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Abstract—Global sustainability is increasingly reliant on solar
energy. However, effectively monitoring solar farms and accu-
rately assessing our progress in transitioning towards this renew-
able energy source remains a challenge, especially on a global
scale. This study introduces SSSwin, a novel vision transformer
model specifically developed to improve the mapping of solar
panel farms using satellite imagery. The cornerstone of SSSwin
is its Sequential Spectral Embedding module, uniquely designed
to address the three-dimensional aspects of multispectral satellite
images, enabling intricate capture of spatial-spectral data. To
validate its effectiveness, we incorporated our new module into
the design of two state-of-the-art models: UPerNet-SwinB and
Mask2Former-SwinB. The experimental results demonstrate that
this integration enhanced both of their performance without
compromising efficiency. https://github.com/yzyly1992/SSSwin

Index Terms—solar energy, vision transformer, segmentation,
multispectral, sequential

I. INTRODUCTION

Solar panel farms are integral to the global shift towards

renewable energy, playing a vital role in sustainable develop-

ment [1]. Effective monitoring of these installations is crucial

for multiple reasons. Firstly, it enables the evaluation of

solar farms’ energy generation and performance over time,

providing essential data for optimizing their operation and

maintenance [2]. Additionally, monitoring aids in assessing

the environmental impact and land use changes associated

with solar energy production [3]. On a broader scale, remote

sensing analysis of solar farms offers valuable insights into

global renewable energy trends and development patterns.

Given the anticipated increase in solar installations worldwide,

the development of efficient and precise monitoring solutions

maximizes the benefits derived from this key source of clean

energy [4].

Multispectral satellite imagery presents unique challenges

in remote sensing, particularly in applications like land cover

categorization and solar panel farm monitoring [5]. While

deep convolutional neural networks (CNNs) have been ground-

breaking in semantic segmentation of such images, they ex-

hibit inherent limitations. The main challenge lies in their

local convolutional kernels, which may not efficiently cap-

ture the complex spatial long-range and global cross-band

dependencies inherent in multispectral data [6]. This limitation

becomes more pronounced in the context of monitoring and

analyzing solar panel farms, where precise and comprehensive

data interpretation is crucial.

In response to these challenges, Vision Transformers have

emerged as a promising alternative, offering a novel approach

to image processing. Among these, the Swin Transformer

stands out, integrating self-attention mechanisms and relative

position biases. This design enables it to leverage both local

and long-range dependencies effectively [7]. However, while

promising, standard Swin Transformers are not fully optimized

for the unique three-dimensional structure of multispectral

image cubes. This gap highlights the need for a more tai-

lored approach that can effectively handle the intricacies of

multispectral satellite imagery, especially in applications like

solar panel farm monitoring.

In this work, we introduce the SSSwin Transformer for

multispectral image segmentation. The SSSwin introduces a

Sequential Spectral Embedding module to better handle the

spatial-spectral properties of multispectral data. It facilitates

the capturing of detailed information across bands while main-

taining the advantages of vision transformers. By combining

sequential modeling with multispectral feature extraction, our

SSSwin method aims to achieve superior performance. By

improving the existing Swin Transformer to better handle the

multispectral data structure, our approach seeks to advance the

state-of-the-art. This is especially important for applications

involving solar panel farm monitoring from multispectral

satellite imagery.

The contributions of this work can be summarized as

follows:

• Modifications have been made to Swin Transformer ar-

chitecture to better suit the characteristics of multispectral

data, like those from Sentinel-2 satellites. These adjust-

ments aim to improve feature capture in multispectral

image segmentation.

• The study addresses dataset limitations by developing a

detailed multispectral image dataset, specifically focusing

on solar panel farms. This serves as a valuable resource

for research and practical applications in solar energy.

• The work demonstrates significant improvements in mul-

tispectral image segmentation for solar panel farms

through extensive testing. The results show enhanced

accuracy and efficiency, suggesting the potential of these

methods for more effective and scalable monitoring so-

lutions.
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II. RELATED WORK

A. Deep Convolutional Neural Network

When it comes to deep convolutional neural networks, UNet

[8] stands as a benchmark for biomedical image segmentation,

employing an encoder-decoder structure with skip connec-

tions. Complementing this, DeepLabV3 [9] introduced atrous

convolution to explicitly address the multi-scale context in

image segmentation tasks. In this context, UPerNet [10] dis-

tinguishes itself by incorporating a pyramid attention module,

elevating feature representation, and global context capture for

even more precise biomedical image segmentation.

B. Vision Transformer

The emergence of Vision Transformer (ViT) [11] marked

a paradigm shift by applying transformers to natural im-

ages through patch-based tokenization. Swin Transformer [7]

later refined this approach with a shifted window mecha-

nism, achieving linear computational and memory complexity.

Building upon Swin Transformer, Swin-UNet [12] integrated

it into a UNet-like framework, showcasing the versatility

of transformer architectures in segmentation. Concurrently,

SegFormer [13] proposed a lightweight vision transformer

focusing on self-attention, while Mask2Former [14] leveraged

masked attention mechanism to enhance segmentation mask

predictions.

C. Hybrid Vision Transformer

In the domain of hybrid vision transformers, models like

MAE [15] and BEiT [16] explored self-supervised reconstruc-

tion for pretraining, followed by fine-tuning for downstream

tasks such as segmentation. These approaches contribute to

the growing flexibility and adaptability of transformer-based

architectures.

D. Vision Transformer for Multispectral Imagery

Expanding the scope to multispectral imagery, 3D Swin

Transformer [17] extends the Swin Transformer for multispec-

tral imagery by processing volumetric data with shifted win-

dows. SpectralSWIN [18] is the first transformer-based model

for hyperspectral image classification, leveraging the Swin

Spectral Module (SSM) for concurrent spatial and spectral

feature capture, demonstrating superior performance on two

Hyperspectral imaging (HSI) datasets. SpectralFormer [19], a

novel transformer backbone, addresses limitations in spectral

sequence attribute capture, outperforming classic transformers

and state-of-the-art (SOTA) networks in hyperspectral image

classification across three datasets.

Current Vision Transformer models are not optimized for

multispectral data, limiting their use in fields like remote

sensing. They mainly focus on classification over segmentation

and their complex optimization methods reduce practicality.

Additionally, their application in solar panel farm mapping,

crucial for energy management, remains unexplored. Address-

ing these gaps could significantly broaden their utility.

III. METHODOLOGY

A. Global Dataset

To develop an effective methodology for our research, we

first generated a comprehensive dataset by combining various

sources of information [20]. This dataset consisted of three

main components: the Historical Global Ground Truth from

2017-2018 [21], the Manual Annotated US Ground Truth from

2022-2023 using Google Earth Engine, and the Sentinel-2

Multispectral Satellite Imagery spanning the years 2017-2023
[22]. By merging these datasets, we created a comprehensive

initial training set with 10, 230 multispectral images with

dimensions of 256×256×13. The dataset has been published

at https://github.com/yzyly1992/GloSoFarID

After having the initial training set, we employed multiple

state-of-the-art models to train on the dataset with a batch size

of 16, and for 50 epochs. We achieved very good accuracy in

segmenting the solar panel farms from multispectral images

with these models. The best model can reach an IoU of

96.47%, and an F-score of 98.2%.

From these models, we selected the top three performers

based on their predictive accuracy. These selected models were

then utilized to predict and combine labels for the global

dataset spanning the years 2021-2023. This step allowed us to

leverage the strength of the best-performing models to provide

accurate predictions for the desired time frame.

To ensure the quality and reliability of our dataset, we

implemented a process to remove noise and weak predicted

samples. By applying rigorous filtering techniques, we were

able to eliminate any erroneous or unreliable data points. The

resulting dataset was then considered to be the final dataset,

containing the most up-to-date and accurate information avail-

able.

B. SSSwin: Sequential Spectral Swin Transformer

The Swin Transformer was initially built with 2D Patch

Partition, Linear Embedding, and Swin Transformer Blocks.

However, its design and testing primarily focused on standard

RGB images. When dealing with images containing more

than 3 spectral bands, its architecture may not ensure optimal

performance. Our proposed SSSwin Transformer takes a novel

approach by customizing the original Swin Transformer Ar-

chitecture, specifically addressing the limitations of the Patch

Partition Method and Embedding Strategy when handling

multispectral data. These tailored modules aim to boost the

overall performance of the Swin Transformer.

1) 3D Patch Partition: The purpose of the patch partition

is to enable the effective processing of images by dividing

them into smaller patches. The Swin Transformer utilizes this

patch partition by breaking down images into patches along

both height and width dimensions, facilitating the extraction of

features from localized regions. However, a limitation arises as

each patch encompasses information from all spectral bands.

During the embedding process, all spectral bands within a

patch are treated as a single unified representation. This ap-

proach becomes challenging when dealing with multispectral
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Fig. 1. Examples from our proposed multispectral dataset [20] Each sample is 256 by 256 pixels with a 10m resolution and contains 13 bands of satellite
information, labeled as B1 to B12. The image on the right represents the mask for the ground truth, where the gray color indicates the solar panel area and
the black color represents the non-solar panel area.

Fig. 2. SSSwin Transformer Architecture

bands, as it fails to adequately capture the intricate relation-

ships among the various spectral bands.

To address this challenge more effectively, we introduced a

3D Patch Partition Module. Unlike the conventional approach

of solely splitting images along the height and width dimen-

sions, the 3D Patch Partition Module extends its capability by

incorporating spectral dimension into the partitioning process.

By doing so, each patch unit not only retains a clear spatial

relationship but also captures distinct spectral information.

Fig. 3. Original Swin Patch Embedding

Fig. 4. SSSwin with 3D Patch and Sequential Spectral Embedding

Multispectral Image (X) ∈ RH×W×C

3D Patched Image (Xp) ∈ RN×(P×P×1)

Number of Patches N = H × W × C/(P × P × 1).

Fig. 5. Sequential Spectral Embedding Module

2) Sequential Spectral Embedding Module: The original

Swin Transformer utilizes linear embedding to directly in-

corporate 2D partitioned patches into the target embedding

dimension. As discussed in the partition module section, this

direct embedding strategy consolidates all spectral features

into a single representation, making it challenging to capture

intricate spectral relationships.

To address this limitation and enhance spectral information

handling, we introduced the Sequential Spectral Embedding

Module. This module, in conjunction with the 3D Patch

Partition Module, embeds each 3D patch into a smaller di-

mension DP (derived by dividing the target dimension DT

by the spectral dimension C) and sequentially concatenates

them along the spectral dimension. This approach allows us

to maintain the same target embedding dimension for the

output while preserving the sequential relationships between

the spectral bands.

DP = DT /C

IV. RESULT AND DISCUSSION

A. Experiment Setting

To evaluate the efficacy of the SSSwin Transformer Model,

we conducted a comprehensive comparative analysis involving

eight SOTA models. Our assessment involved rigorous training

and testing on the newly introduced Multispectral Solar Panel
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Farms dataset, a purposefully curated collection designed to

assess the model’s performance in the presence of diverse

spectral bands and complex environmental conditions. The

chosen SOTA models were selected based on their prominence

and relevance in the field, ensuring a robust benchmark for our

proposed SSSwin Transformer.

The hardware environment utilized a Cluster, featuring

NVIDIA Tesla V100 SXM2 GPUs with 32 GB of memory.

Each model underwent training for 50 epochs, employing a

batch size of 16. Additionally, we implemented early stopping

with a patience of 10, tracking the mean Intersection over

Union (IoU) value.

The metrics employed to evaluate the performance of our

models encompass IoU and F-score. Given the nature of the

task, which involves semantic segmentation, these metrics

play a pivotal role in assessing the accuracy and precision of

the model’s predictions. IoU, measuring the overlap between

predicted and ground truth masks, provides insights into

the spatial alignment of segmentation results. Concurrently,

the F-score, considering both precision and recall, offers a

comprehensive assessment of the model’s ability to correctly

classify pixels belonging to the target classes.

B. Quantitative Results

To validate the efficacy of the SSSwin Transformer, we

adopted the Mask2Former [14] and UPerNet [10] models,

incorporating the SSSwin Transformer as their dedicated en-

coder backbone. Subsequently, we conducted a comparative

analysis by contrasting the outcomes obtained using these

customized models against those generated by Mask2Former

and UPerNet utilizing the original Swin Transformer as their

encoder. This comparative study serves to elucidate the spe-

cific advantages and improvements conferred by the SSSwin

Transformer in the context of these segmentation models.

Moreover, we extended our evaluation to include bench-

marking against CNN models such as U-Net [8] and

DeepLabV3 [9], and SOTA Vision Transformer models such

as Swin-UNet [12], SegFormer [13], MAE [15], and BEiT

[16]. As TABLE I shows, by encompassing a diverse set

of reference models, we aimed to provide a comprehen-

sive assessment of the SSSwin Transformer’s performance

relative to established methodologies, thereby offering valu-

able insights into its overall competitiveness and potential

advancements in solar panel farm mapping tasks. We also

include the number of parameters and floating point operations

(FLOPs) to measure the complexity of the model, enabling a

nuanced understanding of computational efficiency alongside

performance metrics. This comprehensive analysis contributes

to the broader understanding of Vision Transformer research,

highlighting the strengths and areas for improvement of the

SSSwin model in comparison to contemporary benchmarks.

C. Qualitative Results

Fig. 6 presents qualitative results comparing the segmenta-

tion masks for solar panel farms generated by the proposed

TABLE I
MODEL PERFORMANCE COMPARISON

Model Params FLOPs IoU F-score
UNet-MobileNetV2 [8], [23] 10.1M 26.16G 42.08 48.18
DeepLabV3-EfficientNet [9], [24] 9.0M 10.17G 66.54 46.28
Swin-UNet [12] 26.6M 9.34G 36.35 45.0
UPerNet-MAE-base [10], [15] 163M 148G 71.24 83.21
UPerNet-BEiT-base [10], [16] 163M 148G 73.29 84.59
SegFormer-B5 [13] 82.0M 16.87G 75.54 85.06
UPerNet-SwinB [7], [10] 120M 81.87G 76.92 86.95
Mask2Former-SwinB [7], [14] 110M 442G 79.32 88.47
UPerNet-SSSwin* 120M 81.77G 78.49 87.95
Mask2Former-SSSwin* 110M 442G 80.34 89.1

SSSwin Transformer Models, original Swin Transformer Mod-

els, CNN Models, and SOTA Vision Transformer Models.

The figure consists of ten rows, each representing a sample

area of 2, 560m by 2, 560m. Five samples are from North

America, three samples are from Europe, and two samples are

from Asia. The first column displays the RGB representation

of the multispectral data. Columns 2 to 8 show prediction

results from different models. In each prediction mask, white

represents true positives, black represents true negatives, red

represents false positives, and blue represents false negatives.

These qualitative results offer a visual assessment of the

model’s performance in accurately mapping solar panel farm

areas, highlighting the effectiveness of the proposed approach

in learning from multispectral images for solar farm mapping

tasks.

D. Discussion

The consistent uptick of approximately 1% (±0.5%) in IoU

and F-score across both Mask2Former and UPerNet configura-

tions showcases the robust adaptability of SSSwin, irrespective

of the underlying segmentation architecture. Notably, the su-

perior performance of the Mask2Former model coupled with

SSSwin stands out, achieving an impressive IoU of 80.34%
and an F-score of 89.1%. This particular synergy underscores

the compatibility between the Mask2Former architecture and

the unique features introduced by the SSSwin Transformer.

The nuanced understanding required for multispectral segmen-

tation, especially in the context of solar panel farms, appears

to be effectively captured by this combined approach.

The comparison with other SOTA segmentation models,

including U-Net, DeepLabV3, Swin-UNet, SegFormer, MAE,

and BEiT, would be essential to position the SSSwin Trans-

former within the broader landscape of segmentation tech-

niques. Future work may delve into exploring the compu-

tational efficiency and scalability of SSSwin across larger

datasets and diverse environmental conditions.

V. CONCLUSION

This study introduces the SSSwin Transformer, a signifi-

cant advancement in multispectral image segmentation with a

focus on solar panel farm monitoring. Our integration of the

SSSwin Transformer into two best-performing SOTA models,

Mask2Former and UPerNet architectures, has led to notable
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Fig. 6. Qualitative comparison of our predicted solar panel maps (by SSSwin) and the ground truth across different continents. Here, we represent True
Positive as white, True Negative as black, False Positive as red, and False Negative as blue.
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improvements in segmentation accuracy. This highlights the

transformative impact of our approach in the field. The SSS-

win Transformer has proven its versatility as an effective

encoder backbone across different segmentation models. The

combination of SSSwin and Mask2Former, in particular, has

yielded exceptional results, achieving an IoU of 80.34% and

an F-score of 89.1%. In future work, we plan to expand the

application of the SSSwin Transformer to other domains. We

aim to explore the potential of solar map identification in a

semi-supervised manner. As the need for global adoption of

solar energy grows, our findings are expected to enhance the

sustainability and overall efficacy of this crucial renewable

resource.
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