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Abstract—In Online multiplayer skill-based card games, players
compete with each other intending to optimize their reward. They
have to make many decisions quickly as the game progresses and
new information is revealed. Representing and comprehending
such intricate information, and then making an optimum decision
in real-time, is an extremely challenging task that requires skill.
We introduce SPADENet, a generic and improved multi-input
deep neural network architecture designed to 1) comprehensively
capture and combine the players’ hand along with the ever-
evolving visible game state outside of their hand 2) seamlessly
incorporate the intricacies of different variants of any given
card game 3) determine the best decision for any skill-based
card games. Considering Online Rummy as an example, we
demonstrate how this architecture can be easily adapted for
determining the optimum drop (or play) decision across different
Online Rummy variants (such as Points, Pool, Deals, etc.) and
at different game stages. We observed improvement in Test
F1 score across all Rummy variants with the highest being
for Pool-6P from 0.767 (existing best-performing method) to
0.908 (18% increase). The odds of favorable game outcomes also
increased when players follow model recommendations. We also
show how comparable performance can be achieved by applying
transfer learning across different variants. We further conduct
a quantitative analysis of game state features outside of players’
hands to comprehend their significance in influencing the decision
to Drop or Play. With this architecture, player skill can be
measured and Low Skilled Players can be identified for any skill-
based card game. We can take appropriate measures to improve
their gameplay and provide a personalized upskilling path.

Index Terms—Multi-Input Deep Neural Networks, Convolutional
Neural Networks, Skill Assessment, Personalized Gameplay im-
provement, Card Game Analytics

I. INTRODUCTION

Online card games have gained enormous popularity due to

increased digital penetration. The total revenue generated by

them is expected to reach US$ 18.61 billion by 2027 with

a projected annual growth rate of 13.54% [1]. These games

allow players to compete against each other for a potential

reward. Most of these games are skill-based and require them

to make strategic decisions based on a multitude of factors.

Most card games such as Poker, Bridge, and Rummy are

examples of imperfect information games [2] as each player

has partial information about the game. They don’t fully know

the cards held by other players, however, they can develop

intuition about them as the game progresses. Since each player

learns about the changing “game state” simultaneously, their

playing strategy and decisions also evolve in real-time. Skilled

players, therefore, not only depend upon their past game

learnings, but they are also able to make decisions based on

how their opponents are playing. For developing a method to

correctly evaluate player decisions, it becomes essential to in-

clude these factors. Representing and holistically assimilating

such an evolving game state in a generic framework and then

coming up with the best action is not only difficult for players

but is also a challenging Machine Learning problem.

A. Main Contribution

With the above problems and observations in mind, we pro-

pose SPADENet. The key contributions of this research work

can be classified into two categories:

• Game Table Progression and Evolution: It allows to

comprehensively capture and combine the player’s hand

along with the ever-evolving game state representation

that exists outside of their hand. Only the features that

are visible to the player are considered as part of this

“game state” representation.

• Generic Game Model Architecture: A multi-input DNN

architecture that can be adapted to i) any skill-based card

games and ii) different variants of the game itself.

To evaluate the architecture, we take Online Rummy as a case

study and evaluate the first drop (or play) decision across its

different variants (Points, Pool, Deals, etc.) and player count

format (2-player, 6-player, etc). The main contribution here is

in bringing a better understanding of how the Drop (or Play)

decision of the player is influenced by:

• the Drop (or Play) decision of opponents on the table.

• the number of drops left with the player and the oppo-

nents.

• the card which is present on top of the Open Deck pile.

• the change in the Rummy variant.

This architecture can be extended to other skill-based card

games with appropriate features. To the best of our knowledge,

no prior work has been done regarding this.
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Fig. 1: SPADENet Architecture

II. RELATED WORK

There has been growing research in understanding and model-

ing player behavior and building models that can learn and beat

humans, in the context of multi-player games. Reinforcement

learning-based methods have been used widely to develop

agents for games that train a network through self-play and

decide the next action using a search algorithm. For Go, which

is a perfect information game, AlphaGo [3] became the first

algorithm to beat a professional Go player. They employed

the Monte Carlo Tree Search algorithm (MCTS) on a model

that was trained using a combination of Supervised Learning

on expert human moves and Reinforcement Learning through

self-playing respectively. Later, the algorithm was improved

in the form of AlphaGoZero [4] which completely relied on

reinforcement learning and was trained entirely using self-

play, skipping the need for reliance on training data. By

contrast, in imperfect-information games like Poker, not all

information is visible to all players which makes the game

complex. Algorithms such as Libratus [5], Pluribus [6, 7] and

ReBel [8] have outperformed humans in Poker. For Hearts,

[9] developed an agent based on Stochastic Linear Regression

and Temporal Difference Learning which outperformed human

players. For Gin Rummy, [10] compared the performance of

agents trained to play using 2 methods namely- Temporal

Difference Learning and Co-Evolution, with the latter found to

be performing better. Ref. [11] found their proposed heuristic

model to perform better than an ANN model for informing

draw, discard, and knock decisions in Gin Rummy. Ref. [12]

developed a fast hand strength estimation algorithm and pro-

posed a gin rummy agent by using the algorithm in conjunction

with Counterfactual Regret minimization. While the above
works aim to develop AI agents that can play and achieve or
surpass human-level performance, we are more interested in
understanding how highly skilled players play. This will enable
us to understand their playing behavior as well as develop
a learning journey for upskilling other players when they
play against human opponents. CNNs have found applications

in various tasks such as Image detection, classification, and

segmentation across multiple domains [13]–[15].

For Online Rummy, [16] has proposed a Hand Quality esti-

mation model (HandNet) based on CNN, which was trained

on expert human decisions. They propose both - a method to

create an image representation of player hand cards and a CNN

model architecture to predict optimum drop or play decisions

which has been trained using top skilled human player actions.

In upcoming sections, we show that this method lacks holistic

game context and opponent information that is visible to the

player. These are key factors in imperfect information games

like Rummy. Their work only considers player’s hand in
making that decision for Points Rummy variant and hence,
doesn’t generalize well on other Rummy variants like Pool
and Deal, etc. Drop or play decision is a key indicator in

determining player skill in Online Rummy and its accurate

determination can help classify their playing behavior.

III. SPADENET ARCHITECTURE

We introduce a multi-input single-output Deep Neural Net-

work, SPADENet. It is a combination of 2 separate neural

networks (Fig. 1):

• Players’ Hand Information (CNN Block): The first net-

work is a CNN model that takes image representation

of players’ cards. It learns to identify only those card

patterns or melds that are relevant to the problem. These

patterns can also be common across the different variants

for certain games. In such cases, transfer learning can

be used for this block when training for another game

variant.

• Game Table Progression and Evolution (Dense Block):

The second network is a feed-forward neural network that

captures game-variant-specific features. These features

help us capture the nuances that, otherwise, don’t get

captured in the first network. Only the features that are

visible to the player are included here.
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Fig. 2: Game-table for Online Rummy with a Valid Declaration hand

These networks’ final output is concatenated and passed

through a Dense layer which works as a Global Processing

Unit. Multi-input CNNs allow a combination of different data

sources and process them separately using different network

layers. They have proven to be more accurate in a variety

of domains [17]–[19]. Combining the outputs of different

network streams in multi-input CNNs towards the end has

been shown to give better results [20].

IV. GAME OF RUMMY AND ITS DIFFERENT VARIANTS

Rummy requires a combination of skill and strategic acumen.

It generally employs 2 standard decks, each comprising 53

cards (52 cards + 1 printed joker), and is typically played

between 2-6 players. The primary objective of the player is

to arrange the 13-cards in their hand, by building melds -

sequences and sets, leading to a valid declaration before other

opponents. A Sequence is defined as a group of cards with an

identical suit and sequential ranks (e.g. - A♥,K♥, Q♥, J♥),

while a set consists of cards having the same rank but different

suits (e.g. - 2♣, 2♦, 2♠) (Fig. 2). Each meld must have at least

3 cards. At the start of each game, a card is randomly drawn

and designated as a wild card joker, capable of substituting

for a missing card within a meld. A sequence formed with

the help of a joker (either printed or wild) is called an Impure

Sequence (e.g. - Q♠, 8♠, 9♠, where Q♠ is the wild joker),

else it is called a Pure Sequence. To make a valid declaration,

the player must have a minimum of two sequences, with one

of them being a pure sequence. The remaining cards must be

organized into either sequences or sets.

The gameplay unfolds with players drawing cards from either

the closed deck or the top card of the discarded pile, known

as the Open Deck card. After drawing a card from one of the

decks, players must strategically discard one from their hand,

adding it to the discard pile and thereby determining the Open

Deck Card for the next player. This sequence persists until a

player makes a valid declaration, compelling all participants

to strategically minimize their points.

Importance of first drop: Players can strategically Drop out

of the game if they think the odds of a favorable outcome

(either win or lose by less than Drop penalty points) for their

hand are limited. If dropped, they forfeit the game by 15/20/25

points (depending on the Rummy variant) which minimizes

their losses.

A. Points Rummy

A Points game consists of a single deal with predetermined

monetary value. The player who successfully makes a valid

declaration first, wins collective sum of points of all other

players, while other players lose points based on the sum of

their ungrouped cards. Therefore, the earlier a player secures

victory and the wider the margin of their success, the greater

the winnings, emphasizing the strategic importance of early

and decisive wins.

B. Pool Rummy

In Pool Rummy, participants contribute a fixed entry fee to

form the game’s prize pool collectively. At the beginning of

the game (first round), all players have a game score of 0 and

they aim to minimize points and avoid reaching the elimination

threshold (such as 61/101/201), until only one player remains.

In each round, the winner accrues 0 points, while the other

players accumulate points based on the ungrouped cards they

hold. For a Pool 101 game, which has a drop penalty of 20

points, they can drop at max 5 times
1
. This variant places

a premium on strategic play to achieve the dual goal of

scoring minimal points and outlasting opponents. The first

drop decision becomes even more crucial as it is also affected

by the outcome of the previous deal and even a single bad

play can lead to massive loss and elimination.

C. Deals Rummy

In the Deals game, players play a predetermined number of

deals with a fixed entry fee, which forms the game’s prize pool.

Each player starts with the same pot. After each round, points

are calculated for each player based on the sum of ungrouped

cards. For the losing player(s), these points are reduced from

their initial pot and added to the pot of the winning player

(who declares first). At the end of all deals, the player with the

highest pot wins and takes the entire prize pool as winnings.

V. METHODOLOGY

We define a High Skilled Player (hereby referred to as HSP)

as someone who has played at least 100 cash games on high-

value tables
2

and has a differential end score ≥ 3 and ≥ 20%

win rate (following [16]). Analysis of their behavior for the

games played showed that their first drop decision not only

depends upon their dealt hand and Open Deck Card but also

on other factors. For example - their tendency to drop is higher

in 6-player games as compared to 2-player games. HSPs also

prefer to drop more in the Pool game variant vs other games

(Table I). The tendency to drop also increases as more players

join and choose not to drop out of the game (Table II). For

Pool games, which can run across multiple deals, HSPs tend

to drop less if the opponents have more drops remaining with

1
Drops left = floor[(Game End Score-Player’s Current Game Score)/Drop

Penalty]
2
Minimum Table Buy-in Amount ≥ Rs. 500
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Fig. 3: SPADENet Architecture for Online Rummy

them (which is the result of their previous wins) (Table III).

Previous work done till now hasn’t accounted for these game

variant-specific nuances. To accurately predict the best play or

drop action, we need to include these attributes as well.

Turn
Number

2-Player 6-Player

Points Pool Points Pool Deals

1 0.13 0.19 0.39 0.37 0.39

2 0.30 0.39 0.44 0.42 0.44

3 - - 0.46 0.46 0.45

4 - - 0.48 0.49 0.44

5 - - 0.49 0.53 0.47

6 - - 0.50 0.56 0.46

Overall 0.21 0.28 0.46 0.47 0.44

TABLE I: Avg. Drop Rates of HSPs across different Rummy variants
and player counts.

Players Joined Players Still Playing

1 2 3 4 5

2 0.22 - - - -

3 0.22 0.33 - - -

4 0.26 0.37 0.37 - -

5 0.28 0.41 0.46 0.45 -

6 0.32 0.48 0.54 0.54 0.52

TABLE II: Avg. Drop Rates of HSPs for Pool-6P games for different
player count on the table.

Such a problem can be addressed by multi-input single-output

Deep Neural Network. The upcoming section explains how we

adapted SPADENet for different variants of Online Rummy.

VI. SPADENET FOR ONLINE RUMMY AND ITS POPULAR

VARIANTS

We take Online Rummy as a case study and evaluate the

first drop (or play) decision for its different variants (Points,

Drops Left
(Player)

Drops Left (Opponent)

0 1 2 3 4 5

0 0 0 0 0 0.01 0.02

1 0.33 0.27 0.20 0.17 0.14 0.12

2 0.44 0.37 0.32 0.26 0.23 0.22

3 0.46 0.41 0.35 0.32 0.28 0.27

4 0.43 0.39 0.36 0.34 0.31 0.28

5 0.43 0.39 0.38 0.34 0.34 0.31

TABLE III: Avg. Drop Rates of HSPs for Pool-2P (101) games for
player vs opponent drops left.

Pool, Deals
3
, etc.) and player count format. We model this

as a supervised binary classification problem since we aim to

mimic the behavior of High Skilled Players. Fig. 3 shows the

adapted version of SPADENet for Online Rummy.

• Players’ Hands Information: The first network is a CNN

model that takes image representation of players’ cards

as described in [16]. For the first drop decision, players

only need to consider their dealt hand and since it is

taken at the start of game, picked/discarded card history

is not involved. This rules out need for sequence based

models such as RNNs or transformers. CNNs are able

to learn and capture the card relationships from the

hand image representation. In previous work, only the

player’s hand (13 Cards) was embedded in the hand

image representation. However, the Open Deck Card can

also influence player Drop (or Play) behavior. So to make

the model more realistic, we included Open Deck Card

as well in the hand image representation.

• Game Table Progression and Evolution: The second net-

work is a 2-layer feedforward neural network that cap-

tures Rummy-variants specific features. It also allows for

3
First Drop is only allowed in Deals 6p (3 Deal) game.
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Rummy Variant Feature Name Feature Description

Points-2P Turn No. - Player turn no (1 or 2).

Points-6P

Players joined - Count of players who joined the game table (2-6).

Players playing - Count of other players who are still on the game table when the current player’s turn arrives (1-5).

Turn No. - Player turn no (1-6).

Pool-2P

Player drops left - No. of drops left with the player
1
.

Opponent drops left - No. of drops left with opponent
1
.

Turn No. - Player turn no (1 or 2).

Pool-6P

Players joined - Count of players who joined the game table (2-6).

Players playing - Count of other players who are still on the game table when the current player’s turn arrives (1-5).

Player drops left - No. of drops left with the player
1
.

Opponents’ drops left - Drops left at game level when the current player’s turn arrives (Min., Max., Avg., Median).

Turn No. - Player turn no (1-6).

Deals-6P (3 Deals)

Players joined - Count of players who joined the game table (2-6).

Players playing - Count of other players who are still on the game table when the current player’s turn arrives (1-5).

Deal number - Current deal number (1-3)

Player rank - Rank of the player based on their points (in decreasing order) at the start of deal (1-6)

Turn No. - Player turn no (1-6).

TABLE IV: SPADENet Features (Online Rummy as a Case Study)

Fig. 4: Loss, Accuracy vs Epochs: Pool 6P

features that are outside of players’ hands and represent

the evolving game state. These features are described in

Table IV.

These networks’ output is concatenated to form a dense layer

with 32 neurons. The final output layer is a Dense layer with 2

neurons and the softmax activation function. Across the entire
network, only the features that are visible to the player
are considered.

A. Training and Dataset

For preparing the training dataset, we considered the Rummy

games played by the selected HSPs. This led to approximately

2,000 players, corresponding to over 580,000 deals for each

game variant. 20% of these players are separately allocated

to each of the validation and test sets respectively. This is

done to avoid any potential bias and ensure that the drop

or play behavior learned by the model on the players in

the training set also generalizes well with the drop or play

behavior of unseen players in the validation and test set. The

training dataset comprises their initial hand, Open Deck Card

along with other variant-specific attributes (from Table IV)

that were visible to them, representing game states as input

for these players, with their corresponding first drop (1) or

play (0) action as the target attribute. We also identified HSPs

using the same definition over different time periods and found

the target distribution to be similar, confirming correctness

of our sampling method. The model is trained using the

categorical cross-entropy loss function and optimized with the

Adam optimizer [21]. Training occurs over 50 epochs with a

batch size of 512. To prevent overfitting, Early Stopping is

implemented [22], halting training when the validation loss

ceases to decrease for more than 3 epochs (Fig. 4 shows

learning curves for model trained with multiple random states

to avoid initialization issues). A separate model was trained

for each game variant.

VII. RESULTS

To assess performance, we conducted a comprehensive evalua-

tion of SPADE-Net, comparing its performance metrics against

alternative models using the same test set. Since to the best

of our knowledge, there are no public dataset and benchmarks

available to compare our results with, we established a founda-

tional Rule Model as a baseline, as well as also compared our

results with previous work (HandNet [16]) by replicating that

on our own dataset. The Rule model recommends dropping if

a player doesn’t possess at least 1 Pure Sequence with a free

Joker (not part of the Pure Sequence) or has less than 2 Joker

cards, else recommending to play. This rule emerged from our

examination of actions taken by HSPs, where their action is

≥90% toward either playing or dropping.

SPADENet demonstrated superior performance over other

models. We looked into how the model’s behavior changes

as well as top factors towards the prediction. Finally, we

looked into the correlation between model predictions and

game outcomes, providing valuable insights into the predictive

efficacy of SPADENet. These are discussed in the following

subsections.

Model Evaluation: We compare the results of our model

for all Rummy variants with a domain-based Rule model
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Model AUC-ROC AUC-PRC F1 (P=R)

2P 6P 2P 6P 2P 6P

Rule - - - - 0.489 0.81

GTPE 0.633 0.601 0.527 0.544 0.313 0.529

HandNet 0.92 0.93 0.7 0.88 0.68 0.80

HandNet** 0.926 0.938 0.749 0.912 0.719 0.849

SPADENet 0.963 0.962 0.878 0.948 0.79 0.89

TABLE V(a): Rummy Variant: Points

Model AUC-ROC AUC-PRC F1 (P=R)

2P 6P 2P 6P 2P 6P

Rule - - - - 0.59 0.795

HandNet - - - - - -

GTPE 0.725 0.718 0.45 0.635 0.472 0.615

HandNet** 0.881 0.874 0.689 0.803 0.661 0.767

SPADENet 0.966 0.974 0.92 0.967 0.838 0.908
SPADENetTL 0.933 0.942 0.89 0.954 0.817 0.892

TABLE V(b): Rummy Variant: Pool

(baseline) and HandNet (as reported in [16] for points 2p &

6p). For a fair comparison across all Rummy variants and to

remove any resulting bias that may arise due to the underlying

training data, we also trained and evaluated HandNet on

the dataset on which SPADENet was trained (referred to

as HandNet**). To understand the impact of Game Table

Progression and Evolution alone, we trained and evaluated

a model by only considering features as described in Table

(IV) and excluding player hand information (referred to as

GTPE). Table (V(a), V(b) and V(c)) show the results of

the model in terms of metrics like AUC-ROC, AUC-PRC,

and F1 score (we use the break-even point where precision

= recall to decide the threshold). The HandNet** model

performance is similar to the baseline Rule Model for Pool-

6P. We observed improvement in Test F1 score for SPADENet

across all Rummy variants with the highest being for Pool-

6P from 0.767 (existing best-performing method HandNet**)

to 0.908 (18% increase).This demonstrates the need for the

inclusion of other non-player-hand features in SPADENet.

Transfer Learning: The CNN block learns the relationship

between the player’s hands and the Open Deck Card with the

play or drop decision. Across different Rummy variants, while

the game table information changes in the DENSE block (Fig.

3), the player’s hand-learned features remains same. Hence, the

same trained CNN block from one variant can be reused in

the other variants. To validate this, we retrained another model

for the Pool-6P variant by taking the CNN block from the

Points-6P game. We froze the weights of the network layers

for the CNN block during training while freely allowing the

DENSE block to learn (referred to as SPADENet
TL

). This

method not only gave similar results (Table V(b)), but also

achieved convergence faster (Fig. 4 vs Fig. 5).

Impact of Open Deck Card: We examined

the influence of the Open Deck Card on both

Model AUC-ROC AUC-PRC F1 (P=R)

6P 6P 6P

Rule - - 0.702

GTPE 0.543 0.473 0.477

HandNet - - -

HandNet** 0.867 0.782 0.753

SPADENet 0.896 0.816 0.795

TABLE V(c): Rummy Variant: Deals (3 Deals)

Fig. 5: Loss, Accuracy vs Epochs: Pool 6P Transfer Learning

drop probability and player decision-making. To

investigate this, we selected a hand at random

{3♥, 6♠, 1♦, 3♠, 5♥, 10♣, 13♥, 6♦, 7♣, 1♦, 12♠, 7♦, 12♠}
with the joker being 10♥ and the Open Deck Card being

4♥. If we disregard the open deck card, the model’s drop

probability is 0.64
4
, indicating it is not playable. However,

in an actual game, the player acquires the Open Deck Card

and refrains from dropping, as it forms a pure sequence

(3♥, 4♥, 5♥), significantly enhancing the hand and reducing

hand points to 66 from 80. On incorporating the Open

Deck Card in the analysis, the model’s drop probability also

diminished to 0.03. This confirms the players’ consideration

of the Open Deck Card in their strategic decisions regarding

playing or dropping.

Impact of Game Variant: Players’ drop behavior also

changes depending upon the game variant (Table I).

To understand this, we picked a random player hand {
12♠, 3♥, 12♠, 13♥, 1♦, 5♥, 11♣, 3♠, 6♦, 7♣, 1♦, 6♠, 7♦}.

With joker = 10♥ and Open Deck Card = 4♥, we looked

at how drop probabilities changed across game variants. We

found that for the same hand, the model drop probability was

0.68 for the Points 2P game but it increased to 0.90
5

for the

Pool 2P game. This is expected since players tend to take

less risk in Pool games and drop more often even though

they have 1 Pure Sequence in their hand.

Impact of Drops Left: For Pool games, the player drop

behavior is influenced by the number of possible drops left

with the player. For the above hand, we observed that the

4
Model output is generated using Points 2P model assuming Turn = 2

5
Model output is generated assuming drops left = 5
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Player drops left 5 4 3 2 1

Drop Probability 0.90 0.85 0.80 0.67 0.44

TABLE VI: Player drops left vs Model output - Pool 2P

model drop probability decreased with decrease in drops left

for a Pool-2P game (Table VI). This shows that both the model

and players tend to drop less as the number of drops left with

them decreases.

Feature Importance: We aim to comprehend the influence of

various features and quantify their impact on model decision-

making. One approach involves selecting a feature, removing it

from the training set, evaluating model performance on the test

set, and measuring the resulting drop in performance. How-

ever, this method is computationally intensive, necessitating

model retraining for each feature, and becomes inefficient as

the number of features grows.

An alternative method is to employ the feature permutation

importance algorithm [23, 24]. In this approach, a feature

is chosen; the test set undergoes a random shuffle for that

feature, and predictions are made using the original trained

estimator. By disrupting the relationship between the feature

and target, any drop in model performance concerning the

original predictions indicates the extent to which the trained

model relies on that specific feature. Importantly, this method

doesn’t require retraining, making it computationally efficient.

Before calculating feature importance, we need to check and

remove correlated features. If we permute any feature(s) which

is/are correlated, model still can access them through the

other correlated feature(s). This can result in lower feature

importance value for them. We calculate Spearman’s Rank

Correlation [25] for features (Table IV), remove those that

are highly correlated (≥ 0.9) (For Pool-6P, Opponents’ drops
left was correlated with Player drops left) and then retrain

the model. Table VII illustrates the change in Precision and

Recall for the Pool-6P model as each feature is permuted.

The number of drops left for the player exerts the most

significant effect (13.93% drop in Precision, 16.05% drop in

Recall). Notably, for most features, there is a higher drop

in Recall compared to Precision. However, the Open Deck

Card feature has a greater impact on Precision. This can be

attributed to including an Open Deck Card enabling players to

achieve a better hand, if possible. Without this information, the

model tends to recommend dropping the hand more frequently,

leading to a higher number of false positives.

Analysis of Model Predictions vs Game Outcomes: We

examined the impact of model predictions on game outcomes,

focusing on instances where HSPs opted to play in the test

set for Pool-6P games (∼68,000 instances). We scrutinized

the final game outcomes (Table VIII) and compared them

with whether the model suggested playing or dropping. When

the model advised playing (∼62,600 instances), 72% of those

games yielded a more favorable outcome (either the player

Feature Permuted Precision (%) Recall (%)

Player drops left -13.93 -16.05

Open Deck Card -7.01 0.66

Players playing -5.52 -9.79

Turn No. -5.19 -8.20

Players joined -3.27 -7.89

TABLE VII: Feature Permutation: SPADENet Pool 6P Performance
change

Model
Output Metric

Favorable
Outcome

Non-Favorable
Outcome

Win Points Lost by
<DPP*

Points Lost by
>= DPP*

Play (%) 40 32 27

Avg. Points 99.4 (-9.5) (-51)

Drop (%) 21 29 50

Avg. Points 88.4 (-10.2) (-56.8)

DPP*: Drop Points Penalty

TABLE VIII: Game Outcome when HSPs played

won or lost by less than the drop penalty points). However,

when the model recommended dropping (∼5,400 instances)

but the players still played, only 50% of those games resulted

in a favorable outcome for them. Also, the average points lost

by players were lower in games where the model suggested

playing (51 vs 56.8). For the games, where the model recom-

mended playing, players also won by a greater margin (99.4 vs

88.4). Statistical validation through a one-tailed, two-sample

t-test further confirmed these observations (p-value = 10
−7

).

Fig. 6: Requests and Instances Count

Real-time Deployed System Performance: Deploying

SPADENet in real-time to generate predictions is a complex

engineering challenge due to a large number of games played

(millions per day) as well as varying traffic patterns. To

tackle this, we developed a model prediction service where

the prediction is made available via an API endpoint, hosted

on a public cloud platform. The service is hosted across a

distributed compute cluster with the ability to scale horizon-

tally based on number of requests and is replicated across

multiple availability zones to reduce risk of downtime. Fig.

6 shows the count of requests received and the number of

concurrent compute instances running for the service, over

a 24-hour period in real-time production environment. The

average p99 latency observed was 89 ms.
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VIII. CONCLUSION & FUTURE WORK

We presented SPADENet, a generic and improved multi-input

deep neural network architecture designed to comprehensively

capture and combine the player’s hand with the ever-evolving

visible game state outside of the player’s hand. This enabled

incorporating the intricacies of any game variant for skill-

based card games. With the example of Online Rummy, we

demonstrated how it can be easily adapted for assessing first

drop (or play) decisions to the different variants of the same

game of Online Rummy (such as Points, Pool, Deals, etc.)

and compared its performance with existing work. We showed

how our model not only outperformed them but also increased

the odds of a favorable game outcome. Future work includes

adapting the architecture to other skill-based card games like

Poker. Poker, like Rummy, requires players to form specific

combinations of cards to win the game. Players make raise

or fold decisions based on the cards they hold, as well as

those they observe from other players. Their decision is also

influenced by opponents’ raise or fold behavior. So while

the cards’ information can be represented in the CNN block

(Players’ Hand Information), the other game information like

opponent playing behavior, which is outside of the Players’

hand and is visible to all, can be represented using the

DENSE block in the SPADENet architecture respectively.

Hence the CNN block will learn the relevance of the poker

card melds and the DENSE block will learn the influence of

opponents’ decisions towards making optimum raise or fold

decision respectively. With such information at hand, a holistic

view of any player’s skill can be derived for any skill-based

card game. This can be used as input for player upskilling

by building personalized learning journeys. From an Online

Rummy perspective, it would mean sharing tips that consider

the nuances of individual variants like Points, Pool, Deals, etc.

REFERENCES

[1] Statista Market Insights, https://www.statista.com/outlook/dmo/app/
games/card-games/worldwide

[2] Finite Games with Incomplete Information. In: Game Theory. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69291-1 5

[3] Silver, D., Huang, A., Maddison, C. et al. Mastering the game of Go
with deep neural networks and tree search. Nature 529, 484–489 (2016).
https://doi.org/10.1038/nature16961

[4] Silver, D., Schrittwieser, J., Simonyan, K. et al. Mastering the game
of Go without human knowledge. Nature 550, 354–359 (2017). https:
//doi.org/10.1038/nature24270

[5] N. Brown and T. Sandholm, “Superhuman ai for heads-up no-limit
poker: Libratus beats top professionals,” Science, 2017.

[6] Noam Brown, Tuomas Sandholm ,Superhuman AI for multiplayer
poker.Science365,885-890(2019). 10.1126/science.aay2400

[7] Noam Brown, Tuomas Sandholm, and Brandon Amos. Depth-limited
solving for imperfect information games. In Advances in Neural Infor-
mation Processing Systems, pages 7663–7674, 2018.

[8] Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. 2020.
Combining deep reinforcement learning and search for imperfect-
information games. In Proceedings of the 34th International Conference
on Neural Information Processing Systems (NIPS’20). Curran Asso-
ciates Inc., Red Hook, NY, USA, Article 1431, 17057–17069.

[9] N. R. Sturtevant and A. M. White, “Feature construction for reinforce-
ment learning in hearts,” in Computers and Games. Berlin, Heidel-
berg:Springer Berlin Heidelberg, 2007, pp. 122–134.

[10] Kotnik, Clifford Kalita, Jugal. (2003). The Significance of Temporal-
Difference Learning in Self-Play Training TD-Rummy versus EVO-
rummy.. 369-375.

[11] Nguyen, V. D., Doan, D., Neller, T. W. (2021). A Deterministic Neural
Network Approach to Playing Gin Rummy. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(17), 15622-15629. https://doi.
org/10.1609/aaai.v35i17.17840

[12] Ahmed, A., Leppo, J., Lesniewski, M., Patel, R., Perez, J., Blum, J.
(2021). A Heuristic Evaluation Function for Hand Strength Estimation
in Gin Rummy. Proceedings of the AAAI Conference on Artificial Intel-
ligence, 35(17), 15465-15471. https://doi.org/10.1609/aaai.v35i17.17820

[13] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y.
Lecun, OverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks, Eprint Arxiv, 2013.

[14] Xiao Y, Tian Z, Yu J, Zhang Y, Liu S, Du S, Lan X. A review
of object detection based on deep learning. Multimed Tools Appl.
2020;79(33):23729–91.

[15] Ker J, Wang L, Rao J, Lim T. Deep learning applications in medical
image analysis. IEEE Access. 2017;6:9375–89.

[16] Sharanya Eswaran, Vikram Vimal, Deepanshi Seth, and Tridib Mukher-
jee. 2020. GAIM: Game Action Information Mining Framework for
Multiplayer Online Card Games (Rummy as Case Study). In Advances
in Knowledge Discovery and Data Mining: 24th Pacific-Asia Confer-
ence, PAKDD 2020, Singapore, May 11–14, 2020, Proceedings, Part II.
Springer-Verlag, Berlin, Heidelberg, 435–448 . https://doi.org/10.1007/
978-3-030-47436-2 33

[17] Yu Sun, Lin Zhu, Guan Wang, Fang Zhao, “Multi-Input Convolu-
tional Neural Network for Flower Grading”, Journal of Electrical and
Computer Engineering, vol. 2017, Article ID 9240407, 8 pages, 2017.
https://doi.org/10.1155/2017/9240407

[18] Raquel Sánchez-Cauce, Jorge Pérez-Martı́n, Manuel Luque, Multi-
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