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Abstract—We previously presented a novel loss formulation for
efficient learning of complex dynamics from governing physics,
typically described by partial differential equations (PDEs), using
physics-informed neural networks (PINNs). In these experiments,
the incorporation of a Boundary Connectivity (BCXN) loss
function was shown to greatly improve physics-informed learning
across many problems, especially those with complex geometries.
However, this imposition may not always be ideal, as the previ-
ously presented BCXN-loss strongly enforces a linear local struc-
ture at the boundary. While this assumption helps facilitate faster
learning with an order of magnitude sparser training samples,
this can adversely impact convergence in other situations. Hence,
we propose a modification of this BCXN-loss that reduces the
imposed structure to a soft constraint, allowing for more flexible
learning and convergence. We further demonstrate the potential
for this method to improve the convergence and performance of
LSA-PINN across additional numerical experiments, with much
smaller errors than existing methods in terms of the standard
L2-norm metric. In particular, we have applied this method to
the modelling of flow past complex geometries such as airfoils,
which serve as the basic building block for various applications
in fluid dynamics and renewable energy (e.g., in wind and tidal
turbine design).

Index Terms—physics-informed neural networks, local struc-
ture approximation, boundary connectivity, fluid dynamics

I. INTRODUCTION

The emerging topic of physics-informed neural networks

(PINNs) [1] has drawn much interest in diverse areas of

science and engineering due to its ability to ensure physically

consistent predictions through direct incorporation of mathe-

matically expressible laws of nature—usually in the form of

partial differential equations (PDEs)—into learned models. For

example, PINNs have been applied to fluid dynamics problems

and renewable energy technologies such as wind turbines, both

for predicting physical behaviour in either a single system or

a set of parameterized systems, and in inverse inference and

design optimization problems [2], [3].

Since many PDEs of practical interest are boundary-value

problems, accurate representation of the near-boundary be-

haviour is particularly critical for PINNs. In this regard, we

previously presented a Boundary Connectivity (BCXN) loss

function [4] for enforcing structural biases and reducing over-

fitting near the boundary during PINN training. This BCXN-

loss implicitly imposes a linear local structure approximation,

thereby making it easier for PINNs to learn approximate gra-

dients during training and accelerating convergence, especially

in problems with challenging physics.

However, this imposition (direct enforcement of a linear

local structure) may not always be ideal. While this simplified

assumption helps facilitate faster learning with an order of

magnitude sparser training samples for many fluid dynamics

systems [4], this can adversely impact convergence in other

situations. In this work, we propose a modification of this

hard constraint BCXN-loss that reduces the imposed structure

to a soft regularization, allowing for more flexible learning and

convergence. This new soft constraint BCXN-loss function is

key to a novel class of local structure approximation (LSA)-

PINN method—based on the numerical differentiation (ND)

or coupled-automatic-numerical (CAN) differentiation scheme

for approximating the PINN loss [5])—which can more effi-

ciently learn the solution to challenging PDE problems with

sparser training samples, regardless of domain geometry.

The remaining sections are organized as follows: Section II

reviews the LSA-PINN and elucidates the soft constraint
approach. In Section III, we demonstrate the effectiveness of

this soft constraint approach in improving the convergence

and performance of LSA-PINN across multiple numerical

experiments. We summarize the main findings and discuss

potential avenues for future research in Section IV.

II. METHODOLOGY

A. LSA-PINN: enforcing linear constraint at near-boundary

Let us consider a LSA-PINN model with single input

x and output u(x;w) controlled by the network weights,

w. The LSA-PINN model utilizes CAN/ND-evaluated loss

function to approximate the derivative terms in PDE constraint

imposed during training based on the output from neighbour-
ing samples, i.e., finite difference-type stencils (local support
points). This connects sparse training samples into piece-wise

continuous regions to facilitate fast training across the entire

problem domain. However, issues arise when dealing with

irregular geometries because sample locations cannot perfectly

connect the near-boundary training samples to the (irregular)

domain boundary. As a result, the boundary condition (BC)
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information may not successfully propagate to the inner do-

main. Moreover, the model output on external (out-of-domain)

locations uES(x;w) is under-defined and prone to overfitting,

i.e., minimizing the PDE and BC constraints incorrectly.

Fig. 1. Schematic of related definitions under the LSA-PINN framework.
BCXN-loss enforces a constraint utilizing 3 types of points: external stencil
point A, boundary point P, and mirror point Q along the normal direction
inside the fluid domain.

The BCXN-loss is formulated to enforce linear constraints

at the near-boundary region and restore connectivity between

the domain boundary and near-boundary samples. The idea is

to impose a linear constraint on the LSA-PINN output at the

under-defined external stencil uES(x;w) of a near-boundary

sample (point A in Fig. 1), based on the Dirichlet BC, uBC ,

defined at the boundary (point P) and the value, uMI , of a

chosen mirror location (point Q) inside the domain, during

the evaluation of PDE constraint at such near-boundary sample

using CAN/ND scheme. If point Q is chosen along the normal

direction of boundary point P (ref. to Fig. 1), i.e., AP = PQ
where AP and PQ are the distances between A and P and

between P and Q, the target value uES of point A can then

be derived as:

uES = 2uBC − uMI (1)

In practice, given a fixed set of training samples, all the

external stencil points and their mirror locations can be pre-

computed. While uMI depends on the LSA-PINN output and

needs to be evaluated every training iteration, uMI(x̃;w) can

be easily obtained by directly evaluating the LSA-PINN at the

corresponding mirror point location, x̃.

B. Hard constraint boundary connectivity (BCXN)-loss
The original LSA-PINN utilizes the following hard con-

straint (hc)-BCXN-loss:

LLSA-PINN = λpde Lpde + λBCXN Lpde(hc−BCXN) (2)

as PDE loss term on near-boundary samples whereby the PDE

constraint in Lpde(hc−BCXN) is directly modulated by the local

linear condition through employing Equation 1 to compute
uES for any external stencil point. Note that in Lpde, the PDE

constraint on the remaining training samples is evaluated by

the usual CAN/ND scheme. This implementation implicitly

infuses the BCs into the training loss, obviating the BC loss

term commonly required for PINN training. This approach

has an association with the direct forcing immersed boundary
methods in numerical computing.

C. Soft constraint boundary connectivity (BCXN)-loss

The hard constraint BCXN-loss strongly enforces the linear

condition during the evaluation of PDE constraint at near-

boundary samples. However, the linear condition described

by Equation 1 is not necessarily the best approximation to

the local gradients. The imposition of such an over-simplified

constraint can be effective in some scenarios but inappropriate

in other problems, hence slowing convergence or reducing

accuracy. To alleviate the issue, we soften the linear con-
straint—which may conflict with physical local gradients near-
boundary—by introducing a soft regularization, in an approach

referred to as soft constraint (sc)-BCXN-loss.

Let us denote uESi as the target field value at the i-th

external stencil point computed by Equation 1, and uESi
(x;w)

as LSA-PINN output at corresponding external stencil point.

We then define sc-BCXN-loss as:

Lsf−BCXN =
1

nES

nES∑
i=1

(uESi
− uESi

(x;w))
2

(3)

for all the ES points i = 1, ..., nES which are required for

evaluating the PDE constraint using the CAN/ND scheme. The

newly introduced Lsf−BCXN explicitly infuses BC information

into the PDE samples, hence propagating the correct BC

information during training. The LLSA-PINN is then defined as:

LLSA-PINN = λpde Lpde + λbc Lbc + λBCXN Lsc−BCXN (4)

with additional weight, λBCXN, controlling the relative impor-

tance of the loss term Lsc−BCXN in the training loss function.

When λBCXN → 0, the LLSA-PINN reverts to the usual

CAN/ND-evaluated loss.

III. RESULTS

A. Experimental setting

We study the performance of the LSA-PINN with the newly

proposed soft constraint BCXN-loss on the following fluid

dynamical systems with irregular geometry:

1) 2D wavy channel flow, Re = 100. The fluid flow through

a long wavy channel is studied. The inlet profile at left

boundary is defined as u(0, y) = − 3
2y

2 + 3
2 , v = 0. A

non-slip condition is applied to the top and bottom walls,

while outlet boundary conditions (∂u∂x = ∂v
∂x = p = 0)

are applied to the right boundary.

2) 2D flow past airfoil shape, Re = 500. To further

validate the applicability and efficacy of the LSA-PINN

method for real-world complex geometries, we study the

incompressible flow past an airfoil with a NACA0012

profile. The airfoil is placed in a modelling domain

x ∈ [−3, 5], y ∈ [−1, 2] with zero angle of attack. A

uniform inlet velocity, uinlet = 1, is specified at x = −3,

and a zero pressure outlet boundary condition is specified

at x = 5. Typical slip boundary conditions are specified

at the side walls.
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Fig. 2. Distribution of solution MSE (average of u and v-velocity components) obtained by a LSA-PINN for the wavy channel flow problem, Re = 100,
when using different λdiv and λBCXN values in its training loss function LLSA-PINN with a soft constraint BCXN-loss.

The governing physics for these fluid dynamical systems are

the 2D steady-state incompressible N-S equations:

du

dx
+

dv

dy
= 0 (5a)

u
du

dx
+ v

du

dy
=

1

Re

(
d2u

dx2
+

d2u

dy2

)
− dp

dx
(5b)

u
dv

dx
+ v

dv

dy
=

1

Re

(
d2v

dx2
+

d2v

dy2

)
− dp

dy
(5c)

To evaluate the performance of PINN models, ground truth

solutions are obtained by an in-house numerical solver based

on the IDFC method [6].

The LSA-PINN with the incorporation of sc-BCXN-loss

is compared with the baseline hc-BCXN-loss [4], CAN/ND-

PINN (without BCXN-loss) [5] and SF-PINN (AD-evaluated

loss) [7] models, based on mean squared error (MSE) and

relative L2 error of the respective PINN solution’s veloc-

ity (u, v) relative to ground truth. To facilitate comparison,

identical neural architectures and initialization distribution are

employed. All models were trained on a relatively sparse set of

equidistantly spaced sample points: 15,200 and 79,886 points

for 2D wavy channel flow and flow past airfoil problems, re-

spectively, for 300,000 and 500,000 iterations using the Adam

algorithm. For each experiment, we present the results from

10 independent runs with different initialization instances.

B. Effect of hyper-parameter tuning

The LSA-PINN training can be sensitive to hyper-

parameters, namely the relative weights λpde and λBCXN in

the loss function LLSA-PINN (Equation 2 and Equation 4).

Specifically, we can further decompose λpde into λdiv for

the divergence free condition (Equation 5a) and λmom for the

conservation of momentum equations (Equation 5b- 5c) in the

PDE loss. With the soft constraint BCXN-loss, λBCXN controls

the extent of linear constraint regularization being imposed on

the near-boundary samples by the Lsc−BCXN. We observe a

noticeable improvement in solution quality with appropriately

chosen λBCXN for the sc-BCXN-loss in both test cases.

Results from joint optimization of λdiv and λBCXN for the

wavy channel flow test case are presented in Fig. 2. The best

LSA-PINN solutions are achieved for λBCXN=0.5 and λdiv=5

(λmom=1). The results highlight that an overly stringent im-

position of a linear constraint by the LSA-PINN can adversely

affect convergence without an accompanying increase in the

emphasis (λdiv) on the divergence-free condition. For the flow

past airfoil test case, λBCXN=0.1 and λdiv=λmom=1 is found

to be appropriate.

We also noticed that reducing the λBCXN for the hard con-
straint BCXN-loss Lpde(hc−BCXN) can cause adverse outcomes

because the imposition of BCs solely relies on this term.

C. Summary of forward simulation results

TABLE I
MODEL PERFORMANCE ON FORWARD SIMULATION TASKS.

Test case Model MSE1 Rel. Error1

Wavy
channel
flow,
Re=100

LSA-PINN (hc-BCXN-CAN-loss) 1.34e−4 7.28e−2
LSA-PINN (sc-BCXN-CAN-loss) 9.00e−6 4.09e−2
CAN-PINN (CAN-loss) 5.96e−1 2.55e+0
SF-PINN (AD-loss) 3.52e−2 7.19e−1

Flow past
airfoil
shape,
Re=500

LSA-PINN (sc-BCXN-CAN-loss) 4.65e−5 8.10e−2
LSA-PINN (sc-BCXN-ND-loss) 5.03e−5 6.93e−2
CAN-PINN (CAN-loss) 3.32e−4 1.92e−1
ND-PINN (ND-loss) 3.54e−4 1.84e−1
SF-PINN (AD-loss) 1.18e−3 3.17e−1

1 We compute the error for u, v-velocity components and take the average.

The average MSE and relative L2 error across multiple

independent runs (nrun = 10) are summarized in TABLE I.

The results indicate that the LSA-PINN is effective in learning

a good solution with low MSE from the given set of sparse

training samples on the fluid dynamical systems with irregular

domain and complex physics. Both test cases show noticeable

improvement in solution accuracy (1-3 orders of magnitude

lower MSE) with the LSA-PINN method with sc-BCXN-loss,

as compared to the baseline CAN/ND-PINN and SF-PINN

methods. We also observe 1 order of magnitude lower MSE

when we compare the soft constraint with hard constraint
BCXN-loss in the wavy channel flow test case.

The visual comparison in Fig. 3 and Fig. 4 shows that

the baseline PINN methods (CAN-PINN and SF-PINN) fail

to produce a reasonable solution, i.e., they cannot learn the

correct flow with similar settings. On the other hand, the

solutions obtained from LSA-PINN (with either hc or sc-

BCXN-loss) have very good agreement with the ground truth.

IV. CONCLUSIONS

In this study, we presented a strategy to improve LSA-

PINN by introducing a sc-BCXN-loss term which provides
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LSA-PINN
(hc-BCXN-CAN-loss)

LSA-PINN
(sc-BCXN-CAN-loss)

CAN-PINN
(CAN-loss)

SF-PINN
(AD-loss)

Fig. 3. Comparison of u, v-velocity and pressure p contour between the ground truth and PINN solutions (median MSE from 10 runs), for the wavy channel
flow problem, Re = 100.

CAN-PINN
(CAN-loss)

ground truth
LSA-PINN

(sc-BCXN-CAN-loss)

SF-PINN
(AD-loss)

Fig. 4. Comparison of velocity magnitude |V | = √
(u2 + v2) contour between the ground truth and PINN solutions (median MSE from 10 runs), for the

2D flow past airfoil shape problem, Re = 500. The weight of BCXN-loss λBCXN is set to 0.1 for this problem.

soft regularization (in the form of a linear constraint) to

the near-boundary gradient behaviour during training. This

approach enhances the LSA-PINN’s ability to achieve more

flexible learning and convergence.

In particular, we have applied this soft constraint BCXN-

loss to improve the convergence and performance of the LSA-

PINN relative to existing methods, with much smaller errors

across multiple numerical experiments. These experiments

include the prediction of flow past complex geometries such

as airfoils, which are a key canonical test problem for future

extension to various real-world problems in fluid dynamics

with potential application to sustainability and renewable

energy (e.g., in wind and tidal turbine design).

Although linear approximations have been shown to be

useful in the existing LSA-PINN framework as a trade-off

between convergence and sampling density, we plan to explore

the potential for non-linear approximation schemes to yield

even better performance in future work.
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