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Abstract—Semantic textual similarity analysis finds its prac-
tical usage in many real-world natural language processing
applications, including clinical and biomedical settings. Many
occurrence frequency based techniques have been proposed in
the past, from n-grams to term frequency-inverse document
frequency. Semantic relation based methodologies, such as the
WordNet and Wu and Palmer measure, have flourished too.
Recently, vector embedding based approaches that leverage
large language models lifted analysis performance significantly.
However, many existing semantic textual similarity analyses in
the clinical and biomedical domains only exploited the early
generation of large language models, whereas the latter field is
advancing rapidly. This paper aims to fill the gap by investigating
the potential of the latest foundational language models. This
paper proposed MLTE, a feature fusion approach that leverages
multi-layer Transformer embeddings for semantic similarity
analysis. The effectiveness of the proposed method was evaluated
with public clinical datasets in English, Chinese, and Japanese.
Experimental outcomes showed that the proposed method is
competitive and outperformed related works over two out of
four datasets.

Index Terms—Large Language Models, Semantic Textual
Similarity, Bi-encoders, Multi-layer Transformer Embeddings,
Multilingual clinical text

I. INTRODUCTION

Semantic Textual Similarity (STS) analysis predicts the

relationship between pairs of short texts. It is considered

the most essential technique for various applications such as

information retrieval, text categorization, question-answering

systems, intelligent search engine, and so on [1]. In the field

of clinical Natural Language Processing (NLP), STS has also

been actively studied in academia [2] as well as healthcare

organizations [3].

Research in STS analysis has progressed significantly,

thanks to the recent technology breakthrough in Large Lan-

guage Models (LLM). Techniques from deep learning to

the Bidirectional Encoder Representation from Transformers

(BERT) [5] and GPT-2 are systematically reviewed in [4].

State-of-the-art (SOTA) task-specific LLM and comprehensive

benchmarks have been contributed to accelerate research in the

biomedical domain as well [6].

However, the current artificial intelligence (AI) arms race

among global research powerhouses is pushing foundational

LLMs advancing at lightning speed. For example, many new

architectures emerged after BERT, the backbone in most

clinical NLP literature as of today [4], [6], was proposed.

It elicits questions like whether there is still a need for
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specialized clinical LLM. Agrawal et al. argued that general-

purpose LLMs such as GPT-3 have great promise for diverse

clinical extraction tasks [7]. On the other hand, Lehman

et al. concluded that with significantly fewer computational

resources than GPT-3, relatively small size but specialized

clinical LLMs, such as Text-to-Text Transfer Transformer (T5)

[8], can achieve comparable or better performance for clinical

language understanding tasks [9].

Similarly, the machine translation field has benefited

tremendously from the LLM arms race [10]. We raise the

question of whether there is still a need to develop specialized

LLMs [11], [12] catered for each non-English clinical text.

We investigate further the potential of LLM beyond BERT

generation for multilingual clinical text similarity analysis. The

main contributions of this paper are:

• Inspired by the ELMo [13] approach, this paper proposes

a new method that exploits LLM’s multi-layer Trans-

former embeddings as semantic-rich feature backbone

and pairwise distances and kernel metrics for feature

compression. Experimental results showed that the pro-

posed method performed on par with fine-tuned LLMs

over two out of four datasets in evaluation. Further

enhancement was realized when fine-tuned LLMs served

as the feature backbone.

• This paper experimentally shows that the recent ad-

vance in machine translation makes it feasible to take

a language-unified approach to the STS task for the

multilingual clinical text. Despite a bit of performance

sacrifice in one of the non-English datasets in evaluation,

practical MLOps benefits from the simplicity of such an

approach.

• Furthermore, this paper shows that the semantic repre-

sentation power of embeddings from BERT models fine-

tuned with biomedical or clinical corpora don’t naturally

exhibit a performance advantage over embedding pro-

duced by more recent T5 Transformer trained for the

general domain.

With a focus on advancing large-scale clinical NLP applica-

tions in the real world as future work, the proposed method

takes a bi-encoder approach. Although the cross-encoder way

often tops the STS task performance in the literature. Details

are discussed in the next section. It is followed by the proposed

method and experimental evaluation sections.
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II. RELATED WORK

In [1], [4], the authors systematically reviewed STS analysis

methods utilizing convolutional neural networks, recurrent

neural networks, and prior non-neural techniques. Among

them, the Embeddings from Language Models (ELMo)

method exploited the hidden states of intermediate layers in

bidirectional LSTM as part of features and created pre-LLM

era SOTA for the biomedical language understanding domain

[14]. The ELMo method inspired our feature design, which

will be explained in section III.

In the LLM era, fine-tuning pre-trained LLMs and zero or

few shots learning with Generative Pre-trained Transformers

(GPTs) are the popular approaches that have been actively

studied. However, with 100 more times model parameters,

the latter approach has yet to show a decisive performance

advantage [7]. From a real-world MLOps deployment perspec-

tive, this translates to much higher inference costs. Therefore,

we adopted the fine-tuning LLMs approach. The rest of this

section discusses related works in this direction, including

those used for performance comparison in area IV.

Devlin et al. proposed BERT and demonstrated that a pre-

trained BERT model can be fine-tuned to achieve excellent

performance over a wide range of language understanding

tasks [15]. The authors argued that BERT’s bidirectional

attention mechanism is more optimal than GPT’s left-to-right

unidirectional attention mechanism for sentence-level tasks.

Since then, BERT has been adopted as the backbone in many

works of the clinical NLP literature. Lee et al. proposed

BioBERT [16] where the BERT model trained with general

domain corpora (English Wikipedia and BooksCorpus) was

fine-tuned on biomedical domain corpora (PubMed abstracts

and PMC full-text articles). Alsentser et al. proposed Clinical-

BioBERT [17] where the authors used around 2 million

clinical notes from the MIMIC-III 1 database to fine-tune the

BioBERT further.

To improve BERT for biomedical and clinical NLP tasks,

Gu et al. challenged the prevailing assumption that pre-train

with more text from other domains benefits the task at hand

always [6]. The authors argued that one disadvantage of such

continual fine-tuning is that the vocabulary from the general

domain is not representative of the target biomedical domain,

and subsequently showed that the PubMedBERT model trained

from scratch with PubMed vocabulary only outperformed fine-

tuning original BERT with its general domain vocabulary,

overall on the BLURB benchmark 2. Whereas, Yasunaga et

al. continued along the fine-tuning path but exploited the rich

dependencies between pairs of documents, such as references

and hyperlinks. The author proposed LinkBERT [18] where a

new objective, document relation prediction, was introduced to

jointly train the model with BERT’s original masked language

modeling objective. BioLinkBERT remains at the top of the

BLURB benchmark.

In the BERT architecture, a sentence pair is concatenated

by a special token [SEP ] into a single input for the model

to produce a joint embedding representation. This paradigm

is called cross-encoder. It allows the attention mechanism to

capture the finer relationship between a sentence pair, which is

not feasible when inputs are independent sentences. The latter

is called a bi-encoder. Although cross-encoders often outper-

form bi-encoders in prediction accuracy, they are computa-

tionally intensive. They can be excessively slower at inference

time, especially for text classification and information retrieval

applications over large-scale prior knowledge. Therefore, bi-

encoders are more suitable for real-world applications when

scaling and speed matter.

Along the bi-encoder direction, Reimers et al. proposed

Sentence-BERT (SBERT) [19], which utilizes siamese net-

work structures to generate embeddings that can be subse-

quently compared for semantic relationships using cosine-

similarity. SBERT reduced the computing time for finding the

most similar pair among 10,000 sentences from 65 hours with

cross-encoding BERT to about 5 seconds on a modern GPU.

The author reported that the prediction power of SBERT is

competitive to BERT over the STS benchmark3 in the general

domain. In [20], Guo et al. proposed Sen-SCI-CORD19-BERT

for STS analysis of COVID-19. It is an SBERT-based model

fine-tuned with the CORD19STS dataset, including 13,710

sentence pairs curated from the COVID-19 open research

dataset challenge.

In [21], Gao et al. introduced a simple contrastive learning

approach, SimCSE, that uses ”entailment” pairs as positives

and ”contradiction” pairs as negatives in a supervised setting

and dropout noise as contrastive objective. Using the STS

benchmark, the authors showed that SimCSE further advanced

the SOTA of SBERT for STS tasks in the general domain.

While English NLP tasks in general and medical specialized

domains have been actively studied using BERT and its

variants. Whether these models and techniques generalize well

in other languages, one common approach in the literature

is extending English corpora trained models to a target lan-

guage through knowledge distillation. In [11], Reimers et

al. proposed a teacher-student framework where the teacher

and student models are trained in parallel. The teacher is a

pre-trained SBERT in charge of generating embeddings for

text translated from a target language into English. At the

same time, the student is fed with the original text and their

English translation. This allows the student model to learn

from embeddings produced by the teacher, hence knowledge

distillation. Tan et al. further improved this framework in the

general domain by incorporating contrastive learning [12].

Another common approach is utilizing BERT architecture

but training models from non-English corpora. In [23], Cui

et al. introduced MacBERT, trained from clinical corpora in

the Chinese language. In [24], Chen et al. presented JCSE,

a Japanese BERT model where contrastive learning was also

exploited to overcome insufficient data in Japanese by gen-

1MIMIC-III Clinical Database at https://physionet.org/content/mimiciii/
2Biomedical Language Understanding and Reasoning Benchmark at

https://microsoft.github.io/BLURB/
3Semantic textual similarity benchmark at

https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
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erating synthetic sentences. The effectiveness of JCSE and

data augmentation was evaluated over a Japanese Clinical STS

dataset. Unlike [11] [12], both MacBERT and JCSE adopted

a cross-encoding architecture.

This paper explores the potential of a more recently pro-

posed, less studied LLM model, T5, in a bi-encoding way for

clinical STS tasks.

III. PROPOSED METHOD

The ELMo [13] method proposed by Peters et al. stacks

hidden states from multiple intermediate layers of forward and

backward paths of a bidirectional LSTM with word embed-

dings as features to train downstream language understanding

tasks. The authors argued that the higher-level LSTM hidden

states capture the context-dependent aspects of word meaning,

while lower-level states capture the syntax aspects. Inspired by

the feature design approach of ELMo, this paper looks into

a fusion of multi-layer embeddings from LLM intermediate

encoder blocks, specifically Transformer-based encoders, for

more semantic representation power.

A. MLTE Feature Fusion

Given a text with multiple words, LLM first tokenizes

and encodes the input text into a sequence of embedding

vectors X0 = {x1, ..., xn, p}, as illustrated in Fig. 1, where

p refers to a positional encoding vector captures the order

of words in the input text. X0 is then served to the first

encoder block; its output is then forwarded to the next encoder

block, and so on. Each encoder block consists of a multi-

head attention layer, followed by Add&normalize and fully

connected linear layers. It ends with another Add&normalize

layer. This structure constitutes the self-attention mechanism,

the bedrock of modern LLM architectures.

Large LLM has more encoder blocks than its basic version,

and the dimension of embedding xn is also higher. For

example, there are 12 encoder blocks in the Sentence-T5

model [22], and the dimension of its embedding is 768. Its

large version consists of 24 encoder blocks with the embedding

extent extended to 1024. However, in each LLM, the input

and output dimensions of all encoder blocks are identical. Our

MLTE feature proposal extracts embeddings from all encoder

blocks. Then it fuses them into input feature as described by

(1), where Xi refers to a mean pooling of encoder block l’s
output, which is a sequence in n+ 1 length.

F =
[
X1, X2, ... Xi, ... XL

]
(1)

Dimension of the MLTE feature F equals (D,L), where

D is the dimension of embedding vector x and L represents

the number of encoder blocks to utilize. The dimension of the

fused feature is very high. Given MLTE features of a pair of

clinical texts A and B, the prediction model in Fig. 1 first

utilizes pairwise metrics to compress the input feature pairs

into (L, 5) dimension as defined in (2). The combination of

the five chosen metrics complements each other. The cosine

similarity compares the orientation of a pair of vectors while

Euclidean and Manhattan distances compare their magnitudes.

The polynomial and sigmoid kernels are helpful to measure

the affinity of the vector pair in their interacted space. Finally,

the model learns a regressor or classifier from the compressed

feature z, optionally concatenated with other features available

from data, e.g., the category of a sentence pair.

z =

⎡
⎢⎢⎢⎢⎣

fcosine−similarity(F
i
A, F

i
B)

fmanhattan−distance(F
i
A, F

i
B)

feuclidean−distance(F
i
A, F

i
B)

fpolynomial−kernel(F
i
A, F

i
B)

fsigmoid−kernel(F
i
A, F

i
B)

⎤
⎥⎥⎥⎥⎦

T

, i ∈ [1, 2, ...L] (2)

B. Language Unified Approach

As reviewed in the related work section, the teacher-student

framework has been widely adopted in the literature. The

training process of this framework involves two BERT or

similar models. The teacher is pre-trained with domain knowl-

edge in English. Together with the English translation of the

original corpora, the teacher helps the student model to learn

from corpora in the target language. Adopting this framework

in practical MLOps means an independent model must be

deployed for each language. We argue this is not an optimal

operation practice if a single English model deployment could

achieve on-par performance.

LLM for machine translation has made tremendous progress

lately, which has given rise to commercial AI translation

services being available at a meager cost. For example, Ta-

ble I shows examples of Chinese and Japanese to English

Fig. 1: Schematic Diagram of the Proposal Method with Encoder-only Transformer as Feature Backbone
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translations done by Google translate API 4. Riding on this

success, we propose a language-unified approach, where a

single English-only domain specialized LLM goes for MLOps.

In this unified approach, non-English corpora are translated

into English, and subsequent LLM fine-tuning and inference

are completed in English only. Thereby, a single model for

multilingualism is achieved straightforwardly. Its effectiveness

will be analyzed in subsection IV-D.

TABLE I: Examples of Clinical Text Translation

Original clinical text English translation
糖尿病和尿毒症有什么
区别?

What is the difference between diabetes
and uremia?

レントゲン所 :全 的
に30-50%の水平的な
骨吸をめた

X-ray findings: 30-50% horizontal bone
resorption was observed in the whole jaw

C. Learning Objective

The prediction model in Fig. 1 will be trained with MLE

loss. For the STS task, Pearson linear correlation and Spear-

man rank correlation metrics are widely used to evaluate

correlations between predictions and truth in a linear and

monotonic fashion. Therefore, we introduce a non-monotonic

error into the model training objective.

Specifically, let a batch of N training sentence pairs be

sorted in ascending order by their actual similarity values; a

penalization is introduced if the predicted value of pair i is

larger than its adjacent pair j, where i < j and yi ≤ yj , as

shown in (3). The hyperparameter β determines the strength of

penalizing non-monotonic error. The optimal hyperparameter

β value is dataset dependent and will be explained in the

experimental section.

ŷi = L
θ

2
( L

θ

1(zi) ++ ci
)

(3a)

min
θ

1

N

N∑
i

(
ŷi − yi

)2
+ β

N−1∑
i

max
(
0, ŷi − ŷj

)
(3b)

IV. EXPERIMENTAL RESULTS

This section first describes the experiment setup and then

presents a performance comparison of off-the-shelf LLMs

trained for the general domain or fine-tuned for biomedical or

clinical domains. Finally, evaluation results of the proposed

method are presented and compared with related works.

A. Setup

1) Data sets: Four datasets from clinical and biomedical

domains were used for the experiments. As shown in Table

II, BIOSSES [26] includes 100 English sentence pairs in the

biomedical domain, where the semantic similarity between

pairs is labeled from the least (0) to the most (4) similar. EBM-

SASS [27] was constructed for quickly finding relevant prior

knowledge in evidence-based medicine practice. It includes

4https://cloud.google.com/translate?hl=en
5https://pubmed.ncbi.nlm.nih.gov
6Stanford Natural Language Inference (SNLI) Corpus

1000 pairs of English sentences from biomedical publications.

The Japanese clinical STS dataset, JACSTS [29], consists of

2670 Japanese sentence pairs extracted from clinical reports

and electronic medical records. CHIP-STS includes 30,000

Chinese sentence pairs from the Chinese Biomedical Language

Understanding Evaluation (CBLUE) benchmark [30], where

the corpus was extracted from clinical trials, electronic health-

care records, medical books, and search logs from real-world

search engines.

TABLE II: Datasets in Experiment

Name Language Number of samples Label
Train Dev Test

BIOSSES [26] English 64 16 20 [0., 4.]

EBMSASS [27] English 600 200 200 [1., 5.]

JACSTS [29] Japanese 2202 734 734 0,1,2,3,4,5

CHIP-STS [30] Chinese 16000 4000 10000 0, 1

In all experiments, default train, dev, and test sets were

followed except for JACSTS, where a random splitting was

applied. For Chinese and Japanese sentences, Google Translate

API was used.

2) Evaluation Metrics: The sentence pairs in CHIP-STS

are labeled as either similar (1) or different (0). We followed

the literature, treated it as a classification task, and measured

predictions with accuracy and macro F1 score. Following

the literature, Pearson linear correlation and Spearman rank

correlation were used to measure performance over all the

other datasets.

B. Off-the-Shelf Pre-trained LLMs

As discussed in section II, most prior works for various

clinical and biomedical NLP tasks fine-tuned the general

domain BERT model. We are interested in whether these

domain-specific models have any performance advantage over

T5 Transformer, a more recent LLM architecture, for the

clinical STS task. Three BERT and two T5 models were

selected for this experiment. Domain and model size are listed

in Table IIIa. The performance of selected off-the-shelf LLMs

in the STS task was evaluated using test sets of BIOSSES,

EBMSASS, and JACSTS, and the dev set of CHIP-STS, as its

test set doesn’t include ground truth.

The experiment results in Table IIIb show the general do-

main T5 performed much better than all four domain-specific

LLMs for the STS task. For example, the BioLinkBERT-

large [18] performed the worst over CHIP-STS, JACSTS, and

EBMSASS, although it has 60% model parameters than the

general T5. One possible reason could be these off-the-shelf

BERT models were fine-tuned in a cross-encoder manner with

a linear neural layer for a specific task.

The literature attributed better performances obtained by

cross-encoder LLM models to it allowing the attention mecha-

nism to capture the finer relationship between a sentence pair,

which is not feasible when inputs are independent sentences

[17], [18]. When they are used as bi-encoders here, the

result infers that the semantic representation power of their

embeddings is weak compared to the general domain T5 model
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TABLE III: Off-the-Shelf LLMs

Model Name Year Model Size Domain Corpus

Bio-ClinicalBERT [17] 2019 415M
Biomedical +

Clinical
PubMed5 +
MIMIC-III

PubMedBERT [6] 2021 441M Biomedical PubMed

BioLinkBERT-large [18] 2022 1024M Biomedical PubMed

Clinical-T5-large [25] 2023 770M Clinical MIMIC-III

Sentence-T5-large [22] 2022 638M General
web forums

+ SNLI6

(a) Model Information

Model Name BIOSSES EBMSASS JACSTS CHIP-STS
Pearson Pearson Pearson Macro-F1

Clinical-BioBERT 0.6064 0.4774 0.7168 0.6596

PubMedBERT 0.7785 0.3713 0.6204 0.6060

BioLinkBERT-large 0.7883 0.3658 0.5176 0.3695

Clinical-T5-large 0.3702 0.5648 0.7185 0.4704

Sentence-T5-large 0.8522 0.7631 0.7871 0.7241

(b) Model Performance

not trained in a cross-encoder way. This is reinforced by the

similarly poor result from Clinical-T5-large [25], which also

took a cross-encoder approach. The reason behind a much

weaker semantic representation power of cross-encoders could

be that a cross-encoder model training for a specific task has a

linear neural layer placed after the encoder. We postulate that

the linear neural layer here attributed much semantic repre-

sentation power. Therefore, although their embeddings alone

are weak, cross-encoders perform better when the downstream

task is fixed.

C. Outcome of Proposed Method
Given the above analysis, Sentence-T5-large [22] was cho-

sen for evaluating the proposed method. All MLTE prediction

models were trained for 30 epochs with Adam optimizer,

learning rate 0.02, weight decay 0.001, and batch size 24.

Using the respective dev set, a simple grid search between

[0, 3] with a step of 0.5 was conducted to find an optimal

hyperparameter β value for each MLTE prediction model.

For CHIP-STS, the normalized category information was

concatenated with the compressed MLTE feature.

In this experiment set, the pre-trained Sentence-T5-large

model was further fine-tuned in a bi-encoder way with a

respective train set to enhance the semantic representation

power of the embeddings. For BIOSSES, EBMSASS, and

JACSTS, the fine-tuning objective was maximizing the cosine

similarity of embedding sentence pairs. As CHIP-STS is a

binary classification task, the contrastive loss [21] was used

as the tuning objective. The optimizer was AdmW, learning

rate 1e-5, weight decay 1e-4. A dropout rate of 0.1 was

introduced to sentence embeddings pooled by a mean function.

All fine-tuning processes took ten epochs in a bath size of

8, and the learning rate was scheduled with a 10% linear

warmup as in the literature. Model checkpoint from the best

epoch according to the corresponding dev set was used for

performance evaluation.

The results are listed in Table IV, where ”ft” denotes

fine-tuning. In rows without ”MLTE”, the performance was

computed with cosine similarities of sentence embedding pairs

as in Table IIIb. The proposed method introduced performance

improvement to all occasions under evaluation, except for

using the multi-layer embeddings from the pre-trained LLM

for BIOSSES. However, the performance lift to the other 3

data sets is significant; for example, in Pearson term, as high

as 0.09 better for EBMSASS, close to the result produced

by corresponding fine-tuned LLM. BIOSSES and CHIP-STS

benefited more from fine-tuned LLMs. But we can see further

performance improvement across all data sets when applying

MLTE to fine-tuned LLMs, as shown by Sentence-T5-large-

ft-MLTE in Table IV.

D. Performance Comparison
This section compares the performance of the proposed

method with related works that all took a fine-tuned approach.

So Sentence-T5-large-ft-MLTE is used for comparison. See in

Table V. For English corpora, we can see that our method

performed better than PubMedBERT [6] and NCBI-BERT [14]

on BIOSSES, although both are cross-encoders, which are

denoted by c in the table. Although BioLinkBERT [18] has

60% more model parameters, its performance is only 0.011

higher than our method in Pearson term. For EBMSASS, our

method outperformed BERT-base [28]. And it is far better

than non-LLM based G+O+C method [27], where similarity

measure was anchored on a group of linguistic components

(Generic, Ontology, Concept2vec).

For non-English corpora, our language-unified approach

gave a better result on JACSTS than JCSE-large [24], in

Spearman term. Although the latter fine-tuned the BERT

model with the original Japanese corpus. For CHIP-STS test

set, our method resulted in a slightly lower F1 score. Besides

the cross-encoder advantage in BERT-base, MacBERT-large,

and BERT-wwm-ext-base [23], another possible contributing

factor could be these models were trained with original

Chinese corpora that are different from the general English

corpora sentence-T5-large trained with. In addition, a Chinese

word segmentation process was introduced in the tokenization

process of MacBERT-large and BERT-wwm-ext-base to ensure

whole Chinese word masking.

TABLE IV: Experiment Results of Proposed Method

Method BIOSSES EBMSASS JACSTS CHIP-STS
Pearson Spearman Pearson Spearman Pearson Spearman Macro-F1 Accuracy

Sentence-T5-large 0.8522 0.8434 0.7631 0.6620 0.7871 0.7957 0.7241 0.7305

Sentence-T5-large-MLTE 0.8371 0.8442 0.8534 0.6688 0.8306 0.8379 0.7557 0.7565

Sentence-T5-large-ft 0.9147 0.9213 0.8669 0.7250 0.8588 0.8563 0.8495 0.8495

Sentence-T5-large-ft-MLTE 0.9248 0.9335 0.8879 0.7261 0.8652 0.8611 0.8527 0.8528
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TABLE V: Performance Comparison

NCBI-BERT
(base) (P+M)

PubMedBERT BioLinkBERT Sentence-T5-
large-ft-MLTE

0.916c 0.923c 0.936c 0.925

(a) BIOSSES (Pearson)

G+O+C BERT-base Sentence-T5-
large-ft-MLTE

0.804 0.867c 0.888

(b) EBMSASS (Pearson)

JCSE-large
Sentence-T5-
large-ft-MLTE

0.824c 0.861

(c) JACSTS (Spearman)

BERT-base
BERT-wwm-
ext-base

MacBERT-
large

Sentence-T5-
large-ft-MLTE

0.830c 0.839c 0.856c 0.819 7

(d) CHIP-STS (test set) (Macro-F1)

V. CONCLUSION

Pre-trained and fine-tuned BERT and similar LLMs have

been widely used in STS tasks for English clinical text and

other languages. This paper proposed a feature fusion method

that first extracts multi-layer Transformer embeddings from

the more recent T5 model and then compresses the high

dimensional features for learning a clinical text similarity

predictor. In addition, a simple unified approach was adopted

for non-English corpora. Experimental results over clinical text

corpora in three languages showed the proposed method is

effective. It outperformed some related work in comparison.
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