are time-consuming and therefore

missing one cluster among so many is much less important

than avoiding irradiating the background and adding a ‘fake’

image to our experimental dataset.

A. Texture Analysis for Mask Selection

An advantage of SEM images over optical images is that

the minute details in the clusters are visible, that is one can

easily see the texture differences between the background and

the clusters. Therefore, we propose to use classical texture

descriptors to identify the relevant AL NP clusters from the

collection of segmentation masks. For our texture descriptor,

we chose the local binary pattern [7] (LBP) with rotational

invariance. The LBP texture descriptor analyzes each pixel

within a mask region and its surrounding pixels to see if they

are of greater or less intensity than itself. Each pixel can then

be assigned to a pattern depending on which of its neighbors

is brighter or not. A histogram of the number of times each

pattern was encountered can then be made to describe the

texture of the area. We utilized a radius of three pixels at

eight equidistant angles. The segmentation masks were eroded

to remove three pixels of depth all around the perimeter of

each individual region. This ensures that entries into the LBP

histogram can only look within the region area.

To begin, we calculate the LBP over an image with grating

blemishes. This image is shown in Fig. 6 where the pixel

intensity represents which pattern it corresponds to (see [7]

for details of the 26 patterns extracted from the 8-neighbor

LBP). In the LBP image, the cluster regions are still highly

visible, whereas grating blemishes blend in the background

(a)

(b)

Fig. 6. (a) SEM image with large, complex AL NP clusters and (b) the
associated LBP image. As noted in the pipeline discussion, each mask is
eroded by the radius of the LBP filter, and the resulting masked SEM image
regions are processed independently.

completely. This is a great signal that the LBP is highly

distinctive when used to compare the two region types.

B. Mask Selection Pipeline

To leverage this texture response for filtering segmentation

masks, we create a pipeline to process SEM images through

Segment Anything, then process the masked regions with LBP

texture analysis, feeding masked regions of SEM into a binary

classifier. Figure 5 illustrates the overall flow of SEM images

through Segment Anything, LBP texture analysis, and AL

NP cluster selection. A key component is the creation of a

1266



Fig. 7. Size Histogram for All Mask Regions

classifier for the LBP features generated from the masked SEM

segmentations.

We create a nearest-prototype classifier by collecting his-

tograms from seven cluster regions, true positives (TPs), and

seven regions that should be filtered out, FPs, to use as

exemplars. The regions chosen were randomly selected with

size brackets. For both the TPs and FPs four regions were

selected from pixels sizes 60 ≥ r < 1000, two regions from

1000 ≥ r < 4000, and the last region from 5500 ≥ r < 6500.

These size brackets are chosen to reflect the size distribution of

our dataset, the distribution is shown in Fig. 7. The histograms

of all the exemplars can be seen in Figure 8, the last bin has

been removed for visual clarity. The TP and FP histograms are

highly characterized by their differences in the bins at edges

and centers. The edge bins of an LBP histogram represent

the flat unchanging patterns whereas the center bins represent

edge and corner patterns. This is highly consistent with what

we see in the SEM imagery as real cluster regions have many

edges and corners due to the individual particles and the FP

regions are mostly uniform in intensity with the exception of

the grating lines which have little area per region.

V. EXPERIMENTAL RESULTS

Each segmented region is compared to the exemplars using

Euclidean distance. However, there were a few options in

how this was done. The first choice is how much of the two

histograms to compare. We could simply compare the entire

histogram or we could compare only the regions where they

typically differ. Thus, we choose three different subsets of the

histogram: the entire histogram, the edges (bins 1-5 and 21-

25), or the center (bins 6-20). We also had a choice of which

exemplars to compare the regions to. We could compare each

region to all exemplars or compare them based on size: small

regions compared to the small exemplars and small-medium

regions(> 750 & < 1500) compared to both small and

TABLE I
TEXTURE BASED FILTERING RESULTS

Exemplar Bins Accuracy Precision Recall F1

All
All 0.982 0.982 0.997 0.990
Center 0.968 0.992 0.971 0.982
Edges 0.984 0.982 1.0 0.991

Size
All 0.984 0.985 0.997 0.991
Center 0.961 1.0 0.956 0.977
Edges 0.984 0.982 1.0 0.991

medium exemplars, medium regions to medium exemplars,

and lastly medium-large and large regions (> 3500) to both the

medium exemplars and the single large exemplars. After the

exemplars for comparison are chosen, the Euclidean distance

between the target region and each FP exemplar is computed

and recorded. Similarly, the Euclidean distances between the

target region and each TP exemplar are calculated separately.

The target region is labeled by the label of the minimum

distance prototype, i.e., a simple nearest-neighbor classifier.

Table I shows the results from the experimentation over

the different exemplar selection techniques and bin subsets.

Again, we are highly concerned with minimizing the FPs

to ensure we do not add false clusters to our downstream

energetics experimentation dataset. Because of this, we hap-

pily accept lower performance metrics in overall accuracy,

recall, and F1 to search for the model with perfect precision.

Interestingly, utilizing only the center bins when taking the

Euclidean distance gives the best precision in both exemplar

selection methods. While the best model does use size to select

exemplars the small difference in performance and our small

dataset means we cannot say for certain if this is the overall

superior method. However, with this texture-based algorithm

to filter out false Segment Anything mask regions, we can

confidentially image and target clusters for laser irradiation

autonomously.

VI. CONCLUSION

The reaction of isolated aluminum nanoparticles for ener-

getic materials research requires the acquisition of many SEM

images to establish the location and diameter of particles,

and the quantity of particles residing in clusters. Because

of the dimensions of nanoscale and microscale particles, this

information may not be accurately obtained using optical mi-

croscopy. Herein, the Segment Anything foundation AI model

was used to segment aluminum particles in SEM images and

record mask information to elucidate the stochastic distribution

of particles on complex substrates.

The proposed workflow demonstrates how foundation AI

models can incorporated into energetics research to accelerate

research processes and enhance the confidence of results. The

application of texture analysis is critical for the identification

of substrate defects captured by Segment Anything to mitigate

false positive particle identification. This pipeline will be

used in the experimental flow of energetics material research

to accelerate the data acquisition process and to increase
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Fig. 8. Histogram of all exemplars for the nearest-neighbor classifier: (left) true positive AL NP clusters (TP) and (right) false positive (FP) segments such
as blemishes on the surface grating.

confidence in the attributes of the aluminum particles prior

to their testing.
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