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Abstract—In the past decades, machine learning (ML) has
made significant progress in medical image classification. The
success can be attributed to two factors: (i) unique patient data
collected and processed by clinics/hospitals and (ii) corresponding
ML models solving the underlying classification task. In practice,
patient data may contain sensitive information unique to patients’
demography; and ML models often require higher computational
resources beyond the affordability of an individual hospital.

Considering practical concerns, we explore a collaborative ML
approach in which the data provider, referred to as the client,
aims to leverage the computational resources of a server in jointly
training a unified ML model without the need to share any
raw data. Specifically, we focus on the skin lesion classification
problem using a real-world dataset containing multi-modal image
inputs and multi-label ground truth.

To enable collaborative yet privacy-preserving skin lesion clas-
sification, we develop a learning framework called SplitFusionNet
based on u-shape split learning. The key idea of SplitFusionNet
is to split the ML model into a (client, server) partition of
deep neural network layers: the client layers process multi-
modal input data and multi-labels, while server layers perform
computationally extensive mid-layer computations. Additionally,
we apply lossless compression and decompression to improve
the communication cost between the client and the server.
Experimentally, SplitFusionNet requires less training pipeline
time than non-split centralized training while achieving equal
predictive performance.

Index Terms—Split-learning, Multi-modal Classification,
Multi-label Classification, Privacy-preserving Machine Learning

I. INTRODUCTION

In the past decades, machine learning (ML) has seen ad-

vancement as a predictive system, particularly in the healthcare

and medical domains [1, 2]. The emergence of deep neural

networks (DNNs) such as convolutional neural networks [3],

residual networks [4], and vision transformers [5] has demon-

strated success in diverse medical data analysis tasks like

image classification, object detection, and more. This success

incentivizes core institutions like clinics and hospitals to

collect and process unique patient data in image and text

formats and employ DNNs for various pattern recognition

tasks [6, 7]. However, DNN models demand higher compu-

tational resources such as GPUs/TPUs (Graphical/Tensor Pro-

cessing Units) for effective training [8, 9], which is not always

affordable by individual hospitals [10]. As such, hospitals

may disclose sensitive patient data to a third party server for

an efficient training while being susceptible to data privacy

leakage. While there are contemporary approaches to tackle

Clinical image

Dermoscopy image

Label Class Score

Diagnosis (DIAG) Melanoma —
Pigment Network (PN) Atypical 2
Streaks (STR) Irregular 1
Pigmentation (PIG) Absent 0
Regression Structures (RS) White areas 1
Dots and Globules (DAG) Irregular 1
Blue Whitish Veil (BWV) Present 2
Vascular Structures (VS) Dotted 2

Seven point score 9

Fig. 1: A representative multi-modal image input (left) for

multi-label classification problem (right) from Seven point

checklist criteria dataset.

privacy preserving [11–15] and efficient DNN training [16–

18], we resort to a recent advancement in collaborative ML,

called split learning.

Split Learning. Collaborative ML enables multiple parties

to share learning resources like data and computational ca-

pabilities [19, 20]. Split learning [21–25], a collaborative ML

approach, involves a client with unique and high-quality data

collaborating with a server possessing higher computational

resources to jointly learn a unified DNN model. Split learning

facilitates collaborative yet privacy-preserving learning, with

the client sharing abstract representational features with the

server instead of raw input data [22]. While split learning has

been extensively studied on a single modality input [21, 22],

a less explored research area that is our focus is multi-modal
image classification [26].

Skin Lesion Classification. Skin cancer stands as the fourth

leading cause of malignancy in humans [27], emphasizing

the critical need for early detection via skin lesion classifi-

cation [28–30]. Notably, the early detection of melanoma, the

most perilous form of skin cancer, can increase the 10-year

survival rate from below 39% to over 93% [31].

Our investigation centers on the seven-point checklist cri-
teria dataset, a widely studied dataset in DNN-based skin

cancer detection problems [32, 33]. This dataset poses a unique

classification challenge, demanding a combined approach to

multi-modal and multi-label classification. Specifically, in

Figure 1 we address two image modalities: clinical images

portraying diverse skin views captured by a digital camera

and dermoscopy images showcasing sub-surface structures
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obtained through skin imaging techniques. The classification

task involves eight multi-label classification: one diagnosis

label as shown in the gray row and seven checklist criteria

labels. To our best knowledge, all prior approaches consider

skin lesion classification in a centralized training involving

GPUs and disregard the practical scenario where hospitals

may have limited computational resources [29, 32, 34–37].

Therefore, the central research question in this paper is: Can
we devise a ML framework for multi-modal and multi-label
skin lesion classification that harnesses the computational
resource of a powerful server without necessitating the sharing
of raw data by the data owner?”

Contribution. We propose SplitFusionNet based on u-
shape split learning of a DNN model for multi-modal and

multi-label classification tasks. The key idea is partitioning

the DNN model into (client, server) layers: client layers handle

multi-modal images and associated labels, while server layers

undertake computationally intensive mid-layer computations.

We consider the client and server components residing in

separate physical machines – the transfer of representational

features and gradients between the server and the client is

performed via internet-based socket programming. Thus, the

bottleneck in SplitFusionNet is the additional communication

cost, which we address via implementing a lossless compres-

sion/decompression mechanism [38] for features and gradients

on both the client and server sides. Lossless compression

significantly enhances communication speed without compro-

mising the prediction performance of split learning.

Experimental Results. In our experiments, we emulate

SplitFusionNet by allocating the client on a CPU (Central

Processing Unit) and the server on a GPU. Our observations

can be summarized into three key points:

1) Equal prediction performance: SplitFusionNet achieves an

equal prediction accuracy to a non-split centralized DNN

model [34] addressing the same classification task based

on the seven-point criteria checklist dataset.

2) Efficient training: The training time alone is reduced to 7%
in SplitFusionNet compared to the non-split CPU-based

implementation. This efficiency is owed to leveraging the

GPU on the server via split learning.

3) Reduced training pipeline time: Through lossless com-

pression/decompression of features and gradients within

SplitFusionNet, the total training pipeline time, including

communication and compression expenses, is reduced to

49% of the time required by the non-split method.

Related Work
In skin lesion classification, deep multi-modal learning has

been applied by utilizing shared cross-modality features in

the underlying classification task [29, 32, 34–37]. Notably, [29]

used two ResNet50 models to extract clinical and dermoscopy

images, while [32] adopted the InceptionV3 model to fuse

multi-modality data. Later, [36] introduced a hyper-connected

CNN to extract cross-modality features from all layers of the

CNN, unlike [29, 32] that focused on the final few layers.

Recently, [34] proposed a two-stage procedure to process

Input Features

Labels

Client

Server

(a) Vanilla split learning

Input Features Labels

Client

Server

(b) U-shape split learning

Fig. 2: Split learning with vanilla (left) and u-shape (right)

configurations. Unlike vanilla split, the u-shape split retains

both input features and labels on the client (top; black dotted

rectangle), ensuring higher data privacy. The double arrow (↔)

at the cut layer signifies the transfer of the representation fea-

tures and gradients during the forward and backward passes.

multi-modal image modalities followed by the metadata of

patients. Unlike previous methods that considered comple-

mentary features from two image modalities, [37] considered

both correlated and complementary features in an adversarial

setting. To our best knowledge, all earlier methods considered

a centralized learning setting for skin lesion classification and

none of them focused on collaborative ML training with the

goal of achieving faster training while prioritizing data privacy

– in this work, we address both via split learning.

II. PRELIMINARIES

Dataset. We consider a multi-modal and multi-label classi-

fication dataset represented as D = (xc,xd,y) ∼ D, where

D is the joint probability distribution of two images and a

multi-label vector. The clinical image xc ∈ R
w×h×c and the

dermoscopy image xd ∈ R
w×h×c have equal dimensions w,

h, and c denoting their width, height, and channel number,

respectively. The multi-label vector y � [y(1), · · · , y(8)] com-

prises labels with cardinality |y| = 8. Each label y(i) ⊆ Z is

drawn from a set of integers, where the number of classes per

label ranges between 2 to 5.

Split Learning. Split learning [22] is a collaborative and

privacy-preserving training procedure that facilitates the train-

ing of low-end edge devices through collaboration with a

powerful central server. Inspired by message-passing, the core

concept of split learning involves dividing the neural network

into a shallow network on the client side and a deep network

on the server side so that computationally intensive training

occurs on the server without sharing the raw data of the client.

Various configurations of split learning have been proposed in

the literature (Figure 2). In vanilla split learning (Figure 2a),

the client trains a partial neural network up to the cut layer
and transmits the output of this cut layer to the server. Upon

receiving the client’s output, the server completes the forward

pass through the remaining layers. During the backward pass,

the server’s gradients are computed from its last layer to the

cut layer. Then, these cut layer gradients are sent back to the

client, who performs the rest of the backward pass. In the

1324



C
o

nv

B
at

ch
N

o
rm

R
eL

u

M
ax

P
o

o
l

C
o

nv
B

lo
ck

Id
en

ti
ty

B
lo

ck

C
o

nv
B

lo
ck

Id
en

ti
ty

B
lo

ck

C
o

nv
B

lo
ck

Id
en

ti
ty

B
lo

ck

C
o

nv
B

lo
ck

Id
en

ti
ty

B
lo

ck

A
v

g
P

o
o

l

F
la

tt
en

in
g

F
C

Convoluational

Block

Residual

Block 1

Residual
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Block 3

Residual

Block 4

Fig. 3: A ResNet model architecture. Sequential computational

blocks make ResNet suitable for split learning.

vanilla configuration, the client shares the ground-truth labels

only, which might still pose a risk to the data privacy.

In u-shape split learning (Figure 2b), both input features

and labels remain on the client side. Hence, the network

is partitioned into three sub-networks: client-head, server-
body, and client-tail. The server-body contains the majority of

the layers following client-head network, wherein the client-

tail network has, in the simplest form, a linear classification

layer to compare logits with labels. In the forward pass,

the output of the cut layer at the client-head is sent to the

server-body network, and the output of the cut layer at the

server-body is sent to the client-tail network. In backward

pass, gradients are sent from the client-tail to the server-body

and from the server-body to the client-head. Therefore, u-

shape split learning not only safeguards sensitive input features

(clinical and dermoscopy images) but also protects sensitive

label information (diagnosis and seven-point criteria labels).

Residual Network. A Residual Neural Network or

ResNet [4] is a convolutional neural network designed to

learn residual functions concerning the input across a series of

stacked layers (Figure 3). We specifically focus on ResNet50,

a convolutional neural network comprising 4 residual blocks

preceded by a convolutional block, resulting in a total of 50
layers. The sequential computational blocks in ResNet renders

it suitable for split learning, which we explore in this work.

Lossless Compression and Decompression. Lossless com-

pression is a data compression method to reduce the size of

original data through compression while ensuring a perfect

decompression from the compressed data without any loss

of information [39, 39]. Most lossless compression algorithms

leverage the statistical redundancy within the target data. In

contrast, lossy compression [40] generally achieves a higher

compression ratio (i.e., the ratio of the size of original and

compressed data), but it can only approximate the original

data during decompression. In our study, we implement com-

pression and decompression on representational features and

gradients – an approximation of these values might necessitate

additional training epochs and prolongs the overall training

pipeline time. Henceforth, we consider lossless compression

and decompression in the paper.

III. METHODOLOGY

We discuss the main contribution of the paper,

SplitFusionNet, a u-shape split learning of fusion DNN

model operating on two image modalities. We first discuss

the non-split baseline model in Section III-A and propose an

extension to the u-shape split model in Section III-B.

A. FusionNet
We discuss the baseline non-split model, referred to as

FusionNet [34], which combines two image modalities for

multi-label classification (refer to Figure 4, disregarding the

client-server partition, which we explain shortly). FusionNet

utilizes two pre-trained ResNet-50 backbones to extract fea-

tures from the two modalities. Formally, we denote a ResNet

model as C : Rw×h×c → R
N , converting an image x to a

representational feature b. The ResNet for the clinical image,

Cc(xc) = bc, extracts a representational feature vector bc

from the clinical image xc. Similarly, the dermoscopy ResNet,

Cd(xd) = bd, outputs feature vector bd corresponding to the

dermoscopy image xd. Both bc and bd have equal dimensions,

denoted as N . Next, two representation features bc and bd,

are element-wise added to construct a shared feature vector

bf ∈ R
N . Subsequently, features bc, bd, and bf correspond-

ing to three branches – two single-modality branches and one

cross-modality branch – are fed into three fully connected

MLP (multi-layer perceptron) models Mc, Md, and Mf to

obtain predictions, ŷc, ŷd, and ŷf , respectively. Thus, Mc

and Md enable learning on separate single modalities, while
Mf learns cross-modality features representation. Finally,

FusionNet is trained end-to-end to minimize the overall loss

of the three sets of predictions.

Lc =

|y|∑
i=1

CE(ŷ(i)
c ,y(i)) Ld =

|y|∑
i=1

CE(ŷ
(i)
d ,y(i))

Lf =

|y|∑
i=1

CE(ŷ
(i)
f ,y(i)) L = Lc + Ld + Lf

Specifically, within each branch, we compare the predictions

of the MLP model with the ground truth for each of the 8 dif-

ferent classification tasks using the cross-entropy loss function,

denoted as CE. The final loss is obtained as a linear sum of

individual branch losses with uniform weights. The gradient

of the loss is then backward propagated through all MLPs and

ResNets, enabling end-to-end training of FusionNet.

B. SplitFusionNet: A U-shape Split of FusionNet
There are multiple ways to split a DNN model. In

SplitFusionNet, we split the FusionNet model into three

sequential sub-networks: client-head, server-body, and client-

tail (Figure 4) – the purpose being keeping both input images

and labels on the client side.

Split Configuration. The client-head contains the convolu-

tional blocks of two ResNets Cc and Cd, corresponding to two

image modalities. The client-tail comprises the linear classifi-

cation layer of three MLPs Mc, Md, and Mf , corresponding

to three branches. The server-body contains the remaining

intermediate layers of FusionNet. Our choice for this split

configuration is motivated by the following two reasons.

• Reduction of Computational Load in Client. We prioritize

minimizing the computational load on the client while
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Conv Block Conv Block

Residual

Blocks 1 to 4
Residual

Blocks 1 to 4

bc bd+

bfMLP MLP

MLP

ŷfŷc ŷd

CLFCLF CLF

≈ ≈ ≈Client-head

Client-tail

Server-body

Fig. 4: The model architecture of SplitFusionNet, which is

partitioned between a client (black dotted region) and a

server (red dotted region). The client-head network com-

prises the convolutional blocks of two ResNet50 models,

each corresponding to one of the two image modalities. The

client-tail network consists of the linear classification layer

of three MLP branches: two for the input image modalities

and one fusion branch from the cross-modality. The server-

body network includes the residual blocks of two ResNet50

models and three MLP networks (without the classification

layer) corresponding to three branches.

ensuring data privacy through a small set of DNN layers.

As a result, the client-head hosts the convolutional block of

ResNets, comprising less than 0.04% of the total trainable

parameters in SplitFusionNet. The convolutional layer might

still be susceptible to model inversion attacks [41, 42] – we

do not focus such attacks in the paper. Similarly, the client-

tail consists of the classification layer of MLPs, representing

less than 0.02% of trainable parameters.

• Reduction in Transferred Data. In SplitFusionNet, we

leverage the higher computational resources of the server.

As such, SplitFusionNet encounters a reduced efficiency

when large data (representation features and gradients) are

transferred between the client and server. To reduce trans-

ferred data, the cut layer between the client-head and server-

body (the output of the convolutional block) produces the

smallest size representation features compared to splitting at

other layers within the ResNet model. Likewise, between the

server-body and client-tail, the classification layer generates

the smallest size representation features.

We additionally experimented with alternative splitting con-

figurations: placing the first residual block of ResNets in the

client-head and/or transferring all MLP layers to the client-

tail. However, none of these configurations yielded superior

performance in the training pipeline, as discussed earlier.
Efficient Transfer of Representation Features and Gra-

dients. We employ lossless compression and subsequent de-

compression on representation features and gradients before

transmitting them over the internet – the goal is to minimize

transferred data without affecting training. Typically, a lossless

compression algorithm offers a hyper-parameter to determine

the trade-off between compression ratio and computational

time for conversion, which we empirically study in Section IV.

IV. EMPIRICAL PERFORMANCE ANALYSIS

We conduct an empirical evaluation of SplitFusionNet.
Specifically, we delve into the experimental setup, the objec-

tives of the experiments, and the obtained experimental results.
Experimental Setup. We develop a prototype of

SplitFusionNet using Python 3.7. In the client-server split

learning setup, the client-side network operates on an AMD

EPYCTM 7742 CPU with 512 GB memory, while the server-

side network utilizes an RTX 3090 GPU with 24 GB GDDR6X

TABLE I: The count of trainable parameters shared between

the client and server differs in non-split and split implementa-

tions. In the non-split implementation, the entire model resides

within the client. Here, ‘H’, ‘T’, and ‘B’ stand as abbreviations

for head, tail, and body, respectively.

Method Client (H) Server (B) Client (T) Total

FusionNet 50373448 — — 50373448
SplitFusionNet 19072 50345088 9288 50373448

memory, hosted on two separate physical machines1. Table I

details the parameter distribution between the client and

server, where the server manages over 99% of the trainable

parameters. Communication between the client and server is

established using Python’s Socket API. Within SplitFusionNet,
we integrate the Python binding of the Zstandard (or zstd)

lossless compression algorithm developed by [38]. We con-

figure the compression level hyper-parameter in Zstandard to

‘fast’ (level = 1). The dataset for the seven-point checklist

criteria comprises 1011 multi-modal images, split into training,

validation, and test datasets containing 413, 203, and 395
samples, respectively. Each competing method is executed

for 100 training epochs, repeated three times with random

model initialization, and we report the corresponding mean and

standard deviation. Subsequently, we discuss the objectives of

our empirical study.

1) RQ1 (Predictive Performance): How does SplitFusionNet
compare with FusionNet in predictive performance?

2) RQ2 (Training Efficiency): How does SplitFusionNet
compare with FusionNet in total training pipeline time

including training time, data preparation/compression time,

and communication time?

Summary of Experimental Results: In experiments,

SplitFusionNet achieves an equal prediction accuracy to Fu-

sionNet in the multi-modal and multi-label skin lesion classi-

fication task. Moreover, SplitFusionNet utilizing lossless com-

pression and decompression requires only 49% of the training

pipeline time taken by FusionNet. Therefore, SplitFusionNet

1In a parallel implementation, we consider the SambaNova RDU [43] as
a server in place of the GPU. The GPU implementation provides a superior
performance than the RDU and we report results for GPU only.
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TABLE II: Results regarding test accuracy across 8 classification tasks indicate that, on average, SplitFusionNet (and

SplitFusionNet∗ with lossless compression and decompression) achieves an equal prediction accuracy to FusionNet. The slight

variance in accuracy can be attributed to the randomization inherent in DNN training.

Method DIAG PN STR PIG RS DAG BWV VS Average

FusionNet 0.64± 0.00 0.58± 0.02 0.67± 0.01 0.64± 0.01 0.73± 0.01 0.54± 0.02 0.84± 0.01 0.79± 0.00 0.68± 0.00
SplitFusionNet 0.64± 0.01 0.60± 0.01 0.68± 0.01 0.62± 0.01 0.75± 0.01 0.55± 0.00 0.84± 0.01 0.79± 0.01 0.68± 0.00
SplitFusionNet∗ 0.65± 0.00 0.60± 0.00 0.66± 0.01 0.61± 0.02 0.75± 0.01 0.54± 0.02 0.84± 0.01 0.79± 0.01 0.68± 0.00

TABLE III: The average per-epoch training pipeline time for FusionNet and SplitFusionNet is in seconds (and in percentage).

Compared to FusionNet, SplitFusionNet demands lower training time. However, SplitFusionNet results in an increased overall

training pipeline time due to higher communication costs. By adopting lossless compression before data transfer and subsequent

decompression after transfer, SplitFusionNet∗ exhibits the lowest training pipeline time among the considered methods.

Method

Training

Client

Compression

Client
Communication
Client to Server

Training

Server

Compression

Server
Communication
Server to Client

Training

Pipeline Time

FusionNet 76.37 (100%) 0.00 (0%) 0.00 (0%) 0.00 (0%) 0.00 (0%) 0.00 (0%) 76.37 (100%)
SplitFusionNet 2.93 (3%) 0.12 (0%) 73.28 (80%) 1.97 (2%) 0.50 (1%) 11.94 (13%) 91.58 (100%)
SplitFusionNet∗ 2.89 (8%) 2.50 (7%) 16.69 (44%) 1.90 (5%) 2.50 (7%) 10.50 (28%) 37.71 (100%)

TABLE IV: The average per-epoch size of transferred data is measured in Megabytes (MB). Compared to SplitFusionNet,
SplitFusionNet∗, equipped with lossless compression, reduces the size of transferred data, leading to more efficient communi-

cation. Column 6 (resp. column 7) denotes the sum of columns 2 and 5 (resp. columns 3 and 4).

Method
Client-head

Representation
Client-head

Gradient

Server-body

Representation

Server-body

Gradient
Transferred Data
Client to Server

Transferred Data
Server to Client

Total
Transferred Data

SplitFusionNet 632.41 632.41 0.61 0.41 632.82 633.02 1265.84
SplitFusionNet∗ 420.60 594.36 0.45 0.38 420.98 594.81 1015.79

demonstrates an equal prediction performance while requiring
less training pipeline time. We next discuss our experimental

results in details.

A. Multi-label and Multi-modal Prediction Performance
In Table II, we present the average test accuracy across 8

classification tasks for various models. Both SplitFusionNet
and SplitFusionNet∗ (SplitFusionNet implementing loss-less

compression and decompression) train an identical DNN

model as FusionNet, except the trained model is shared

between two physical machines through the client and the

server. Consequently, the prediction accuracy of all three

models is expected to be similar, as evident in our experiments.

Moreover, all models share the same hyperparameters, and

we refrain from performing hyperparameter tuning—our focus

is on demonstrating collaborative privacy-preserving training

for multi-modal medical image classification rather than en-

hancing accuracy through hyperparameter tuning or neural

architecture search. In fact, SplitFusionNet can potentially

benefit from the future improvement of the non-split model

FusionNet. Therefore, SplitFusionNet achieves an equal pre-
dictive performance with FusionNet.

B. Efficiency in Training
Training Pipeline Time. In Table III, we present the aver-

age training pipeline time per epoch between FusionNet and

SplitFusionNet. FusionNet requires approximately 76 seconds

to complete a training epoch on a CPU. On the other hand,

SplitFusionNet delegates the computational workload to the

server on a GPU, reducing the training time to around 4.9 sec-

onds, accounting for 7% of FusionNet’s training time. How-

ever, SplitFusionNet incurs communication costs for transfer-

ring representation features and gradients between the client

and server, resulting in approximately 85 seconds, summing up

to a total training pipeline time of 92 seconds—significantly

higher than FusionNet. Conversely, SplitFusionNet∗ integrates

lossless compression before transferring representation fea-

tures and gradients, resulting in a total training pipeline time

of around 38 seconds, which constitutes 41% and 49% of the

total training pipeline time of SplitFusionNet and FusionNet,

respectively. Hence, SplitFusionNet with lossless compression
facilitates efficient and private training for multi-modal med-
ical image classification compared to the non-split method.

Transferred Data. In Table IV, we illustrate the size

of transferred data between the server and the client. In

comparison to SplitFusionNet, SplitFusionNet∗ with lossless

compression effectively reduces the size of both representation

features and gradients exchanged between the client and the

server. Particularly, representation features are compressed

more than corresponding gradients, for instance, 420.60 MB

versus 594.36 MB for client-head, using the same hyperpa-

rameter for compression – possibly due to higher redundancy

in representation features than gradients. Consequently, the

achieved compression ratio stands at approximately 1265.84
1015.79 =

1.25, resulting in a reduction of communication time from

93% in SplitFusionNet to 72% in SplitFusionNet∗ (see Ta-

ble III). Therefore, lossless compression emerges as an effec-
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tive approach to decrease transferred data in split learning,
thereby diminishing the server-client communication cost.

V. CONCLUSION

We study multi-modal and multi-label skin lesion classifica-

tion within a split learning framework, aiming to enable col-

laborative yet privacy preservation and efficient training. Our

proposed framework, SplitFusionNet, operates on a u-shape

split learning paradigm, wherein sensitive patients’ image data

and classification labels are retained on the client side, while

the computationally intensive mid-layer training is offloaded

to a powerful server. SplitFusionNet integrates lossless com-

pression to mitigate communication costs between the client

and the server. In our experimental validation, SplitFusionNet
achieves equivalent predictive performance compared to the

non-split centralized learning framework, while requiring only

49% of the overall training pipeline time. In future work,

we plan to extend SplitFusionNet to a multi-client setting

involving multiple data providers and further explore enhanced

communication protocols between the client and server.
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