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Abstract

Sensor data collected from climate stations has been
used in various scientific applications and environmental
monitoring. Maintaining the data quality is essential to
guarantee the reliability and accuracy of science outputs,
potentially impacting many critical decision making pro-
cesses. Existing sensor anomaly detection techniques are
mostly designed for general purposes, and may not be
suitable for climate sensors which require complex han-
dling of seasonality, spatial relationship and sensor inter-
dependency. Current quality control process is deficient
in climate sensor drift detection, which is a slow degra-
dation of sensor accuracy over time. Recent development
of anomaly detection in climate sensor domain is limited,
it’s often constrained to particular sensor types, and not fo-
cused on drift detection. In this paper, we present a new
drift-aware time series anomaly detection framework which
leverages the spatial-temporal correlation of the climate
sensor network and significantly improves climate sensor
drift detection capability. Moreover, the proposed semi-
supervised learning approach helps to generalise the solu-
tion for various types of sensors and anomalies. Our exper-
iments using real-world dataset have demonstrated promis-
ing and competitive performance in regards to sensitivity,
false alarm control, and computational efficiency suitable
for real-time or near-real-time applications.

1. Introduction

To support the science programmes and commercial

applications, a large number of observational stations

across New Zealand were established and maintained since

1850 [22, 24]. These stations rely on a wide range of de-

ployed sensors to collect climate observations including

wind speed, temperature, precipitation, atmospheric pres-

sure, sunshine duration etc. Hourly and daily sensor data

are archived at CliDB, New Zealand’s National Climate

Database 1.

There are two major challenges in managing the sensing

system. The first challenge is to automatically and effec-

tively identify anomalies in the sensor data among normal

seasonal variations. In particular, real-world data collection

is prone to anomalies due to reasons like ambient environ-

ment change, data transmission issue, sensor malfunction,

wrong calibration and mis-operation. Additionally, sensor

drift [1], a subtle anomaly characterized by a gradual drop

in sensor accuracy, also happens from time to time due to

various reasons, e.g., hardware quality issues and sensor

degradation, making it difficult to differentiate from actual

weather/climate extremes. The other challenge comes from

the scale and heterogeneity of the data. Currently, there are

over 600 active stations across New Zealand and each sta-

tion is equipped with multiple different sensors.

In general, anomalous data are identified during Qual-

ity Control (QC) using techniques like range and percentile

checks (see Fig. 1(a)), validating against physical con-

straints and historical statistics. However, these anoma-

lies are often required to be examined manually by ex-

perts, which can be time-consuming. Meanwhile, current

QC and statistical methods [19] often fail to detect sensor

drifts. For instance, the earth temperature data in blue as

depicted in Fig. 1(b) has deviated from expected behav-

ior lately, but still resides within statistical percentile lim-

its generated from past seasonal data. Note that data with

undetected drifts can be used in weather forecasting tools

for months and even years, affecting public understanding

and decision-making in critical services like fire stations,

city councils, and other governmental agencies. The data

will also be used to generate historical statistics used in QC,

making drift detection even more difficult.

In this paper, our goal is to address the challenge of

anomalous drift detection of various kinds of climate sen-

sors. Our major contributions are: (1) proposed a gen-

1CliDB is an online climate data platform provided by National Insti-

tute of Water and Atmospheric Research (NIWA), New Zealand. For more

information, visit https://cliflo.niwa.co.nz/. It includes climate observation

data and statistical summaries from approximately 6500 climate stations.

1287

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 Crown
DOI 10.1109/CAI59869.2024.00228



(a) Percentile QC check (b) Temperature sensor drift

Figure 1: Sample QC Check and Sensor Drift.

eralised multivariate sensor anomaly detection framework

for climate stations via semi-supervised learning approach,

with predicted data potentially usable for data imputation;

(2) developed a sensor drift detection methodology using

predicted sensor data taking into account of uncertainties

and achieved minimal false alarms.

2. Related Works

Anomaly detection has been investigated in a variety

of application domains [2, 5, 10, 12, 21, 30]. For exam-

ple, Robust Random Cut Forecast (RRCF) [10] introduced

by Amazon performs anomaly detection of seasonal be-

haviors on taxi cab data; SR-CNN [21] from Microsoft

transforms time series data into spectral residual for traf-

fic data anomaly detection; DAGMM [30] from NEC lab

adopts deep clustering based auto-encoder for anomaly de-

tection on cybersecurity and disease datasets; LOF-based

(Local Outlier Factor) algorithms which detects outliers

while adapting to the distribution of the data streams such

as TADILOF [12] and iLDCBOF [5]; SOM [2] for cluster-

ing high-dimensional time series data into similar groups in

low-dimensional grid and identifying outliers as anomalies.

However, these methods are not focused on climate do-

main where a main challenge for anomaly detection is to

detect sensor drift which is subtle and almost always cou-

pled with both climate and seasonal changes.

Recently, the development of anomaly detection in cli-

mate domain has attracted much interest. For example,

an SVR model was developed for various climate sen-

sor data [14]; MAP imputation method together with its

own version of anomaly detection algorithms was imple-

mented on weather data [28]; Convolutional Neural Net-

works (CNNs) was used to spot anomalies on a weekly QC

plot charts [23]; Singular Spectrum Analysis (SSA) was ap-

plied on air radiation data with k-means based method for

outlier detection [16]; Dynamic graph embedding method

wad developed for daily climate data and combined with

local outlier factor for outlier detection [9]; DBSCAN clus-

tering was applied for multivariate weather anomaly de-

tection [27]; Nayak et al. modelled univariate time-series

autoregressively and applied one-class support vector ma-

chines for air temperature anomaly detection [17].

Nevertheless, none of these papers considered drift de-

tection. There are recent works on drift-aware anomalies

detection [7, 8]. Fenza et al. used LSTM [7] to model

sensor behavior in smart grid and monitored the statisti-

cal properties over time to detect sensor drift. However,

the model did not consider uncertainty in prediction which

will lead to a lot of false alarms. The model result is good

for anomaly detection, but it’s not sufficiently fitted enough

for data imputation. Gao et al. [8] proposed to use self-

attention model to learn the time series pattern and detect

the anomalies by reconstruction error, the uncertainties are

implicitly modelled by Gaussian Mixture model. However,

the performance is only slightly better than LSTM Encoder-

Decoder, and noise handling is not the focus of the paper.

Very limited studies [20, 26] have been conducted on drift

detection in climate sensor domain, and they only consid-

ered one particular sensor and it is difficult to generalize in

spatial-temporal perspective. Moreover, many of existing

works did not consider spatial correlation of climate stations

which can be exploited to improve the detection accuracy.

To address these issues, we propose a drift-aware

anomaly detection framework for climate sensor data, mak-

ing use of spatial and temporal correlation of climate sta-

tions and independent sensors. Moreover, a dynamic thresh-

old mechanism is proposed combining both statistical and

probabilistic limits to reduce the false alarm rate, maintain-

ing the sensitivity and improve the model robustness.

From system model level, we firstly model the time se-

ries data for climate sensor given available inputs with finite

time horizon, we then generate the prediction error with re-

spect to observation for each modelled sensor, and finally

we perform drift detection by setting up control chart with

dynamic thresholds.

3. Problem formulation
Given a univariate time series Y = {yt}t∈T , each ele-

ment yt is a real-valued observation at time t. yt is classified

as an outlier if

{(yt − ŷt > τtu) | (yt − ŷt < τtl)} (1)

where ŷt is the predicted value at time t, τtu and τtl are

thresholds that can be time-variant.

Generally, ŷt is predicted using a model f(·). The input

of f can be a univariate or multivariate time series. Note

that climate observation data obtained by different sensors

or the data obtained by the same type of sensor but at differ-

ent locations can be correlated (evidence in Sec. 4.2). We

consider ŷt is derived from multiple co-evolving time series

and the past observations of its own:

ŷt = f(Xm,t,Yl) (2)

where Xm,t = {xm,t}m∈M,t∈T is a multivariate time

series, and Yl = {yl}l∈T is an univariate time
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Figure 2: Proposed Anomaly Detection Framework.

series of past observations. Each series xm,t =
(xm,t−L+1, xm,t−L+2, ..., xm,t) ∈ R

L is a vector with a

fixed-sized chunk length looking back L time steps at time

t. yl = (yt−L+1, yt−L+2, ..., yt−1) ∈ R
L−1 is a vector

with a length L − 1 at time t.

4. Sensor-Drift-Aware Anomaly Detection
Framework

In this paper, we proposed a Sensor-Drift-Aware

Anomaly Detection Framework targeting at data collected

from climate stations as shown in Fig. 2. In particular,

the framework consists of two main components: 1) Data
Wrangling and 2) Anomaly Detection. Data Wrangling

module cleans up the data, and passes it on to Anomaly De-

tection component for semi-supervised learning with model

f training and dynamic thresholds derivation. Then Eq. (1)

is used to determine if an observation yt is anomaly.

4.1. Data Wrangling

Outlier filtering: Obvious outliers are removed using

physical limits (e.g., the maximum temperature of a day

cannot exceed 100◦C). Additional outliers are removed us-

ing DBSCAN clustering [6] due to its superb capability

in identifying outliers from climate data. Meanwhile, any

anomalous features with more than 2% anomalies are also

removed at this stage to ensure minimal corruption to the

model training process.

Data transformation: For wind direction sensor data,

data transformation is performed where data is converted

from degree to radian to ensure data continuity:

cos(θt ∗ 2 ∗ π/360) (3)

where θ is the wind direction observation in degree at time t.
This is important for stochastic gradient descent during op-

timization process, as 0 degree and 360 degrees in wind di-

rections are the same despite the value difference.

Data pre-processing: Time stamp re-indexing is per-

formed and missing sensor values are filled up using data

from previous time step. Time-based covariates are ex-

tracted as additional features such as month, day, and hour.

Uncorrelated sensors and sensor data derived from the same

sensor reading as the target sensor are dropped. MinMax

scaler is applied to the final training set to address sensor

heterogeneity issue. All sensors are inversely transformed

and scaled back to original units for anomaly detection and

metrics calculation.

Time series chunking: Time series chunking is per-

formed to break up the continuous time series into array

of fixed length to facilitate model training and inference.

4.2. Anomaly Detection

Prediction model: For the model f (in Eq. (2)), we make

use of deep neural forecasting algorithms to model the sen-

sor pattern at a certain location in a supervised manner,

which serves as a kind of time series golden signature for

each location and sensor. We can then use this established

signature to test against any future data for unseen anoma-

lies in an unsupervised manner as shown in Eq. (1).

To model the observation for one sensor yt, multivariate

time series consisting of local and global features are used

for the model f inputs. In particular, local features are ob-

servations from other sensors at the same climate station as

they are physically correlated to each other (as evidenced

by Fig. 3(a)). For example, grass minimum temperature is

correlated to air and earth temperatures, but inversely cor-

related to soil moisture etc. Meanwhile, global features are

the observation for the same type of sensor at nearby cli-

mate stations. Due to the presence of spatial resemblance

(as illustrated in Fig. 3(b)), they can be used as additional

predictors as proven in Sec. 5.2. The final predicted ŷt is

described below:

ŷt =

{
q0.5(ŷt), if stochastic

ŷt, otherwise
(4)

where q0.5(ŷt) is the 50% quantile probabilistic prediction

generated by a stochastic prediction model f .

Dynamic thresholds: We use both statistical and proba-

bilistic forecasting quantile thresholds to reduce the noise.

With the trained model, we are able to derive the model er-

ror and used it to compute statistical limits, i.e., upper and

lower thresholds using mean μ0 and standard deviation σ0
of the error. In particular, we use first 3 months of data to

establish 4 sigma control limits (i.e., k = 4), which repre-

sents most variation across 4 seasons in New Zealand. On

top of that, we also make use of the stochastic forecasting

results returned by the forecasting model, specifically 1%

and 99% quantile probabilistic predictions (i.e., q0.01(ŷt)
and q0.99(ŷt)) as an additional set of control limits.

The overall threshold mechanism is represented by τt,
the set of dynamic threshold at time t:

τt = (τtu, τtl), where (5)

τtu =

{
max((μ0 + kσ0), (q0.99(ŷt) − ŷt)), if stochastic

μ0 + kσ0, otherwise

τtl =

{
min((μ0 − kσ0), (q0.01(ŷt) − ŷt)), if stochastic

μ0 − kσ0, otherwise

We apply dynamic thresholds and implement drift-aware

anomaly detection by setting up the control chart with re-

spect to Eq. (1).
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(a) Local feature correlation (b) Global feature correlation

Figure 3: Correlation Heatmaps for Local and Global Fea-

tures Using Grass Minimum Temperature Observation from

Station 17603 as An Example.

5. Experiments and Results
5.1. Experiment setting

Dataset. We collected the raw data from 8 climate sta-

tions spreading across New Zealand: Motu (Station ID:

1905), Lauder (5535), Kaitaia (17067), Lincoln (17603),

Kainrl (18183), Arthur (25821), Ohakune (31621), and

Akitio (38057) from 2018/12/31 till 2022/10/27. We split

the raw data into training and testing datasets with a ratio

2:1. In particular, the first two years of raw data are used for

training while at least a full year is used for testing. In our

process, technicians historically removed entire periods of

data when sensors detected anomalies, guided by some spe-

cific start and end times. Hence we adopted a simple rule

for labeling raw data: if it’s absent in CliDB, it’s categorized

as “Anomaly”; otherwise, it’s presumed to be “Normal”.

Baseline Algorithms and Parameter Settings. 3 popu-

lar algorithms were selected for comparison:

• Robust Random Cut Forecast (RRCF) [10]: we se-

lected forest parameters of 100 trees and 256 tree size,

and used best performing 0.99 quantile for anomaly

detection using collusive dispalcement scores.

• SR-CNN [21]: we used hourly granularity, period of

24 and 95% sensitivity level.

• MTAD-GTN [29] : we set the window size to be 48.

We used the implementation from Bartos et al. [3] for RRCF

and Azure Cognitive Service [25] API for both SR-CNN

and MTAD-GTN implementations.

In terms of prediction models used in our frame-

work, several algorithms have been considered, including

NBEATS [18], NHiTS [4], and TFT [15] which all support

probabilistic forecasts and meet our needs. For NBEATS

and NHiTS, we used its default architecture, with 3 blocks,

3 stacks, 128 fully connected layer width, and setting the

learning rate to be 0.001. For TFT, we used hidden size of

16, 1 LSTM layer, 4 attention heads, setting full attention

to be False and learning rate to be 0.001. 20% dropout rate

Figure 4: Model Performance on 1hRad for LightGBM,

TFT, NBEATS and NHiTS.

and 30 epoches were both applied for training NBEATS,

NHiTS and TFT models. We also include a tree-based en-

semble algorithm LightGBM [13] due to its flexibility in

handling both past and future covariates although it’s de-

terministic. For LightGBM, we chose “dart” as the boost-

ing type, with 31 num leaves, 9 max depth, 30 estimators,

25% dropout rate, 0.2 for both alpha and lambda regulariza-

tion. The above four algorithms were implemented based

on DARTS [11]. For time series chunking, we set input

chunk size to be 32 and output chunk size to be 1.

Metrics. For performance evaluation, we used Root

Mean Square Error (RMSE) and R2 as main metrics, sup-

plemented with popular anomaly classification metrics in-

cluding accuracy, False Positive (FP) rate, recall, etc.

5.2. Experiment results

Prediction Model Selection. We compared the four

models mentioned above using the radiation data from

Kaitaia station, as radiation is a representative example con-

taining both seasonal and sporadic variations. If the model

performs well on radiation, it could apply very well to other

sensors. As shown in Fig. 4, TFT (RMSE: 0.200) and

LightGBM (RMSE: 0.210) clearly outperformed NBEATS

(RMSE: 0.510) and NHiTS (RMSE: 0.370) by more than

50%. The reason is that both LightGBM and TFT support

future covariate which boost the forecasting performance

for future time stamp on top of algorithm efficiency. For

the subsequent experiments, TFT is used due to its superior

performance and support for stochastic forecasting.

Impact of Input Chunk Size. We compared the model

performance with different input chunk sizes using the

hourly max temperature data from station 38057. As shown

in Fig. 5(a), we did not observe very strong effect as our

forecasting length is very short (i.e., output chunk size is 1)

despite of the RMSE fluctuation. In our experiments, we

conservatively used 1.3 times of a daily seasonality cycle of

24 hours, which is 32. We expect similar effects for other

sensors as temporal relationships tend to be stronger with

recent data for short horizon forecasting.

Impact of Neighboring Stations. Similarly, we inves-

tigated the impact of global features on the model perfor-

mance. Specifically, we compared the model RMSE given

different numbers of neighbouring stations as inputs. As

shown in Fig. 5(b), the performance improves with more

1290



(a) Input chunk size (b) Number of neighboring stations

Figure 5: Input Chunk Size Effect and the No. of Neighbor-

ing Stations Effect on Model Performance.

Station Metrics RRCF SR-CNN MTAD-GTN Ours

Akitio Accuracy 98.99% 87.37% 91.66% 99.66%
Precision 1.21% 7.61% 3.65% 14.61%
Recall 63.33% 65.91% 37.68% 52.38%
FP Rate 0.99% 12.61% 7.85% 0.26%
F1-Score 0.024 0.136 0.066 0.229

Kainrl Accuracy 96.21% 84.85% 66.70% 96.04%
Precision 10.02% 10.32% 35.89% 40.51%
Recall 13.78% 18.83% 7.77% 12.86%
FP Rate 0.90% 8.01% 4.35% 0.20%
F1-Score 0.116 0.133 0.128 0.195

Table 1: Baseline Algorithm Benchmarking.

spatial features from neighboring sites. We set the number

of neighbouring stations to be 18, which is expected to be

different for different sensors and stations, which can be au-

tomated and fine-tuned during actual implementation.

Comparison against Baselines. Table 1 shows the com-

parison between our framework and baseline algorithms us-

ing data from two stations with the most anomalies. It

shows that our method performs best with minimal false

alarm rate for both stations while remaining good sensitiv-

ity, although it’s not best overall in terms of recall rate due

to blanket setting of the dynamic threshold mechanism in

Sec. 4.2. In reality, both sigma control limits and stochas-

tic quantile thresholds can be fined tuned to achieve better

results across different sensors and stations.

The detailed testing results of all 8 stations using our

method are summarized in Table 2. Averaging over all sen-

sors, we achieved R2 = 0.869, FP rate = 0.19% and Re-

call = 20.79% with overall accuracy of 99.22%. The result

also shows that our framework generalised well across dif-

ferent sensors, except for wind direction, precipitation and

sunlight sensors indicated by “1hGWd”, ”1hWd”, “1hRain”

and “1hSun”. Wind direction is difficult to predict without

co-modelling with wind speed, our experiment used a sim-

ple cosine transformation which resulted in loss of infor-

mation; precipitation is a rare event, additional data balanc-

ing or resampling is needed to achieve a better rain event

model; while sunshine duration is related to cloud move-

ments, which are lacking in our dataset.

Drift Detection Performance. Fig. 6 shows the drift

detection mechanism with the top figure being the control

chart of prediction errors using statistical thresholds (solid

green) and quantile thresholds (dotted pink), and bottom

figure being the time trend overlay of predicted and actual

Sensor Unit RMSE R2 FP Rate Recall Precision Accuracy

1hGrMin ◦C 1.971 0.928 0.24% 36.67% 2.90% 99.31%
1hGust m/s 1.996 0.823 0.12% 0.00% 0.00% 99.85%
1hGWd Degree 92.573 0.566 0.14% 12.02% 7.73% 99.77%
1hMax ◦C 1.395 0.943 0.13% 3.96% 7.44% 99.46%
1hMin ◦C 1.606 0.936 0.06% 34.21% 24.60% 99.77%

1hRad W/m2 45.475 0.947 0.45% 12.00% 2.00% 99.53%
1hRain mm 0.424 0.665 0.19% 0.00% 0.00% 99.79%
1hSun minutes 11.497 0.739 0.69% 0.00% 0.00% 99.54%
1hTd ◦C 1.762 0.930 0.13% 6.63% 11.33% 99.73%
1hWd Degree 85.030 0.656 0.24% 0.00% 0.00% 99.81%
1hWs m/s 1.009 0.916 0.17% 0.00% 0.00% 99.81%

1minPress hPa 1.262 0.991 0.21% 2.36% 25.00% 99.70%
1minRh % 12.675 0.883 0.20% 22.87% 31.28% 92.70%
1minTw ◦C 0.946 0.984 0.22% 14.24% 94.71% 76.09%

ET10 ◦C 2.353 0.878 0.16% 16.67% 33.33% 99.84%
ET100 ◦C 0.580 0.948 0.00% 58.33% 100.00% 100.00%
ET20 ◦C 1.055 0.934 0.08% 75.00% 36.04% 99.92%
ET30 ◦C 1.002 0.996 0.00% 0.00% 99.99%
ET50 ◦C 2.603 0.852 0.00% 25.00% 50.00% 99.99%

Average NA NA 0.869 0.19% 20.79% 14.24% 99.22%

Table 2: Overall Testing Results by Sensors.

Figure 6: Sensor Drift Detection for 1minTw - Top: Drift

Control Chart; Bottom: Actual vs Predicted.

Figure 7: Sensor Drift Detection for 1hGrMin - Top: Drift

Control Chart; Bottom: Actual vs Predicted.

observations. The red-cross points represent the captured

anomalies which violate the dynamic thresholds. The yel-

low dots represent “miss”. In this case, the control chart

captured the drift of model error and it matched well with

the sensor drift at the bottom.

Another example is shown in Fig. 7 with the same leg-

end. The prediction error drift in mid August was captured

almost immediately when it happened and matched well

with sensor drift. The drift disappeared when the sensor

completed maintenance in early September.
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6. Conclusion and Future Works

In this paper, we developed an anomaly detection frame-

work for time series climate sensors. Experiments have

shown that our framework works well and able to detect

sensor drift with well-controlled false alarms. Our approach

has limitations in missing data handling of multivariate in-

puts and flexibility of hyper-parameter setting in the experi-

ment. Both can be improved during actual deployment. For

future directions, we will focus on prediction algorithm im-

provement and model robustness improvements which in-

clude missing input data imputation strategy and model drift

detection mechanism. Specialized modelling are required

to be developed for sensors like wind direction and precip-

itation. To further reduce the noises at periods where the

sensors pose high but normal variations, we can improve

the anomaly detection mechanism with better error thresh-

old control such as adopting seasonal limits, alarm rules etc.
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[11] Julien Herzen, Francesco Lässig, et al. Darts: User-friendly

modern machine learning for time series. The Journal of
Machine Learning Research, 23(1):5442–5447, 2022. 4

[12] Jen-Wei Huang et al. Tadilof: Time aware density-based

incremental local outlier detection in data streams. Sensors,

20(20):5829, 2020. 2

[13] Guolin Ke, Qi Meng, et al. Lightgbm: A highly efficient gra-

dient boosting decision tree. Advances in neural information
processing systems, 30, 2017. 4

[14] Min-Ki Lee, Seung-Hyun Moon, et al. Detecting anomalies

in meteorological data using support vector regression. Ad-
vances in Meteorology, 2018, 2018. 2

[15] Bryan Lim et al. Temporal fusion transformers for inter-

pretable multi-horizon time series forecasting. International
Journal of Forecasting, 37(4):1748–1764, 2021. 4

[16] Yuping Lu, Jitendra Kumar, , et al. Detecting outliers in

streaming time series data from arm distributed sensors. In

2018 IEEE International Conference on Data Mining Work-
shops (ICDMW), pages 779–786. IEEE, 2018. 2

[17] Debanjana Nayak and Harry Perros. Automated real-

time anomaly detection of temperature sensors through

machine-learning. International Journal of Sensor Net-
works, 34(3):137–152, 2020. 2

[18] Boris N Oreshkin et al. N-beats: Neural basis expansion

analysis for interpretable time series forecasting. arXiv
preprint arXiv:1905.10437, 2019. 4

[19] Animesh Patcha et al. An overview of anomaly detec-

tion techniques: Existing solutions and latest technological

trends. Computer networks, 51(12):3448–3470, 2007. 1

[20] Mauricio Pereira et al. Detection and quantification of tem-

perature sensor drift using probabilistic neural networks. Ex-
pert Systems with Applications, 213:118884, 2023. 2

[21] Hansheng Ren, Bixiong Xu, et al. Time-series anomaly de-

tection service at microsoft. In Proceedings of the 25th ACM
SIGKDD, pages 3009–3017, 2019. 2, 4

[22] Blake M Seers and Nick T Shears. New zealand’s climate

data in r—an introduction to clifro. The University of Auck-
land, New Zealand., 2015. 1

[23] R Srinivasan et al. Machine learning-based climate time se-

ries anomaly detection using convolutional neural networks.

Weather and Climate, 40(1):16–31, 2020. 2

[24] Andrew Tait et al. An assessment of the accuracy of inter-

polated daily rainfall for new zealand. Journal of Hydrology
(New Zealand), pages 25–44, 2012. 1

[25] Ankita Verma et al. A detailed study of azure platform &

its cognitive services. In 2019 COMITCon, pages 129–134.

IEEE, 2019. 4

[26] Georg von Arx et al. Detecting and correcting sensor drifts

in long-term weather data. Environmental monitoring and
assessment, 185:4483–4489, 2013. 2

[27] S Wibisono et al. Multivariate weather anomaly detection

using dbscan clustering algorithm. In Journal of Physics:
Conference Series, volume 1869, page 012077, 2021. 2

[28] Tadesse Zemicheal et al. Anomaly detection in the presence

of missing values for weather data quality control. In Pro-
ceedings of the 2nd ACM SIGCAS, pages 65–73, 2019. 2

[29] Hang Zhao, Yujing Wang, et al. Multivariate time-series

anomaly detection via graph attention network. In 2020
IEEE ICDM, pages 841–850. IEEE, 2020. 4

[30] Bo Zong et al. Deep autoencoding gaussian mixture model

for unsupervised anomaly detection. In ICLR, 2018. 2

1292


