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Abstract—Volumetric medical image segmentation has been
particularly challenging as both local and global features are
important in producing an accurate and consistent segmentation
output. However, 2D CNNs often ignore the global contextual
information of the volumetric input while the use of 3D CNNs
is heavily limited by the large computational needs and GPU
restrictions. In this paper, we propose SegMAE-Net, which
combines 2D and 3D methods to leverage on the strengths of both
approaches. Specifically, SegMAE-Net consists of two branches,
1) slice-centric branch made up of an encoder-decoder architec-
ture to learn the local features of each image slice, 2) volume-
centric branch utilising masked autoencoders to capture long-
range dependencies. We evaluate SegMAE-Net on the RETOUCH
dataset, and the experimental results show that our proposed
method achieves state-of-the-art performance. We also show that
our method is able to produce segmentation outputs with a higher
consistency across the volume level.

Index Terms—medical image segmentation, masked autoen-
coders, convolutional neural networks

I. INTRODUCTION

Medical image segmentation is an important procedure in

many medical applications, such as computer-aided diagnosis

and clinical interventions [1]–[3]. This is because a region

of interest is extracted in these images to provide a com-

prehensive analysis of certain anatomical structures through

automatic or manual means. However, the segmentation of

3D volumetric data has been particularly challenging, due

to the variation in imaging, anatomy and pathology. Two

main approaches are usually adopted in the segmentation of

such volumetric data. One such method involves splitting the

volumetric data into a stack of 2D slices and segmenting each

slice individually. This process can be tedious, considering the

large amount of data to segment. While automatic methods can

alleviate the manual process, such solutions do not consider

the global context within the image volume, potentially leading

to inconsistencies in the segmentation result between adjacent
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slices. The other approach uses the volumetric input directly to

produce the segmentation output. However, such an approach

is often limited by the GPU storage and memory. To counter

this, the volume may be downsampled before performing

convolution, which may result in loss of local features.

Convolutional neural networks (CNNs) have proven to be

more accurate and effective in various medical image seg-

mentation and health case-based tasks [4], [5], as compared

to traditional image segmentation methods, including edge

detection-based [6] and region-based methods [7]. Particularly,

U-Net, originally developed for 2D biomedical image seg-

mentation, received much attention due to its encoder-decoder

architecture and skip connections [8]. Since then, several

variations of U-Net have emerged to address the limitations of

the original U-Net. While volumetric data cannot be directly

processed using the conventional U-Net, each slice can be

segmented individually and then stacked together to form a

3D segmentation output. However, such an approach fails to

consider the inter-slice information and thus, the segmentation

output may appear inconsistent in its overall shape. 3D U-Net

solves this problem by performing 3D convolution operations

directly on a volumetric input [9]. V-Net also proposes a simi-

lar approach as 3D U-Net except for its use of residual connec-

tions [10]. Several attempts have also been made to combine

the slice-centric approach (2D only) with the volume-centric

approach (3D only) for segmentation of medical images. SA-

Net proposes a hybrid segmentation approach with the use

of 3D convolutions and a dimension reduction mechanism to

convert 3D information learnt in the reconstruction branch into

2D information to aid segmentation [11]. SCAA also adopts a

similar method that uses self-attention mechanism instead to

generate an aggregated 2D feature map from the 3D feature

maps [12]. Transformers [13] and vision transformers [14]

have also shown much potential in the field of medical image

segmentation due to their effectiveness in modelling long-

range dependencies. Particularly, UNETR [15] and TransUNet

[16] both utilise self-attention mechanisms to capture global
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Fig. 1. Overview of our proposed SegMAE-Net, which consists of a slice-centric branch and a volume-centric branch. The feature aggregation branch is not
shown in this figure, please refer to Fig. 2 for more details.

information of the embedded 3D image patches in volumetric

medical image segmentation. [17] similarly proposes a causal

knowledge fusion framework consisting of 3D hierarchial

attention mechanisms to tackle the challenge of cross-modality

volumetric segmentation. Recently, masked autoencoders have

also gained popularity in image reconstruction, due to their

improved capabilities in learning useful information with less

domain knowledge and improving generalisability [18].

In this work, we propose to incorporate volume-centric

information into the slice-centric segmentation of 3D medical

images through the use of masked autoencoders. Specifically,

we introduce SegMAE-Net, a hybrid 2D and 3D approach

that learns the volume-centric information between adjacent

slices and aggregates the knowledge to inform and improve

the segmentation of a particular slice. We hypothesise that

the entire volume input is often not needed in capturing the

global volumetric context, especially for large input volumes.

Instead, we prove that a certain number of adjacent slices in

the forward and backward directions would be sufficient in

achieving the same purpose. In summary, the contributions of

this paper are:

1) We propose a novel architecture that utilises both

masked autoencoders and convolutions to perform volu-

metric segmentation. The use of masked autoencoders to

guide the segmentation of 3D medical images further es-

tablishes its effectiveness in different downstream tasks.

2) Our proposed SegMAE-Net achieves a notable improve-

ment in the segmentation accuracy on the RETOUCH

dataset as compared to other state-of-the-art models.

II. METHOD

A. Overview
As discussed earlier, both slice-centric and volume-centric

information are important to obtain a precise and consistent

segmentation result. To this end, we propose a hybrid network

that aims to integrate both slice-centric and volume-centric

information to produce the segmentation output. The network

consists of two branches: a slice-centric branch that utilises

an encoder-decoder architecture with repeated convolution and

up-sampling to learn the local features of each slice, and a

volume-centric branch that utilises masked autoencoders to re-

construct a masked volume made up of several adjacent slices

to learn the contextual information of the adjacent slices. These

two branches are connected by a feature aggregation branch to

consolidate the information learnt in the volume-centric branch

into the slice-centric branch to produce the segmented slice

output. Each segmented slice is then stacked together depth-

wise to form the volumetric segmentation output. The overall

architecture is shown on Fig. 1.
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B. Volume-Centric Branch

Our volume-centric branch is built upon masked autoen-

coders (MAE) to provide useful information about the 3D

contextual information of adjacent slices to the slice-centric

branch. Specifically, given a particular slice Si of the volu-

metric data, the volume-centric branch will take in a volume

inclusive of its n adjacent slices in both the forward and

backward directions ({Si−n, . . . , Si, . . . , Si+n}) to perform

the reconstruction, where n is the number of adjacent slices

that is used. For slices with insufficient neighbouring slices,

we replace the missing slices with the mean pixel value of

the available slices. Only the visible patches are mapped to a

latent space through the MAE encoder, and the pixel values

of the masked patches would then be predicted with the MAE

decoder. The key elements of MAE are described below:

1) Input: The input volume x ∈ R
H×W×C is first reshaped

to a sequence of N = HW/P 2 non-overlapping patches xp ∈
R
N×(P 2C), where N is the number of patches, (H,W ) is the

resolution of each image slice, C is the total number of slices

used in the input volume (i.e., C = 2n + 1) and (P, P ) is

the patch size. The patches are then linearly embedded, and

positional embedding of these patches is added to capture the

positional information.

2) Masking: A subset of the patches is masked and re-

moved, while the remainder is fed into the MAE encoder. The

random sampling technique is used as our masking strategy,

with a sufficiently high masking ratio to ensure that the task

would not be solved simply by extrapolation of unmasked

neighbouring patches.

3) MAE Encoder: The MAE encoder is a vanilla ViT archi-

tecture applied only on unmasked patches. This significantly

reduces the computational time and memory. After being fed

into the MAE encoder, the unmasked patches are then mapped

into the latent space.

4) MAE Decoder: The MAE decoder takes in the encoded

features of unmasked patches in the latent space and the mask

token as inputs, where the mask token is a learnable and

shared vector. A series of transformer blocks are adopted as

the decoder.

5) Reconstruction: Finally, the MAE predicts the pixel

values for each masked patch to reconstruct the input volume.

The mean squared error between the original and recon-

structed image is then computed as the loss function, though

this is only applied to the masked patches. Specifically, let

yinput ∈ R
CHW×1 represent the input pixel values and

ypred ∈ R
CHW×1 represent the predicted pixel values. The

reconstruction loss can then be written as

Lreconstruction =
1

Ω(yinputM )

∑

i∈M
(ypredi − yinputi )2 (1)

where M represents the set of masked pixels, i represents the

pixel index and Ω(·) represents the cardinality of the set.

C. Slice-Centric Branch

Our slice-centric branch follows the U-Net architecture [8].

This branch only takes in one image slice Si to evaluate the

Fig. 2. Overall architecture of the feature aggregation branch. The convolu-
tional layers from the volume-centric branch to the slice-centric branch are
not drawn to scale.

segmentation output. The encoder path consists of multiple

blocks of two 3×3 convolutional layers and one 2×2 max-

pooling layer to learn the spatial features of the volume slice

and reduce the resolution map by half respectively. Batch

normalisation is also implemented to speed up and stabilise the

training process [19]. In the decoder path, each up-sampling

block consists of a 2×2 transposed convolutional layer and two

3×3 convolutional layers. To prevent the loss of information

from layer to layer, skip connections are also implemented

between the contracting and expansive path. The output from

each feature aggregation block is also summed with the output

of each up-sampling block using element-wise addition to

integrate the local features of each slice with its contextual

knowledge. The final layer comprises of a 1×1 convolutional

layer and a softmax activation layer. We used the dice loss

and cross-entropy loss as the segmentation loss between each

2D segmented output and the ground truth slice, specifically

Lsegmentation = Ldice + LCE (2)

Hence, the final loss function used is the sum of the

reconstruction loss and the segmentation loss:

L = Lreconstruction + Lsegmentation (3)
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Fig. 3. Comparison of qualitative results between SegMAE-Net and other segmentation methods, where the red, green and blue regions represent the IRF,
SRF and PED fluids respectively.

D. Feature Aggregation Branch

To fuse the spatial information of each slice and the con-

textual information learned from its adjacent slices, a feature

aggregation branch connects the decoders of the volume-

centric branch and the slice-centric branch. We extract the

decoded feature representation zi ∈ R
HW
P2 ×D, i ∈ {3, 6, 9, 12}

and reshape it into a H
P × W

P ×D tensor, where D represents

the dimension of the embedded space. This is followed by

a series of 2×2 transposed convolutional layer and two 3×3

double convolutional layers, as shown in Fig. 2.

III. EXPERIMENTS AND RESULTS

A. Dataset

We evaluate our proposed method on the Retinal OCT Fluid

Challenge (RETOUCH) dataset [20]. This dataset consists of

70 optical coherence tomography (OCT) volumes, acquired

with spectral domain SD-OCT devices from three different

vendors, Cirrus, Spectralis and Topcon respectively. Each

Cirrus and Topcon OCT consist of 128 B-scans, while each

Spectralis OCT consist of 49 B-scans. Given the difference

in sizes of B-scans across the three vendors, every B-scan is

standardised to a size of 256×512 pixels after cropping out

a region of interest based on the pixel intensity distribution.

Three different retinal fluids were labelled, namely the intra-

retinal fluid (IRF), sub-retinal fluid (SRF) and pigment epithe-

lial detachment (PED). The actual test set for the RETOUCH

dataset was unused in this study, given the lack of a ground

truth segmentation to validate the results. Five-fold cross-

validation was conducted with the training data provided,

with 80% of OCT volumes acquired from each vendor as the

training set and the remaining 20% to form our test set. We

ensure an even representation of each vendor in our training

and test sets during the cross-validation process.

B. Implementation Details

Our experiments were implemented on PyTorch, on a

NVIDIA GeForce RTX 3090 GPU with 24GB of RAM. We

initialise the weights of the network with He initialisation [21]

and train the model for 20 epochs with an Adam optimiser

[22]. We use a constant learning rate of 0.001 for the first

ten epochs, followed by a learning rate of 0.0001 for the

next ten epochs. We empirically use n = 5 as the number

of adjacent slices to be stacked to form the volume input, and

a batch size of 16. The convolutional filters used for the slice-

centric branch are [16, 32, 64, 128, 256], increasing in the

encoder path and decreasing in the decoder path. The filters

used in the feature aggregation branch are [128, 64, 32, 16].

For the volume-centric path, a masking ratio of 75% is used.

We use the Dice coefficient and Intersection over Union (IoU)

to evaluate the segmentation accuracy in our experiments. As

each volume is predicted slice-by-slice, the segmented 2D

slices are then stacked together to form the 3D prediction for

further evaluation. The two metrics used are defined as such

Dice =
2TP

2TP + FP + FN
(4)
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TABLE I
COMPARISON OF QUANTITATIVE RESULTS BETWEEN SEGMAE-NET AND OTHER SEGMENTATION METHODS (MEAN ± STANDARD DEVIATION) BY SLICE

LEVEL. IRF, SFR AND PED REPRESENT INTRA-RETINAL FLUID, SUB-RETINAL FLUID AND PIGMENT EPITHELIAL DETACHMENT RESPECTIVELY. BEST

RESULTS ARE MARKED IN BOLD.

Method
Dice (%) IoU (%)

IRF SRF PED Average IRF SRF PED Average
U-Net [8] 52.6 ± 6.6 47.0 ± 9.3 56.6 ± 12.8 52.1 ± 4.5 41.8 ± 5.5 38.2 ± 7.7 48.9 ± 10.8 43.0 ± 3.8
SA-Net [11] 52.8 ± 6.7 44.0 ± 11.1 59.1 ± 9.5 52.0 ± 4.3 42.2 ± 5.6 35.4 ± 9.8 51.2 ± 7.4 42.9 ± 3.6
SegMAE-Net (Ours) 55.5 ± 5.9 46.9 ± 10.2 63.3 ± 7.3 55.2 ± 4.1 44.5 ± 5.0 38.3 ± 8.6 55.1 ± 5.7 46.0 ± 3.5

TABLE II
COMPARISON OF QUANTITATIVE RESULTS BETWEEN SEGMAE-NET AND OTHER SEGMENTATION METHODS (MEAN ± STANDARD DEVIATION) BY

VOLUME LEVEL. IRF, SFR AND PED REPRESENT INTRA-RETINAL FLUID, SUB-RETINAL FLUID AND PIGMENT EPITHELIAL DETACHMENT RESPECTIVELY.
BEST RESULTS ARE MARKED IN BOLD.

Method
Dice (%) IoU (%)

IRF SRF PED Average IRF SRF PED Average
U-Net [8] 57.2 ± 7.4 40.3 ± 6.7 45.6 ± 13.4 47.7 ± 5.5 45.0 ± 5.4 32.6 ± 5.3 38.9 ± 12.1 38.8 ± 4.5
SA-Net [11] 56.4 ± 7.7 37.2 ± 8.6 49.9 ± 14.4 47.8 ± 4.7 45.1 ± 6.5 29.4 ± 6.8 42.3 ± 12.1 38.9 ± 4.0
SegMAE-Net (Ours) 57.4 ± 5.5 42.4 ± 9.0 54.1 ± 9.9 51.3 ± 4.6 45.9 ± 4.7 34.2 ± 6.9 46.1 ± 8.0 42.1 ± 3.6

IoU =
TP

TP + FP + FN
(5)

where TP , FP and FN represent the number of true positive,

false positive and false negative counts respectively.

C. Quantitative Evaluation and Comparison

To test the effectiveness of our proposed method, we

compared it with previous state-of-the-art models for medical

image segmentation, namely U-Net [8] and SA-Net [11].

For a fair comparison, we use the same parameters for the

convolutional parts of each proposed method and evaluate the

segmentation results based on each fluid present and the over-

all average performance across all fluid classes. The results

of our evaluation in terms of slice level and volume level

are reported in Tables I and II respectively. We observe that

SegMAE-Net outperforms the other two methods in both slice

and volume levels across all classes, with the only exception

of sub-retinal fluid in the slice level, where SegMAE-Net

is the second-best performing model. Importantly, SegMAE-

Net performs significantly better than other proposed methods

TABLE III
EFFECT OF MASKING RATIO ON SEGMENTATION PERFORMANCE (MEAN ±

STANDARD DEVIATION). BEST RESULTS ARE MARKED IN BOLD.

Masking Ratio
Slice Level Volume Level

Dice (%) IoU (%) Dice (%) IoU (%)
0.25 51.2 ± 6.8 42.7 ± 5.7 50.4 ± 7.0 41.6 ± 5.8
0.50 54.6 ± 3.0 45.3 ± 2.5 51.2 ± 7.2 42.1 ± 6.1
0.75 55.2 ± 4.1 46.0 ± 3.5 51.3 ± 4.6 42.1 ± 3.6

TABLE IV
EFFECT OF UPSAMPLING METHOD ON SEGMENTATION PERFORMANCE

(MEAN ± STANDARD DEVIATION). BEST RESULTS ARE MARKED IN BOLD.

Upsampling Method
Slice Level Volume Level

Dice (%) IoU (%) Dice (%) IoU (%)
Bilinear Interpolation 54.4 ± 4.6 45.1 ± 3.7 50.6 ± 7.0 41.5 ± 5.7
Transposed Convolution 55.2 ± 4.1 46.0 ± 3.5 51.3 ± 4.6 42.1 ± 3.6

in the volume level, with a margin difference of more than

3% of the second-best performing model. Fig. 3 shows some

qualitative results of the comparative studies between our

proposed method and other methods.

To further emphasise the superiority of our proposed

method, we show the improved consistency of segmentation

across multiple test volumes in Fig. 4. We plot the Dice

coefficients of all segmented slices from representative cases

Fig. 4. Representative test volumes demonstrating the improved consistency
by our proposed SegMAE-Net as compared to other segmentation methods.
The graph plots the Dice coefficients against the position of each slice in the
depth direction. (a), (b) and (c) represent IRF, SRF and PED respectively.

1273



of IRF, SRF, and PED. These slices are arranged by their

depth within the test volume. Notably, our SegMAE-Net is

able to achieve a higher and more consistent performance in

the depth direction. In contrast, the other two methods exhibit

generally lower performance and more sudden fluctuations in

the segmentation accuracy across the depth of the test volume.

This highlights the potential of our method to be clinically

valuable in situations where a 3D segmented structure is

required to be extracted from a particular volume with high

precision and consistency.

D. Ablation Study

From the comparison with previous existing methods, we

prove that our volume-centric branch using MAE is a valuable

component in capturing the volumetric context of the medical

image to guide the segmentation. We also conduct experiments

to study the effect of varying the masking ratio. As shown in

Table III, a higher masking ratio results in better performance

due to the ability of the MAE to acquire meaningful represen-

tations and learn the contextual information from the adjacent

slices. We also compare the upsampling used to recover the

segmentation output and prove that transposed convolutions

are more effective in our model. The results are shown on

Table IV.

IV. CONCLUSION

In this paper, we introduce SegMAE-Net, a hybrid 2D

and 3D model for medical image segmentation. By using

both masked autoencoders and convolutional neural networks,

SegMAE-Net can extract global and local features respec-

tively to improve volumetric segmentation. Experiments on

the RETOUCH dataset have shown that our proposed method

have outperformed previous state-of-the-art methods. We hope

that our work can improve the speed of diagnosis by medical

professionals through identifying, segmenting and analysing

structures of interest in medical images effectively and ef-

ficiently. Particularly, we believe that our work can benefit

doctors in various applications such as surgical planning,

tumour monitoring and therapy optimisation.
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