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Abstract—Meta-learning aims to train models that can learn
from a variety of related tasks and use that learned knowledge
to solve new and unseen tasks more efficiently. However, it
often suffers from handling a sequence of tasks originated from
different distributions. To address this issue, the hierarchically
structured meta-learning (HSML) has been proposed in the
literature. The HSML utilizes a hierarchically structured cluster
to address task relationship and similarity, which is regarded
as transferable knowledge. Despite the success enjoyed by the
HSML, it is worth noting that task uncertainty is ignored by
HSML in inference on new tasks by point-estimate manner, which
could lead to overconfidence on inappropriate inference results.
Taking this cue, in this paper, we propose a stochastic HSML
(SHSML) algorithm, which extends HSML with uncertainty
awareness by representing each task-specific model as a stochastic
variable. By sampling multiple task-specific models and ensem-
bling their inference results instead of point-estimation of HSML,
the SHSML is able to mitigate the overconfidence problem in
HSML and gives a confidence range of inference. To evaluate the
performance of the proposed approach, comprehensive empirical
studies are conducted on common curve regression task against
state-of-the-art meta-learning algorithms. The obtained results
confirmed the efficacy of the proposed approach in handling
both task uncertainty and heterogeneity in meta-learning.

Index Terms—Meta learning, Knowledge transfer, Hierarchical
structure, Uncertainty

I. INTRODUCTION

Meta-learning aims to enable efficient and rapid adaptation

to new tasks with minimal training samples. One implemen-

tation is acquiring knowledge from multiple interrelated tasks

and applying it to novel tasks [1] or splitting tasks through

feature selection [2] and learning knowledge through select

features. The learning process on these related tasks reveals

common insights across diverse tasks originating from the

same distribution [3]. Recent achievements in meta-learning,

particularly in domains such as few-shot robotic control [4],

object recognition and detection [5], as well as classification

[6], have generated significant interest and enthusiasm within

the research community. With the great success of machine

learning in real-world applications [7], the importance of using

meta-learning to design efficient and robust machine learning

algorithms becomes increasingly prominent.

† L. Feng (Liangf@cqu.edu.cn) is the corresponding authors.
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Fig. 1. An illustration of task uncertainty. (a) Task set sampled from two
families with low uncertainty. (b) Task set sampled from two families with
high uncertainty. (c) Uncertainty caused by tiny dataset with only 3 examples
with noise. These 3 points are sampled from a quadratic curve shown as
dashed black line. But due to uncertainty introduced by limited number of
samples and sampling noise, these 3 points can be considered to fit other
kinds of curves in a heterogeneity scenario.

Despite the recent achievements across various domains,

meta-learning approaches still face two significant challenges:

the task heterogeneity challenge and the task uncertainty chal-

lenge. The task heterogeneity challenge stems from a critical

assumption made by most existing meta-learning algorithms,

which assumes that all tasks encountered during meta-training

and meta-testing originate from the same distribution [3],

[8], [9]. However, this assumption may not hold in many

complex real-world scenarios. Consequently, meta-learning

algorithms struggle when dealing with tasks derived from dif-

ferent distributions. These heterogeneity-sampled tasks are not

compatible with the globally shared knowledge meta learned

by meta-learning algorithms and may lead to a degradation

in performance. To address this issue, one notable algorithm

proposed in the literature is HSML (Hierarchically Structured

Meta-Learning) [10], which introduces a robust mechanism

to extract transferable domain knowledge from task datasets.

HSML extracts and transfers knowledge between tasks by

learning task similarity and relationships, which is proofed

to be efficiency in previous works [11]. HSML utilizes a

hierarchically structured cluster to address task similarity and

relationships, extracting transferable knowledge from related

task clusters. This transferable knowledge is then employed for
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knowledge customization, tailoring task-specific parameters

based on meta-parameters conditioned on transfer knowledge.

This mechanism maximizes the utilization of domain knowl-

edge in the task space, surpassing the performance of many

state-of-the-art meta-learning methods. However, a noteworthy

limitation of HSML lies in its inference process, which is

designed in a point-estimated manner, neglecting the uncer-

tainty introduced by small datasets. The tiny dataset might

not provide sufficient information for HSML to accurately

estimate task relationships and extract transferable knowledge

with high uncertainty using a point-estimated approach.
Another challenge encountered by meta-learning algorithms

is the task uncertainty challenge. This challenge arises from

the inherent uncertainty in tasks, primarily caused by the

limited dataset size associated with each task. As depicted

in Fig. 1, learning an appropriate model becomes challenging

when the dataset comprises a small number of noisy samples.

To address this issue, several approaches have been proposed

in the field of meta-learning [12], [13], [13]–[17]. These

approaches often extend the Model-Agnostic Meta-Learning

(MAML) framework to a probabilistic form, where the meta-

learned model initialization or task-specific model is treated

as a stochastic variable sampled from a learned probability

distribution. For instance, ST-MAML [17], considers task

representation as a stochastic variable drawn from a Gaussian

distribution with learnable parameters, known as stochastic

task representation. Multiple task-specific model parameters

can then be customized from meta-parameters conditioned

on samples of the stochastic task representation. ST-MAML

leverages this approach to latently model task-specific pa-

rameters as stochastic variables, effectively mitigating uncer-

tainty. The inference results of these task-specific models can

be ensemble-averaged to alleviate uncertainty and provide a

confidence range for predictions. Importantly, as HSML also

employs a parameter gate to customize meta-parameters, it

is straightforward to further extend HSML with stochastic

task representation, showcasing the potential for seamless

integration of uncertainty-mitigating techniques.
Keeping the above in mind, in this paper, we present an

extension to HSML called Stochastic Hierarchical Stochas-

tic Meta-learning (SHSML), which incorporates uncertainty

awareness. Our approach transforms point-estimated transfer-

able knowledge into a stochastic variable, allowing us to tailor

multiple task-specific model parameters from meta-parameters

using samples of this stochastic transferable knowledge. As

a result, the task-specific models generated can be synergis-

tically combined, leading to more robust and accurate infer-

ences, while also providing a confident range for the inference

results. To validate the effectiveness of our method, we con-

duct empirical experiments focusing on curve regression. Our

approach is comprehensively evaluated through comparisons

with related algorithms, including MAML [3], HSML [10],

MetaSGD [9], and Vampire [13] on multiple curve regression

tasks, according to [10].
In summary, our work makes the following contributions:

• We extend HSML with the capability to handle uncer-

tainty and propose SHSML, which effectively address

uncertainty arising from limited datasets and task het-

erogeneity.

• The proposed SHSML effectively tackles uncertainty

arising from limited datasets and task heterogeneity.

• Experimental results on multi-modal curve regression

task demonstrate that SHSML outperforms sseveral state-

of-the-art meta-learning methods in mitigating uncer-

tainty when dealing with small datasets with noise and

diverse tasks.

II. PRELIMINARY

A. Task Heterogeneity Challenge in Meta-Learning

Traditional meta-learning algorithms encounter challenges

when dealing with tasks derived from different distributions,

which is known as the heterogeneity task setup. n this setup,

tasks are represented asTi ∼ p(T ) ∈ E , where T denotes sam-

pled tasks and E = {p1(T ), p2(T ), · · · } represents the task

environment. To improve the performance of meta-learning in

the presence of heterogeneous tasks, various approaches have

been proposed in the literature.

For instance, MUMOMAML incorporates network tailoring

by generating task-specific models from meta-models through

task embedding. TSA-MAML [18] conducts a theoretical anal-

ysis of MAML and utilizes model parameters for each task to

measure task similarity learned by vanilla MAML. Moreover,

TAML [19] introduces an entropy-based method for unbiased

parameter initialization. HSML [10] employs a hierarchical

structure to extract task similarity and transferable knowledge,

which plays a crucial role in model customization. ARML

[20] integrates a knowledge graph as a manager of meta-

knowledge from diverse tasks, facilitating the retrieval of rel-

evant knowledge for model tailoring. The idea of transferring

meta-knowledge between heterogeneous tasks has also been

utilized to enhance the efficiency of multitask evolutionary

algorithms [21]–[23].

B. Task Uncertainty in Meta-Learning

As shown in Fig. 1, the inherent uncertainty in a meta-

learning scenario is exacerbated by the limited support set for

each task and the introduction of heterogeneity through task

sampling. In the literature, probabilistic methods have been

employed within meta-learning to tackle this challenge. For

example, LLAMA [16] enhances the robustness of learned

models by incorporating a Gaussian distribution to model

task-specific parameters. However, the computation of the

Hessian matrix introduced by the Laplace method proves to

be computationally expensive. In contrast, PLATIPUS [12]

focuses on learning a distribution for meta-parameters and uti-

lizes variational inference (VI) to alleviate the computational

burden. To streamline the task adaptation process and work

in conjunction with VI, BMAML [15] utilizes a closed-form

solution based on Stein Variational Gradient Descent (SVGD)

[24]. Additionally, MAHA [25] leverages a neural process to

generate well-clustered and interpretable task representations.
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Fig. 2. The framework of the proposed SHSML. In SHSML, the transferable knowledge hT is generated using the original HSML framework. It then
be utilized to generate stochastic task representation zT . Unlike HSML which involves a single forward path in the inner-loop, our SHSML generate two
transferable knowledge hsup

T and hT on both the support set and the complete dataset (including the support set and query set) during the training phase
(black arrows). These two transfer knowledge are used to approximate the prior and posterior distributions of the stochastic task representation, which are
used to compute the KL-divergence LKL. Additionally the task embedding loss Lemb is computed on the complete dataset. Due to the unavailability of
labels in meta-testing phase, SHSML only computes one transferable knowledge representation on the support set.

Similarly, Vampire [13] concentrates on learning a prior distri-

bution of meta-parameters, while efficiently deriving the pos-

terior distribution of task-specific parameters through gradient

descent.

Our proposed SHSML also draws inspiration from a similar

foundation. In our approach, we tailor the task-specific model

from the meta-parameter by a stochastic variable drawn from

Gaussian distribution. The following section will provide the

details of our proposed SHSML.

III. METHODOLOGY

In this section, we present the details of the proposed

SHSML algorithm. SHSML addresses uncertainty in a task

heterogeneous setup by introducing a stochastic task rep-

resentation to the HSML workflow. It models task-specific

parameters as a stochastic variable sampled from a learnable

distribution. To mitigate the uncertainty, the inference results

of multiple task-specific models are ensembled as the final

output. As shown in Fig. 2, the crucial aspect of SHSML is the

mechanism for stochastic task representation generation (STR)

and the utilization of STR in model tailoring. The subsequent

sections will delve into the specifics of the stochastic task

representation and outline the training methodology employed

by SHSML.

A. Stochastic Task Representation

Similar to traditional meta-learning algorithms, the hierar-

chically structured cluster in HSML may suffer from perfor-

mance degradation in the presence of uncertainty. This can

lead to the provision of inappropriate transferable knowledge,

which hinders effective model tailoring. To address this issue,

we introduce a stochastic variable named stochastic task

representation. Unlike a fixed value for transferable knowledge

in HSML, multiple samples of the stochastic task representa-

tion for a given task aid in mitigating overconfidence. The

acquisition of the stochastic task representation is formulated

in (1).

p(zT |T ) = N (μ, σ)

μ, σ = fψz
(hT )

(1)

where we model the distribution of stochastic task represen-

tation as a Gaussian distribution. A multi-layer perceptron

(MLP) fψz
parameterized by ψz determines μ and σ of the

Gaussian distribution, taking transferable knowledge hT as

input. Multiple samples of stochastic task representation zT
are drawn from p(zT |T ) and contribute to model tailoring,

generating multiple task-specific models.

B. Knowledge Adaptation

The task-specific parameter θT for task T is tailored from

the meta-parameter using the stochastic task representation zT .
Initially, a parameter gate is applied to the meta-parameter as

described by (2)

θT = Ggate
ωgate

(θ) = [θb;σ(WzT + b)� θc] (2)

The parameter gate Ggate
ωgate

is parametered by ωgate, which

including learnable parameter W and b. The parameter gate

performs a linear transformation on stochastic task represen-

tation zT , followed by a sigmoid function σ(·). The output of

sigmoid function σ(·)) serves as a weight vector that is used to

tailor custom parameter θc through element-wise production

�. The tailored θc is concatenated with base parameter θb
to form the complete tailored task-specific parameter θT .
Typically, the custom parameter represents the final fully-

connection layer of a Convolutional Neural Network (CNN) or

the last layer of a MLP, while the unchanged parts are referred

to as the base parameter θb. This approach employed by ST-

MAML [17] can effectively reduce the number of learnable pa-

rameters in the parameter gate. Additionally, a fully connected

layer transforms zT into augmented feature representations

denoted as rT . These feature representations will be concate-

nated with input of each data sample xT = {x1, x2, · · · , xn}
to introduce clustered stochasticity into model inputs, as shown

in (4)
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Algorithm 1 Stochastic Hierarchical Structured Meta Learn-

ing

Input: E : task environment; L, {K1, · · · ,KL}: number of

layers and clusters in each layer of hierarchically struc-

tured clustering; α, β: step sizes for outer loop and inner

loop; γ, η: scaling factors. m: number of samples of

stochastic task representation; C: number of update step

in inner loop

Output: Meta parameters Θ and loss on query dataset of

given test task Lqry
in

1: {Phase 1: Meta training}
2: Initialize Θ
3: while criterion is not satisfied do
4: Lmeta ← 0
5: Sample a batch of tasks T ∼ E
6: for all sampled T do
7: Sample Dsup

T , Dqry
T from T

8: hT ,Lemb ← HSML(T , L,K1, · · · ,KL)
9: μp, σp ← fψz (hT ), μq, σq ← fψz (hT )
10: LKL ← KL(N (μp, σp)|N (μq, σq))
11: Lqry

in ← InnerLoop(Dsup
T ,Dqry

T , hT , μq, σq,m,C, β)
12: Lmeta ← Lmeta + γ(Lemb − LELBO)
13: end for
14: Θ ← Θ− α∇ΘLmeta

15: end while
16: return Θ
17: {Phase 2: Meta testing}
18: Lqry

in ← 0
19: for i = 1 → M do
20: zT ∼ N (μ, σ)
21: θT ← [θb;σ(WzT + b)� θc]
22: Compute augmented input x̂sup and x̂qry using (4)

23: Update θT and rT through inner loop for C times.

24: end for
25: Lqry

in ← Lqry
in + Lin(x̂

qry, yqry; θT )
26: return Lqry

in

x̂T = [xT ; rT ] = {[x1; rT ], · · · [xn; rT ]} (3)

rT = φ1zT + φ0 (4)

where φ0 and φ1 are learnable parameters used to compute rT
through linear transformation on stochastic task representation

zT . The forward process of task-specific model for each data

sample in task T is depicted in (5).

ŷi = fθb(fθc(x̂
i
T )) (5)

Here ŷi denotes predicted label for the corresponding aug-

mented input x̂i
T , fθb and fθc denotes the part of model

corresponding to base parameter θb and the custom parameter

θc, respectively. It is worth noting that, multiple samples of

zT can generate multiple task-specific models for a single

task T , and the outputs of these task-specific models are

ensembled to mitigate uncertainty and provide an estimation

of the confidence range.

C. Meta-training and Meta-testing

The entire process of meta-training and meta-testing of

SHSML is outlined in Algorithm 1. The meta-training process

of SHSML, presented in phase 1 of Algorithm 1, follows the

HSML framework but introduces stochastic task representa-

tions in the inner-loop. Unlike HSML, the learnable parameters

associated with the current task T in the inner-loop include

tasks-specific model parameters θT and input augmentation

rT . In (7), these two learnable parameters are referred to as

task-specific parameters and undergo several gradient-descent

updates w.r.t empirical loss in (6) on the support set of the

current task.

Lin(T ) =
1

Nsup

Nsup∑

j=1

L(fθT (x̂sup
j ), ysupj ) (6)

where fθT represents the task-specific model parameterized

by θT . The notation x̂sup
j refers to the augmented input of the

j-th data sample xsup
j and ysupj is the label corresponding to

xsup
j . Additionally, Nsup is the size of support set.

rT ← rT − β
∂Lin(T )

∂rT

θT ← θT − β
∂Lin(T )

∂θT

(7)

where β is the inner update step.

It is worth highlighting that multiple different stochastic task

representations zT ∼ p(zT |T ) are sampled in each inner loop,

and the corresponding task-specific parameters are optimized

individually. Finally, the validation losses of the different

learnable parameter samples in the inner loop are accumulated

to form the meta loss.

Since SHSML introduces a probabilistic method into HSML

process, the original meta objective in HSML becomes in-

tractable. Instead, we choose to maximize the evidence lower

bound (a.k.a ELBO [26]) given by:

LELBO(T ) = E
zT ∼qT

Lqry
in (T )− ηLKL(T ) (8)

where qT = q(zT |T ) represents the Gaussian distribution

of stochastic task representation, and LKL(T ) denotes the

KL-divergence between the prior p(zT |Dsup
T ) and posterior

q(zT |T ) of zT . To balance performance learning and poste-

rior approximation in the KL-divergence term of ELBO, we

introduce a factor η.
It is noteworthy that computing KL-divergence requires

the prior and posterior of zT , which we approximate using

Gaussian distribution derived from task datasets. Therefore we

use both the support set and the query set to infer parameters

for the prior, denoted as N (μp, σp) and only the support set

to derive the posterior N (μq, σq). As a result, we compute the

task embedding and transferable knowledge twice on different
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TABLE I
REGRESSION MSE WITH 95% CONFIDENCE INTERVAL ON TOY REGRESSION TASK SET. (”+” AND − DENOTE BENCHMARK ALGORITHMS STATISTICALLY

SIGNIFICANTLY BETTER AND WORSE THAN WE PROPOSED SHSML, RESPECTIVELY)

Model MSE (±95% confidence interval)
5-shot 10-shot

σ = 0.3 σ = 1.0 σ = 0.3 σ = 1.0

MAML [3] 17.01 ± 3.16% − 18.26 ± 3.13% − 16.34 ± 4.12% − 17.58 ± 4.05% −
MetaSGD [9] 29.26 ± 8.24% − 32.76 ± 9.81% − 21.08 ± 12.97% − 18.52 ± 7.94% −
HSML [10] 1.60 ± 0.42% − 2.80 ± 0.51% − 0.56 ± 0.17% + 1.84 ± 0.29% +
Vampire [13] 19.98 ± 4.25% − 21.76 ± 4.12% − 32.90 ± 4.82% − 33.44 ± 4.28% −
SHSML(ours) 1.19 ± 0.56% 1.29 ± 0.69% 0.58 ± 0.41% 2.18 ± 0.56 %

datasets for computing different μ and σ in line 9 of Algorithm

1.

By employing the amortized variational technique, we can

sample task-specific parameter initializations by first sampling

zT from approximated posterior N (μq, σq). We then apply

a deterministic transformation using (2) and (4) to obtain

the task-specific parameters. The minimization objective of

SHSML combines various objectives including accumulated

query loss in the inner loop Lqry
in , the ELBO objective, and

the task embedding loss Lemb introduced by the HSML

framework. The complete objective is formulated as shown

in (9).

Lmeta = ET ∼E(γLemb − LELBO) (9)

where γ is scaling factor of task embedding loss, and Θ =
{θ, ψimg, ψenc, ψdec, ψH , ψz, ωgate, φ0, φ1}. Phase 1 of Algo-

rithm 1 outlines the complete process of meta training. In the

outer-loop, we minimize the meta loss in (9) by considering

a meta batch m tasks.

The meta-testing process is much similar to the inner-loop

of SHSML shown in phase 2 of Algorithm 1. Differently, only

the support set is accessible in meta-testing. So zT is sampled

from posterior q(zT |Dsup
T ) which only relies on support set.

IV. EXPERIMENTS

In this section, we compare SHSML with several baseline

meta-learning approaches to assess its efficiency. Our experi-

ment setting is based on HSML [10], which includes several

1-D curve regression task families. Under this setting, the task

heterogeneity is reflected in the variety of curve coefficients

and families. Additionally, we achieve various levels of task

uncertainty by manipulating the size of the support set in the

few-shot learning scenario and injecting the Gaussian noise

with different scales into data samples. The baseline methods

we used are: (1) MAML [3], (2) MetaSGD [9], (3) Vampire

[13] and (4) HSML [10]

A. Toy Regression

Dataset and Experimental Settings: In the toy regression

problem, we consider a task environment E consisting of four

different task families. In this paper, we adopt similar settings

as HSML [10], where the underlying families are (1) Sinusoid:
y(x) = A sin(ωx) + b+ ε, A ∼ U [0.1, 5.0], ω ∈ U [0, π]; (2)

(a) (d)(c)(b)

(f) (h)(e) (g)

Fig. 3. Visualization of inference under different uncertainty settings. Red
stars denote the training data, the black dot lines represent the ground truth,
and the solid blue line with a light red shadow represents the inference mean
and confidence range. In each sub-figure, the x-axis represents input xT of
each curve regression task and the y-axis denotes the curve value. (a-d): 5-
shot training set with noise σ = 0.3. (e-f): constant noise level σ = 0.3
with different training set. |Dtr

T | = 2 for (e) and |Dtr
T | = 5 for (f). (g-h):

10-shot training set with various noise levels σ. Noise level σ = 0.3 for (g)
and σ = 1.0 for (h)

Line: y(x) = Ax+b+ε, A ∼ U [−3.0, 3.0], b ∼ U [−3.0, 3.0];
(3)quadratic: y(x) = Ax2 + bx + c + ε, A ∼ U [−0.2, 0.2],
b ∼ U [−3.0, 3.0]; (4) cubic: y(x) = Ax3 + bx2 + cx+ d+ ε,
A ∼ U [−0.1, 0.1], b ∼ U [−0.2, 0.2], c ∼ U [−2.0, 2.0],
d ∼ U [−3.0, 3.0]. Here, U [·, ·] represents a uniform dis-

tribution, and ε represents a random noise signal sampled

from a Gaussian distribution N (0, σ). Each task is randomly

sampled from one of the four underlying functions, with input

x uniformly sampled from U [−5.0, 5.0] for both the meta-

training and meta-testing tasks.

All algorithms are applied on 5-shot and 10-shot settings

separately, and evaluated using the mean square error (MSE).

Our models adopt the same fully-connected architecture as

HSML [10], which comprises 2 hidden layers, each consisting

of 40 neurons. In the case of SHSML, the final layer respon-

sible for generating the output is considered as the custom

model θc. For hierarchically structured clustering, we adopt

the settings from HSML, which consists of three layers with

4, 2, and 1 clusters in each layer, respectively.

Results of Regression Performance Each algorithm was

trained on a diverse set of approximately 10000 tasks and

subsequently evaluated on over 1000 new tasks. To assess the

robustness of our method, we varied the number of available

training examples (k-shot) and introduced different levels of
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noise to the data. The fitting curves for different scenarios are

visualized in Fig. 3 and the evaluation results are summarized

in Table. I.

As shown in Table. I, both HSML and SHSML out-

performed the other baseline methods. Specifically, SHSML

achieves the best result in the 5-shot settings and is runner-up

in the 10-shot settings. In the 5-shot settings, the availability of

less data compared to the 10-shot scenarios leads to a higher

level of uncertainty. Our proposed SHSML achieves superior

performance compared to other benchmarks by addressing un-

certainty introduced by heterogeneity and limited datasets. In

the 10-shot settings, HSML demonstrates better performance

because the uncertainty caused by the few-shot dataset is

reduced, and the can partially mitigate the uncertainty arising

from heterogeneous problems.

Fig. 3 illustrates the predictions of SHSML on different

curves with varying uncertainty. It can be observed that as

tasks become more ambiguous due to limited training data

or increased noise, the sampled solutions tend to cover a

wider solution space and may exhibit similarities to other task

families, leading to potential mistakes. These findings high-

light the effectiveness of our proposed SHSML approach in

addressing the uncertainty challenge in heterogeneous task set-

tings. By leveraging hierarchical clustering and stochastic task

representation, SHSML is capable of capturing and leveraging

transferable knowledge across different task families, resulting

in enhanced robustness as compared to other methods.

V. CONCLUSION

The challenges posed by task heterogeneity and task un-

certainty are crucial in the field of meta-learning. Existing

methods have primarily focused on addressing one challenge

while overlooking the other. In this paper, we extend HSML

by incorporating a stochastic task representation, which ef-

fectively mitigates uncertainty by learning a distribution of

solutions for uncertain tasks. This approach provides a novel

perspective on simultaneously tackling both task heterogeneity

and task uncertainty. Through comprehensive empirical stud-

ies, we demonstrate the effectiveness of SHSML in learning

from a diverse set of tasks characterized by both heterogeneity

and uncertainty. In future work, we plan to enhance the

mechanisms for learning transferable knowledge, aiming to

achieve even more effective utilization of shared information

across different tasks.
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